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Graph theoretical explorations of functional interactions within the human connectome,
are rapidly advancing our understanding of brain architecture. In particular, global
and regional topological parameters are increasingly being employed to quantify
and characterize inter-individual differences in human brain function. Head motion
remains a significant concern in the accurate determination of resting-state fMRI
based assessments of the connectome, including those based on graph theoretical
analysis (e.g., motion can increase local efficiency, while decreasing global efficiency
and small-worldness). This study provides a comprehensive examination of motion
correction strategies on the relationship between motion and commonly used topological
parameters. At the individual-level, we evaluated different models of head motion
regression and scrubbing, as well as the potential benefits of using partial correlation
(estimated via graphical lasso) instead of full correlation. At the group-level, we
investigated the utility of regression of motion and mean intrinsic functional connectivity
before topological parameters calculation and/or after. Consistent with prior findings, none
of the explicit motion-correction approaches at individual-level were able to remove motion
relationships for topological parameters. Global signal regression (GSR) emerged as an
effective means of mitigating relationships between motion and topological parameters;
though at the risk of altering the connectivity structure and topological hub distributions
when higher density graphs are employed (e.g., >6%). Group-level analysis correction
for motion was once again found to be a crucial step. Finally, similar to recent work,
we found a constellation of findings suggestive of the possibility that some of the
motion-relationships detected may reflect neural or trait signatures of motion, rather than
simply motion-induced artifact.
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INTRODUCTION
The graph of functional interactions in the human connectome
is increasingly being used as a defining component of an individ-
ual’s neurophenotype (Craddock et al., 2013). Not surprisingly,
cataloging variations in the connectome, from one individual or
population to another, has emerged as a key objective in modern
day neuroscience. Seemingly simple from a conceptual viewpoint,
the task of characterizing and comparing connectomes has proven
to be a significant challenge for the imaging community—both
due to the computational complexity of the connectome graph
and the richness of interactions between its connections and
subgraphs (i.e., modules). In response, the examination of con-
nectomes in terms of their network properties has emerged as a
potentially promising solution that reduces its complexity to a set
of topological parameters (see Table 1) that are easily amenable
to comparison across individuals and populations (Bullmore and
Sporns, 2009). Initial studies have demonstrated the sensitivity
of these measures to differences in both diagnostic status and

behavioral indices (Bassett and Bullmore, 2009; Bullmore and
Sporns, 2009, 2012; He and Evans, 2010; Wang et al., 2010;
Bullmore and Bassett, 2011; Yu et al., 2012), and have exhibited
acceptable test-retest reliability for these metrics (Telesford et al.,
2010; Wang et al., 2011). Although promising, little attention has
been given to the potential confounding effects of nuisance signals
present in R-fMRI studies—in particular, that of motion, which
is the primary focus of the present work.

Although the impacts of motion on graph topological mea-
sures have not been thoroughly assessed, the demonstrated dele-
terious effects of motion on community detection provides com-
pelling evidence of their existence (Power et al., 2012). Previous
work has found that the assignment of nodes in the connectome
to communities (modules) differed notably between children and
adults when motion was not considered, but were more similar
when motion was accounted for by the removal of affected frames
(i.e., scrubbing) (Power et al., 2012). Beyond this demonstration,
a key point raised by Power et al., as well as others (Satterthwaite
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Table 1 | Topological properties of brain graphs examined in the

current study.

Topological properties Descriptions

GLOBAL TOPOLOGICAL PROPERTIES

Local efficiency The average efficiency of information
transfer over a node’s direct neighbors

Global efficiency The efficiency of information transfer
through the entire graph

Clustering coefficient The average inter-connectedness of a
node’s direct neighbors

Characteristic shortest
path length

The average shortest path length between
any pairs of nodes

Normalized clustering
coefficient

The clustering coefficient compared to
matched random networks

Normalized characteristic
shortest path length

The characteristic shortest path length
compared to matched random networks

Small-worldness The normalized clustering coefficient
divided by the normalized characteristic
shortest path length, which reflect the
balance of global efficiency and local
efficiency

Assortativity The tendency of nodes to link with those
nodes with similar number of edges

Modularity The extent to which a graph can be
segregated into densely intraconnected but
sparsely interconnected modules

REGIONAL TOPOLOGICAL PROPERTIES

Degree centrality The number (or sum of weights) of
connections connected directly to a node

Nodal efficiency The efficiency of information transfer over a
node’s direct neighbors

Nodal clustering
coefficient

The inter-connectedness of a node’s direct
neighbors

Subgraph centrality The participation of a node in all subgraphs
comprised in a graph

Betweenness centrality The influences of a node over information
flow between other nodes

Eigenvector centrality A self-referential measure of centrality –
nodes have high eigenvector centrality if
they connect to other nodes that have high
eigenvector centrality

et al., 2012; Van Dijk et al., 2012) is that short-distance con-
nectivity increases with motion while long-distance connectiv-
ity decreases. However, applying this knowledge to topological
parameters does not lead to any direct conclusions. In topo-
logical space nodes are deemed neighbors if they are directly

connected, regardless of the anatomical distance between them.
Thus, although motion may decrease the number of long-distance
connections in a node’s topological neighborhood, and increase
the number of short-distance connections, the overall impact
to topological parameters such as local and global efficiency is
unclear. Equally unclear is the degree to which the effects of
motion are reflected in compromises to small-world properties,
which reflect the balance of global efficiency with local efficiency
(Watts and Strogatz, 1998; Salvador et al., 2005).

Concerns about the impact of motion on topologic param-
eters are particularly relevant to studies of inter-individual or
population-based differences, where systematic relationships can
exist between motion and variables of interest (e.g., developmen-
tal status, diagnostic status).

In this regard, several recent studies focusing on seed-based
correlation and regional R-fMRI measures (Fair et al., 2012;
Satterthwaite et al., 2013; Yan et al., 2013a; Power et al., 2014) have
provided comprehensive assessments of motion related artifacts
and suggested measures for controlling them. These studies gen-
erally emphasize that, if attempting to correct for motion at the
individual-subject level, (1) higher-order regression models [e.g.,
Friston 24-parameter model (Friston et al., 1996)] perform bet-
ter than lower-order models, (2) including scrubbing approaches
is superior to regression models alone, and (3) global signal
regression controls for head motion more than any approach
attempting to explicitly model motion. Importantly, several stud-
ies have suggested that despite the best of efforts, motion cannot
be fully accounted for at the individual-subject level and argued
that motion may be better accounted for at the group-level (i.e.,
covariate analysis) when possible (Fair et al., 2012; Satterthwaite
et al., 2013; Yan et al., 2013a). While some, or all, of these findings
may generalize to graph theoretical analyses, this remains an open
issue.

Here, we extend our prior work that examines the impact of
motion on seed-based correlation analyses and regional R-fMRI
measures (Yan et al., 2013a) to include topological properties.
Consistent with our prior work, we assess not only the impact
of motion on topologic measures and findings of inter-individual
and group-related differences, but the ability of previously estab-
lished motion correction procedures to account for the confound-
ing effects of motion (see Table 2). Importantly, when considering
graph theoretical analyses, it is essential to appreciate the potential
impact of motion on graph construction, prior to the deriva-
tion of topologic measures. In order to address this concern, we
begin our examination with an analysis of the impact of motion
on the density of graphs derived through correlation coefficient
thresholding. Additionally, for all topologic measures and proce-
dures examined, we systematically vary density to establish the
robustness of our findings.

METHODS
PARTICIPANTS AND IMAGING PROTOCOLS
We performed our analyses on publicly available imaging data
from the 1000 Functional Connectomes Project (FCP; data are
available at http://fcon1000.projects.nitrc.org). Consistent with
our previous study (Yan et al., 2013a), data of 176 participants
(70 males, 20.9 ± 1.9 years) in the Cambridge dataset were used in
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Table 2 | Head motion correction strategies investigated in the

current study.

Correction strategies Descriptions

INDIVIDUAL-LEVEL

Preprocessing-stage: motion was corrected during preprocessing

Rigid-body 6 Regress out 6 head motion parameters

Friston 24 Regress out 6 head motion parameters, 6 head
motion parameters one time point before, and
the 12 corresponding squared items (Friston
et al., 1996)

Friston 24 + scrubbing Identifying “bad” time points using a threshold
of FD (Power) >0.2 mm as well as 1 back and 2
forward neighbors as done in Power et al.
(2013), then modeling each “bad” time point as
a separate regressor in the regression models

Polynomial regression The difference in correlation values (�r ) were
calculated between the r -values acquired in
Strategy 2 (Friston 24) and those in Strategy 3
(Friston 24 + scrubbing). A 5-degree polynomial
model was used to fit �r values on Euclidean
distances, and then these fitted �r values were
regressed out from the original r values (Fair
et al., 2012)

Connection estimation-stage: motion was corrected during

connection estimation

Graphical lasso Using graphical lasso to estimate the partial
correlation instead of full correlation

GROUP-LEVEL

Connection-stage: the following motion-related parameters were
regressed out from each connection before topological parameter
calculation

Mean iFC regression Whole brain mean iFC

Motion regression Mean FD

Mean iFC + motion
regression

Both mean iFC and mean FD

Topological parameter-stage: the following motion-related

parameters were regressed out from each topological parameter

after their calculation

Mean iFC regression Whole brain mean iFC

Motion regression Mean FD

Mean iFC + motion
regression

Both mean iFC and mean FD

Both stages: the following motion-related parameters were

regressed out from each connection before topological parameter

calculation, as well as from each topological parameter after their

calculation

Mean iFC regressed Whole brain mean iFC

(Continued)

Table 2 | Continued

Correction strategies Descriptions

Motion regressed Mean FD

Mean iFC + motion
regressed

Both mean iFC and mean FD

FD, framewise displacement; iFC, intrinsic functional connectivity.

our main analyses. In addition, data of 176 participants (70 males,
21.2 ± 1.9 years) in the Beijing dataset were used to assess the gen-
eralizability of our main analyses. The corresponding institutional
review boards approved or provided waivers for the inclusion of
anonymized data in the FCP. Data were acquired with written
informed consent from each participant.

Participants were instructed to simply rest while awake in
a 3T scanner, and R-fMRI data were acquired using an echo-
planar imaging (EPI) sequence (Cambridge dataset: repeat time
(TR) = 3 s, echo time (TE) = 30 ms, time points = 119, slice
number = 47, voxel size = 3 × 3 × 3 mm3, field of view (FOV)
= 216 × 216; Beijing dataset: TR = 2 s, TE = 30 ms, time points
= 235, slice number = 33, voxel size = 3.12 × 3.12 × 3.6 mm3,
FOV = 200 × 200). A high-resolution T1-weighted magnetiza-
tion prepared gradient echo image (MPRAGE) was also obtained
for each participant to perform spatial normalization and
localization.

PREPROCESSING
Unless otherwise stated, all preprocessing was performed using
the Data Processing Assistant for Resting-State fMRI (DPARSF,
Yan and Zang, 2010, http://www.restfmri.net), which is based
on Statistical Parametric Mapping (SPM8) (http://www.fil.ion.

ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit
(REST, Song et al., 2011; http://www.restfmri.net), running in
Matlab R2012a (Natick, MA). All volume slices were corrected
for different signal acquisition times by shifting the signal mea-
sured in each slice relative to the acquisition of the slice at the
mid-point of each TR. Then, the time series of images for each
subject were realigned using a six-parameter (rigid body) lin-
ear transformation with a two-pass procedure (registered to the
first image and then registered to the mean of the images after
the first realignment). Individual structural images (T1-weighted
MPRAGE) were co-registered to the mean functional image after
realignment using a 6 degrees-of-freedom linear transformation
without re-sampling. The transformed structural images were
then segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) (Ashburner and Friston, 2005). The
Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra (DARTEL) tool (Ashburner, 2007) was used to com-
pute transformations from individual native space to MNI space.

HEAD MOTION CORRECTION STRATEGIES (INDIVIDUAL-LEVEL)
As identified in our previous study (Yan et al., 2013a), the
Friston 24-parameter model performed well in addressing head
motion effects, which is consistent with other studies that found
higher-order models performed better than lower-order models
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(Satterthwaite et al., 2013; Power et al., 2014). Thus, we com-
pared the following individual-level correction strategies at the
preprocessing-stage in the current study (see Table 2):

(1) Regression of realigned data on 6 head motion parame-
ters (i.e., three translations and three rotations) (rigid-body
6-parameter model);

(2) Regression of realigned data on 6 head motion parameters,
6 head motion parameters from the previous time point,
and the 12 corresponding squared items (Friston et al., 1996)
(Friston 24-parameter model);

(3) Scrubbing within Friston 24-parameter model regression
(spike regression): “bad” time points were identified using a
threshold of framewise displacement (FD, Power et al., 2012)
> 0.2 mm as well as 1 back and 2 forward neighbors as per-
formed by Power et al. (2013), then each “bad” time point
was modeled as a separate regressor in the regression mod-
els (Lemieux et al., 2007; Satterthwaite et al., 2013; Yan et al.,
2013a) in addition to Strategy 2 (Friston 24 + scrubbing);

(4) Recently, Fair et al. (2012) proposed a method that incor-
porates the information of scrubbing but does not result in
a reduction of degrees of freedom. The difference in corre-
lation values (�r) were calculated between the correlation
(r)-values acquired in Strategy 2 and those in Strategy 3.
A 5-degree polynomial model was used to fit �r values on
Euclidean distances, and then these fitted �r values were
regressed out from the original r-values acquired in Strategy
2 (Polynomial regression).

As scrubbing can result in the removal of a large number of time
points (Power et al., 2012, 2013; Satterthwaite et al., 2013; Yan
et al., 2013a), to obtain reliable results, we removed subjects who
had less than 3 min of data remaining after scrubbing, as done
in our previous study (Yan et al., 2013a). This resulted in the
exclusion of 18 subjects in the Cambridge datasets from the main
analyses, leaving 158 subjects for these analyses.

GLOBAL SIGNAL REGRESSION (GSR)
GSR is a commonly used, yet controversial practice in the R-fMRI
field, that yields substantial increases in negative correlations
(Murphy et al., 2009; Weissenbacher et al., 2009) and may dis-
tort group differences in intrinsic functional connectivity (iFC)
(Saad et al., 2012, 2013; Gotts et al., 2013). However, recent
studies have found that GSR is more effective in removing rela-
tionships between motion and correlation-based R-fMRI metrics
across subjects than any correction strategy that explicitly models
motion (Yan et al., 2013a; Power et al., 2014). Thus, we evalu-
ated the effects of head motion correction strategies on analyses
performed with and without GSR.

Within the nuisance regression step, linear and quadratic
trends were included as regressors to account for low-frequency
drifts, and signals from WM and CSF were regressed out to reduce
respiratory and cardiac effects, in the BOLD signal.

After nuisance regression, the functional data were trans-
formed to MNI space and resampled to 3 × 3 × 3 mm3 voxel
size with DARTEL tool (Ashburner, 2007). Spatial smoothing
was not performed to avoid mixing signals between different

regions (see section Network Construction). Temporal filtering
(0.01–0.1 Hz) was then applied to the time series of each voxel
to reduce the effect of low-frequency drifts and high-frequency
noise.

NETWORK CONSTRUCTION
The connectome graph is composed of distinct brain regions
(nodes) and their functional interactions (edges). The whole
brain was first parcellated into 90 cortical and subcortical regions
of interest (45 for each hemisphere, see Table A1) using a prior
anatomical automatic labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). Although the AAL atlas is widely used in brain
network topology analysis, Smith et al. (2011) demonstrated
the use of functionally inaccurate ROIs is damaging to net-
work estimation, and thus suggests against structural atlases.
Here we also evaluated the networks based on two func-
tional atlas for supplementary analyses: Dosenbach’s 160 ROIs
which were generated based on meta-analysis (Dosenbach et al.,
2010), and Craddock’s 200 ROIs which were generated based
on spatially constrained spectral clustering (Craddock et al.,
2012).

The mean time series of each region was extracted by aver-
aging the time series of all voxels within that region. Pearson’s
correlation coefficients were estimated for each pair of regions
and were transformed to Fisher’s z-score (Fisher, 1915) to cre-
ate the iFC matrix for each participant. The correlation matrices
were further thresholded into binary networks or weighted net-
works to examine the head motion impact on binarized topology
or weighted topology. Two thresholding strategies are widely
used: correlation coefficient thresholding and density threshold-
ing; each has its own limitations (Fornito et al., 2013). The
correlation coefficient thresholding strategy resulted in networks
with densities (the number of existing edges divided by the
maximum possible number of edges) that are sensitive to head
motion (see results in the section “Head Motion Impact on Graph
Construction”); this in turn affects the topological properties. As
such, we used the density thresholding strategy to normalize the
number of edges among all of the graphs. A wide range of den-
sity thresholds (2% ≤ density ≤ 50%, step of 2%) was chosen to
allow prominent small-world properties in brain networks to be
observed (Watts and Strogatz, 1998) (for details, see the Results
section).

While the primary focus of the present work is on graphs
derived using full correlation (Pearson’s correlation), we also felt
that it is important to address potential differences when partial
correlation-based graphs are used instead. Partial correlation-
based approaches should inherently remove signals present
throughout the brain; as such, we predicted that graphs gener-
ated from partial correlation should be more robust to motion. Of
note, a key limitation for partial correlation approaches is that the
covariance matrix is not invertible for most R-fMRI datasets due
to the limited number of time points relative to the large number
of nodes. This challenge is compounded by additional losses in
the number of degrees of freedom produced by temporal filtering.
In order to address this, we utilized the graphical lasso method
to estimate the sparse inverse matrix through L1 norm (lasso)
regularization (Friedman et al., 2008) (http://www-stat.stanford.
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edu/∼tibs/glasso/). We systematically varied the regularization
penalties 1 to acquire matrices with the desired density (2% ≤
density ≤ 50%, step of 2%) for each participant.

NETWORK ANALYSIS
We investigated both the global and regional topological proper-
ties of brain graphs (Table 1). At the global level, we investigated
local efficiency, global efficiency, clustering coefficient, charac-
teristic path length, normalized clustering coefficient, normal-
ized characteristic path length, small-worldness, assortativity and
modularity. At the regional level, we computed degree centrality,
nodal efficiency, nodal clustering coefficient, subgraph centrality,
betweeness centrality and eigenvector centrality for each node.

All of the topological parameters investigated in the current
study are summarized in Table 1, and were calculated with the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) (http://
www.brain-connectivity-toolbox.net). For details about the com-
putation of network parameters, please see (Rubinov and Sporns,
2010).

STATISTICAL ANALYSIS
To examine head motion effects on the topological properties
of the connectome graph, we calculated the correlation between
head motion and each of the parameters across participants. Head
motion was indexed by mean FD derived with Jenkinson’s relative
root mean square (RMS) algorithm (Jenkinson et al., 2002); mean
FD (Jenkinson) was used due to its consideration of voxel-wise
differences in motion in its derivation (Yan et al., 2013a).

To investigate the need for group-level motion correction after
individual-level correction (Fair et al., 2012; Satterthwaite et al.,
2012; Van Dijk et al., 2012; Yan et al., 2013a), we also com-
pared topological parameters derived from subjects in the upper
and lower terciles of head motion, as in our prior study (Yan
et al., 2013a). The upper and lower motion terciles were created
using only females (n = 32 / group) to avoid potential confounds
associated with sex; age did not differ. Two-sample t-tests were
performed between the two motion groups to test motion effects
with and without group-level correction.

Group-level corrections were performed at two stages:
connection-stage and/or topological parameter-stage (Table 2).
For each stage, two kinds of regressors were regressed out: mean
iFC and/or mean FD. The regression of mean iFC is motivated
by its ability to address unwanted additive noise as demonstrated
in our prior work on standardizing R-fMRI measures (Yan et al.,
2013b).

RESULTS
HEAD MOTION IMPACT ON GRAPH CONSTRUCTION
Topological parameters derived from graph theoretical analyses
are highly sensitive to graph construction. In order to address
concerns regarding the potential impact of motion on graph con-
struction, we examined the relationship between mean FD and

1In order to achieve densities as close as the desired range, the regularization
penalties were varied from 0.0001 to 0.001 in a step of 0.0001, and then from
0.001 to 1 in a step of 0.001, and the penalty resulting in the density closest
to the desired value was chosen. Consequently, the selected inverse covariance
matrices are very close to the desired densities.

mean iFC (calculated by averaging the Fisher’s z value across all
connections for an individual). Our findings indicate that mean
iFC is highly correlated with motion when GSR is excluded,
regardless of the motion correction strategy employed; in con-
trast, when GSR is applied, mean iFC relationships with motion
were more moderate (Figure 1A).

We also examined the impact of motion on the density of
graphs derived using the correlation coefficient thresholding
strategy. As would be expected, the global increase in iFC with
motion results in increased density, regardless of the r thresh-
old applied for graph construction (Figure 1B). Once again, we
found GSR to be a major determinant of our findings, with graph
density exhibiting markedly greater relationships (across corre-
lation thresholds) with motion when the data were processed
without GSR, rather than with GSR (which diminished nearly
all relationships between graph density and motion, regardless of
motion correction approaches employed). This is consistent with
our prior finding that GSR controls for head motion more than
any approach attempting to explicitly model motion (Yan et al.,
2013a).

One other consideration that should be noted is the impact of
scrubbing on motion-density relationships. Specifically, we found
that scrubbing reduces motion-density relationships the most
among the individual-level correction strategies when GSR is not
used. This benefit was not seen when GSR is used—in fact, the
combination of scrubbing and GSR appeared to increase motion
relationships relative to GSR alone. This may at first appear to be
surprising, but it is important to note that participant data requir-
ing a higher degree of scrubbing will inherently have a higher
likelihood of extreme correlation values after scrubbing due to
decreases in the number of degrees of freedom; this in turn will
increase density (i.e., more edges) (Yan et al., 2013a)—please see
an expanded discussion in the section “Reviving or Learning from
Global Signal Regression?”

Overall, these results indicate that one should be extremely
cautious when using a correlation- or p-value-based threshold to
construct brain graphs, as the results can be highly confounded
by head motion; GSR can alleviate these concerns. Nonetheless,
given the impact of head motion on graph construction with
correlation-based thresholding, our remaining analyses were car-
ried out using a density thresholding strategy in which the
number of graph connections across participants and process-
ing strategies was normalized. We report our main results based
on binarized graphs, though our analyses using weighted graphs
yielded similar results (see section “Generalizability of Findings”).

MOTION-ROBUST SMALL-WORLD PROPERTIES IN THE CONNECTOME
GRAPH
Prior work has demonstrated that human connectome graphs
based upon iFC follow a small-world topology (i.e., high clus-
tering and short path lengths linking different nodes) (Salvador
et al., 2005; Achard et al., 2006; Achard and Bullmore, 2007; Liao
et al., 2011; Yan and He, 2011; Yu et al., 2011). Here, we tested
whether the prominent small-world architecture is robust to the
various head motion correction strategies, finding that the graphs
derived from all the correction strategies retained small-world
properties, independent of density level (0.06–0.44) (Figure 2A).
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FIGURE 1 | The relationship between mean framewise displacement

(FD) and mean intrinsic functional connectivity (iFC) (A) as well

as density under different correlation thresholds (B). The mean iFC
was averaged across all the connections between all the pairs of 90
ROIs of automated anatomical labeling (AAL) atlas. Five preprocessing

strategies were evaluated in combination without global signal
regression (GSR: green shaded) and with GSR (pink shaded). The
correlation is considered significant at p < 0.05 (|r |> 0.16). We did not
correct for multiple comparisons to avoid false negative effects of
head motion.

When compared with 100 random networks with the same num-
ber of nodes, edges, and degree distribution as the observed
graph (Maslov and Sneppen, 2002), the brain networks had an
almost identical path length (normalized characteristic shortest
path length ∼1) but were more locally clustered (normalized clus-
tering coefficient >1). Taken together, the current results indicate
the previous findings of small-world properties in human func-
tional networks cannot be easily attributed to the presence of head
motion. As will be discussed in the following sections, this state-
ment is not intended to imply that head motion does not impact
topological parameters.

We also tested if hub distribution is robust to head motion
correction strategies. We first calculated node degree centrality
over the range of densities that maintained small-worldness, i.e.,
0.06–0.44, and then calculated the area under curve (AUC) for
this range. The AUC of degree centrality was averaged across all
the participants, and regions with degree > mean + one standard
deviation (SD) across nodes were identified as hubs (Figure 2B).
Head motion correction strategies had little impact on the iden-
tification of hubs, though once again, the presence of absence of
GSR was a major determinant of findings. In the case without
GSR, the hubs were predominantly attributed to fronto-parietal
network and temporal regions, while shifted into default mode
network and insula in the case with GSR. However, there is an
important caveat on this finding if one looks at motion-hub dis-
tribution relationships for individual density levels, rather than
using AUC. The hub distributions are similar between data with
and without GSR when the density is low (<6%); however, when
the density increases, the discrepancy of hub distribution between
with and without GSR becomes dominant (Figure 3A). This can
be explained by the alteration in correlation distribution induced
by GSR (Figure 3B). The top percentage of connections can be
identified either with or without GSR. However, the weaker con-
nections identified will differ as a function of whether or not GSR
is applied. In sum, GSR is not only mean-centering the intrinsic
connectivities, but can also affect their relative structure as well as
hub distribution.

HEAD MOTION IMPACT ON GLOBAL TOPOLOGICAL PROPERTIES
Head motion increased local efficiency while decreasing global
efficiency (Figure 4). These findings generalized across nearly
all densities above 0.1 for global efficiency, but were limited to
densities greater than 0.3 for local efficiency. Of note, here the
topological properties were derived from graph constructed with
density threshold; in other words, relationships with head motion
exist in network structure even when the wiring cost (i.e., number
of connections) is controlled. When GSR is performed, such head
motion relationships are removed.

With regard to small-worldness, we found that motion is nega-
tively associated with small world properties—a finding that gen-
eralized across density levels greater than 0.1, and was once again
diminished with GSR. To interpret these findings, it is important
to understand the impact of motion on the two constituent mea-
sures for small-worldness—the normalized clustering coefficient
and the normalized characteristic shortest path length. As previ-
ously described, higher head motion is associated with an increase
in local efficiency (which is equivalent to clustering coefficient) of
the constructed graph, and also for degree-matched random net-
works. The increase in clustering coefficient of the constructed
network is less than the increase in degree-matched random net-
works, leading to a negative correlation between head motion
and normalized clustering coefficient. In contrast, the character-
istic shortest path length (the inverse of global efficiency) and
its normalized version (compared to random networks) were
both positively correlated with head motion. Combining the nor-
malized clustering coefficient and normalized characteristic path
length, the small-worldness was negatively correlated with head
motion. Once again, such an effect is significant in the case
without GSR, but almost completely diminished by GSR.

HEAD MOTION IMPACT ON REGIONAL TOPOLOGICAL PROPERTIES
Next, we evaluated the impact of head motion on regional topo-
logical properties; the AUC densities in the range of 0.06–0.44
were used as in section Motion-Robust Small-World Properties
in the Connectome Graph. In our prior work, we found degree
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FIGURE 2 | Small-world properties (A) and hub distributions (B) under

different head motion correction strategies. Five preprocessing strategies
were evaluated in combination without GSR (green shaded) and with GSR
(pink shaded). “�” in panel (A) indicates that the hub distribution
demonstrated in panel (B) is derived from Friston 24 model. The hub

distribution was demonstrated with the area under the curve (AUC) of degree
centrality integrated within density range of 0.06–0.44, while regions with
AUC > mean + SD are considered as hubs. For the abbreviations of the
regions, see Table A1. Surface maps were created with BrainNet Viewer (Xia
et al., 2013 www.nitrc.org/projects/bnv/).

centrality was drastically increased with motion, and that rela-
tionships with motion were markedly reduced by GSR or Z-
standardization (i.e., mean centering + variance normalization)
(Yan et al., 2013a). Unlike our previous findings, which were
based on a p-value-based thresholding strategy (similar to corre-
lation coefficient thresholding), here we found that with density
thresholding (i.e., the mean degree was controlled accordingly),
both positive and negative relationships with motion were noted
for region-wise degree centrality, depending on the specific region
examined (Figure 5). Interestingly, the degree centralities of pre-
cuneus, precentral, fusiform, middle temporal, median cingulate
and paracingulate gyri—the hub regions when no GSR is used—
were positively correlated with head motion. On the other hand,
the degree centralities of default mode network regions—medial
prefrontal cortex (MPFC), posterior cingulate cortex (PCC),
angular gyrus, hippocampus and parahippocampal gyrus—were
negatively correlated with head motion. Such findings are in line
with our prior findings that head motion is positively associ-
ated with motor cortex and negatively correlated with the default
mode network (Yan et al., 2013a). Of note, head motion asso-
ciations decreased with scrubbing, but the pattern was similar
(i.e., no new regional associations emerged) (Figure 6). A key
challenge in the interpretation of these findings, which was dis-
cussed previously and will be expanded in our discussion, is
determining whether or not the motion–BOLD relationships are

purely artifactual, or may in part reflect motion-related neural
activity or indices of kinetic traits.

Regarding regional topological properties, which reflect local
properties, e.g., nodal efficiency and nodal clustering coef-
ficient, we generally found positive relationships with head
motion. However, the pattern was reversed for the topologi-
cal properties that reflect global properties, e.g., betweenness
and eigenvector centrality. Subgraph centrality, a measure con-
sidered to reflect middle- or meso-scale properties (Zuo et al.,
2012), was drastically increased with motion. These findings
are consistent with our findings that head motion increased
local efficiency while decreased global efficiency (see prior sec-
tion). Once again, when time points with relatively larger
frame-wise displacements were removed via scrubbing, rela-
tionships with head motion observed for the various centrality
measures were reduced, though the overall patterns remained
(Figure 6).

When GSR was included in preprocessing, relationships
between head motion and regional topological properties were
diminished. It is important to note that since we controlled den-
sity in our graph construction step, the same amount of highly
connected edges were present in the cases of processing with and
without GSR—thus removing a major potential confound. The
markedly different motion relationships noted with GSR suggest
that GSR is not just mean-centering correlation scores, but also
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FIGURE 3 | Impact of density on hub distribution. (A) Hub distribution
across various densities either without GSR (green shaded) or with GSR (pink
shaded) derived from the data corrected with Friston 24 model. With
stringent density thresholds, the hub distributions are similar between data
with and without GSR. When the density increases, the discrepancy of hub

distribution between with and without GSR becomes dominant. (B) Scatter
plot of Fisher’s Z averaged across participants. Most of the top connections
can be identified either with or without GSR. However, when the percentage
increases, a large portion of connections can be only identified by one
procedure but not the other.

altering the connectivity structure. The manner in which GSR
alters this structure remains largely unknown.

THE IMPACT OF GRAPHICAL LASSO ON HEAD MOTION
RELATIONSHIPS
When partial correlation (using graphical lasso) was utilized
instead of full correlation for estimating connections, we found
that topological parameters were insensitive to motion effects
at higher density thresholds (e.g., >0.25) as compared to those
based on full correlation (Figure 7). However, head motion
effects were more prominent for lower densities (0.05–0.25) when
graphical lasso was employed. These results indicate that although
graphical lasso removes the variance of other regions when esti-
mating the relationship between two specific regions, it did not
remove the “global effect” as addressed by GSR.

Given that we found GSR diminished the relationship between
head motion and global topological properties, we tested the
effect of GSR on graphical lasso estimates of connectivity using
two strategies: (1) the global signal was added as an addi-
tional timeseries to the parcellation set; (2) the global signal was
regressed out of the fMRI timeseries data prior to performing
graphical lasso. In the first case, when the GS timeseries was
treated as a signal akin to any ROI’s timeseries, the result was
identical to those obtained from graphical lasso without the GS
timeseries. Of note, this finding did not depend on whether the
GS timeseries was calculated by averaging the timeseries across
all ROIs, or all voxels. In contrast, regressing out the GS prior to
carrying out graphical lasso reduced the effect of head motion as

previously seen with full correlation. Once again, we found that
this did not depend on the specific approach used to calculate the
GS; additionally, it did not matter if the GS was regressed before or
after filtering. Given that the GS should be theoretically removed
by partial correlation or graphical lasso itself, it is not clear why
GSR prior to graphical lasso has such an impact.

GROUP LEVEL CORRECTION IN ADDRESSING RESIDUAL HEAD MOTION
IMPACT
Previous studies have suggested the necessity of accounting for
motion at the group-level when possible (Fair et al., 2012; Van
Dijk et al., 2012; Satterthwaite et al., 2013; Yan et al., 2013a).
While these reports primarily highlighted the merits of including
mean FD as a covariate in group-level analyses, more recent work
has suggested additional benefits of correcting each participant’s
data for global distribution parameters (e.g., the mean R-fMRI
for each individual) (Saad et al., 2013; Yan et al., 2013b). Here, we
explored the group-level correction targeting two different stages:
(1) the connection—for each edge, we regressed the correlation
scores across subjects on their mean iFC scores and/or motion,
and then perform graphical theoretical analysis, (2) topological
parameter—we added mean iFC and/or mean FD as covariates
in group analysis after the topological parameters are calculated.
Following the approach of our prior work (Yan et al., 2013a), this
was accomplished by comparing a “high”-motion vs. a “low”-
motion participant group; the upper and lower-motion terciles of
females in the publically available Cambridge dataset were used
to define these two groups.
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FIGURE 4 | Correlations between head motion and global

topological properties. Each panel presents one property. The
upper green shaded section is without GSR and the lower pink
shaded section is with GSR. Each row represents a preprocessing

strategies and each column represents a density threshold. The
correlation is considered significant at p < 0.05 (|r |> 0.16). We did
not correct for multiple comparisons to avoid false negative effects
of head motion.

In order to carry out group-level correction on global distri-
bution parameters, we first needed to calculate mean iFC. While
these values can be calculated from the mean iFC across all ROIs
for each participant, as done in the section “Head Motion Impact
on Graph Construction”, the results can be biased by the atlas
used. Here we estimated the mean iFC between all the voxel-
to-voxel connectivities across the brain (70831 voxels) to avoid
such a bias2; as expected, the measure was highly correlated with
head motion across subjects (r = 0.51, p < 10−11). The following
connection-stage corrections were performed and compared:

2We calculated the all voxel-to-voxel mean iFC as follows: (1) normalize the
time courses of all the voxels to zero mean and unit variance; (2) calculate
the mean signal across the brain (“global signal”); (3) calculate correlation
between this “global signal” and all the other voxels (a simple dot product and
then divided by n − 1); (4) calculate the mean value of the correlation coeffi-
cients across brain. This mean correlation coefficient is equivalent to the mean
of all voxel-to-voxel correlations. This calculation is similar to the L2 norm
method recently proposed by Saad et al. (2013), but in a more intuitive form.
To improve the normality of such a value for the purpose of standardization,
we converted the mean iFC into Fisher’s z value.

(1) mean iFC regressed; (2) motion (mean FD) regressed; (3)
(mean iFC + mean FD) regressed. Consistent with the goal of
removing unintended, but systematic, global variations across
subjects, mean iFC regression reduced the motion effect when
compared to non-correction (Figure 8). Directly regressing out
head motion from the edges across subjects produced even
greater reductions in motion effects. When we regressed out
both mean iFC and mean FD the head motion effects were
reduced in a similar extent, but this may have the additional
benefit of addressing unwanted global variations beyond head
motion.

When we performed the group-level correction of topological
parameters by including mean iFC and/or mean FD as covariates
(topological parameter-stage), significant reductions were noted
in the difference between the high motion and low motion ter-
ciles. This reduction was significant as compared to uncorrected
data, and even compared to the connection-stage group-level
correction. We further combined group-level correction at both
stages, but without clear benefit as compared to the topological
parameter-stage correction.
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FIGURE 5 | Correlations between head motion and regional topological

properties were plotted in matrix (A) and on brain surface (B). The layout
of panel (A) is the same as Figure 4 except that each column represents one
of the AAL regions. The regional properties were characterized by the area

under the curve (AUC) of each measure integrated within density range of
0.06–0.44 and the head motion correlation with these AUCs was
demonstrated in panel (B). The size of spheres denotes the

(Continued)
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FIGURE 5 | Continued

strength of correlation, red spheres denote positive correlations, blue
spheres denote negative correlations, and green spheres denote

insignificant correlations (p > 0.05, |r |< 0.16). “�” in panel (A) indicates
that the node correlation demonstrated in panel (B) is derived from Friston
24 model.

FIGURE 6 | Head motion impact on six regional topological properties

with scrubbing (Friston 24 + scrubbing) at FD (Power) > 0.2 mm. The
regional properties were characterized by the area under the curve (AUC) of
each measure integrated within density range of 0.06–0.44. The head motion

correlation with these AUCs was demonstrated. The size of spheres denotes
the strength of correlation, red spheres denote positive correlations, blue
spheres denote negative correlations, and green spheres denote insignificant
correlations (p > 0.05, |r |< 0.16).

GENERALIZABILITY OF FINDINGS
Finally, we addressed possible concerns regarding the generaliz-
ability of our findings to other studies by varying several factors
(Figure 9): (1) brain parcellation approach; (2) connection type
(binary vs. weighted); (3) dataset (Cambridge vs. Beijing). First,
we examined the effect of parcellation approach on our find-
ings by repeating our analyses with brain graphs constructed
from Dosenbach’s 160 spherical ROIs that were generated based
on a meta-analysis (Dosenbach et al., 2010) (Figure 9A), and
Craddock’s 200 ROIs that were generated based on spatially con-
strained spectral clustering (Craddock et al., 2012) (Figure 9B).
Similar to our findings with AAL, for these two parcellations, we
found head motion effects on the global topological parameters in
the case without GSR; such relationships were diminished when
GSR was employed. Next, we examined the impact of connection
type, by repeating our analyses using weighted connections, find-
ing the effect of head motion on the global topological parameters
were once again significant without GSR, and diminished when
GSR was employed (Figure 9C). Finally, we repeated our analy-
ses using the Beijing dataset; the findings generalized well from
the Cambridge dataset, further increasing our confidence in them
(Figure 9D).

DISCUSSION
The present work provides a comprehensive examination of the
relationship between inter-individual differences in commonly
used topological parameters and motion, yielding multiple

important findings. First, we found that head motion increases
iFC throughout the brain, and as such, confounds graph
construction when correlation (p-value) based thresholds are
employed to determine the presence of edges. Density thresh-
olding was used as a means of avoiding this potential confound
in the present work. As expected, small-world properties were
related to the presence of head-motion, though could not be
attributed to motion alone (i.e., small world properties persist
after motion correction). Consistent with our prior work, global
signal regression proved beneficial with respect to its ability to
mitigate relationships between topological properties of the con-
nectome graph and head motion. Consistent with its ability to
remove globally present signals, using partial correlation to esti-
mate graph connections also reduced the influences of motion on
topological parameters, although not to the degree observed with
GSR. Finally, it is worth noting that, consistent with our prior
work, group-level corrections were effective in reducing motion
relationships for topologic parameters, although they were more
effective when applied after graph topological parameter calcu-
lation (i.e., as covariates in group level analyses for topological
parameters). Importantly, we found that our findings generalized
across parcellation sets, connection types (binary, weighted) and
datasets.

MOTION-DEPENDENCIES IN GRAPH CONSTRUCTION
Motion poses a distinct challenge for graph theoretical R-fMRI
measures, as it confounds construction of the graph upon which
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FIGURE 7 | Impact of graphical lasso (partial correlation) on head motion

relationships with global topological parameters. The head motion
effects of full correlation was demonstrated as a base (green shaded, based
on Friston 24 model), while different implementation of graphical lasso was
implemented based on the Friston 24 model (pink shaded). Two scenarios
were created to test the GSR effect with graphical lasso: (1) the global signal

was added as an additional time series to the parcellation set (+1 column); (2)
the global signal was regressed out of the fMRI time series data prior to
performing graphical lasso (Regress). The GS time series was calculated by
averaging the time series across either all ROIs (ROI mean), or all voxels
(brain mean). For the second scenario, the brain mean was regressed out in
cases of either before or after filtering.

the parameters are based by inflating the number of edges.
The increased wiring cost associated with motion in turn biases
topological parameters, regardless of whether they are global
or regional. Central to any effort to minimize the relationship
between topological parameters and motion, is the minimiza-
tion of its impact on graph construction. In this regard, we
found density thresholding to be superior to correlation or p-
value thresholding as it fixes the number of connections in
the brain across participants. This avoids motion-related varia-
tion in the number of connections from one participant to the
next, which are present when correlation thresholding strategies
are employed due to increases in correlation levels through-
out the brain inherently produced by motion. However, density
thresholding has its own limitations. First, it results in a loss
to the biological validity of the analysis, as it is highly unlikely
that all individuals have the same number of connections in
their brain. Second, the specific correlation threshold making
the top n% connections varies across subjects (Fornito et al.,

2013) and can be affected by motion and preprocessing strat-
egy decisions—particularly when higher density threshold are
employed.

The present work draws attention to group-level correction as
a means of accounting for the influences of motion on graph
construction and topological parameters. Such approaches can
be applied to individual connections prior to graph construction,
or to topological parameters calculated after graph construction.
Regressing mean iFC and mean FD from each connection prior to
graph construction can effectively remove motion-density rela-
tionships with respect to correlation and p-value thresholding
(the correlation between mean FD and density across r thresh-
olds are within −0.02 to 0.05), while allowing the density to vary
across participants. Although potentially less obvious, our anal-
yses suggest that graph construction with density thresholding is
affected by motion as well, and can benefit group-level correc-
tion of individual connections prior to graph construction. An
interesting finding of the present work is that connection-level
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FIGURE 8 | Group-level correction in addressing residual head

motion impact. Two-sample t-tests were performed on each of the
global topological properties between upper motion tercile (n = 32)
and lower motion tercile (n = 32) of Cambridge females. The “null
model” was defined by performing two-sample t-test between two
“null” groups (mixing the motion terciles and equating for motion

and age). The group-level correction was performed either at
connection-stage (i.e., applied to the connections before topological
parameter calculation), at topological parameter-stage (i.e., applied to
the topological parameters after their calculation), or at both stages.
For each stage, the mean iFC, mean FD, or both mean iFC +
mean FD were regressed out.

corrections cannot entirely remove motion dependencies for
topologic parameters, necessitating group-level covariate analysis
for topologic parameters.

REVIVING OR LEARNING FROM GLOBAL SIGNAL REGRESSION?
Consistent with prior work (Yan et al., 2013a), the most robust
finding of the present work was the ability of GSR to remove
motion-relationships for R-fMRI metrics. This may at first seem
to be a vindication of GSR, or at least an argument for resurgence
of usage of GSR, which has decreased in the small world literature
in recent years without replacement by an alternative technique
for handling motion.

Unfortunately, the picture for GSR is not that simple. Prior
demonstrations of the potential for GSR to artifactually exagger-
ate or introduce negative correlation coefficients (Murphy et al.,
2009; Weissenbacher et al., 2009), as well as artifactually alter the
covariate structure in group-level analyses (Saad et al., 2012, 2013;
Gotts et al., 2013), cannot go unheeded. Nor can concerns about

potential difficulties in interpretation of findings with GSR as it’s
actually GM signal regression (Yan et al., 2013b). In the present
work, we found that GSR can do more than just mean-centering
data, as the specific connections surviving density thresholding
can change with the presence of GSR (regardless of whether
aggressive motion corrections, such as scrubbing, were applied)—
in turn producing drastic changes in topological parameters as
well as hub distributions (Figure 10). Our findings suggest that
one way to obtain topological properties and hub distributions
that are robust to preprocessing strategy, is to adopt a more
stringent density threshold (e.g., <6%) at which only the top con-
nections survive—as these are the same with or without GSR.
One notable caveat in this suggestion is that given our lack of
knowledge concerning the true wiring cost of the brain, strin-
gent thresholding may or may not compromise biological validity
and/or sensitivity.

The present work explored the interaction of GSR with a num-
ber of other approaches thought to remove the impact of nuisance
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FIGURE 9 | Generalizability of the current findings of head motion

dependencies. We addressed possible concerns regarding the
generalizability of our findings to other studies by computing the
topological parameters based on parcellation set (A: Dosenbach’s 160

sphere ROIs, B: Craddock’s 200 ROIs), weighted graph based on
AAL atlas (C), and Beijing dataset based on AAL atlas (D). Results
without GSR were shaded in green and with GSR were shaded in
pink.

FIGURE 10 | Impact of GSR on global topological properties (A) and

regional topological properties (B) based on Friston-24 model. In panel
(B), the regional properties were characterized by the area under the curve
(AUC) of each measure integrated within density range of 0.06–0.44. The

GSR effect was evaluated by paired t-test on these AUCs. The size of
spheres denotes the strength of difference, red spheres denote GSR
increased the property, blue spheres denote GSR decreased the property,
and green spheres denote insignificant effect (p > 0.05, |T|< 2).

signals, including motion—namely, scrubbing, partial correlation
and standardization. In the case where data is processed with-
out GSR, we found that scrubbing reduced the impact of motion
more than any of the other individual-level correction strate-
gies, though still appeared to be less effective than GSR alone
(e.g., the mean correlation between motion and small-worldness
across densities 6–44% for Friston 24 + scrubbing: r = −0.20;
while for Friston 24 + GSR: r = 0.03). Importantly, scrubbing
did not produce any of the alterations in hub ranking or other
topological parameters that were seen with GSR at higher densi-
ties. Thus, the effect of scrubbing is qualitatively different from
GSR. Furthermore, when scrubbing was combining with GSR, as
recently recommended by Power et al. (2014), the decreases in
motion-density relationships produced through GSR alone, were
less profound—suggesting a performance decrease. This may be
explained in part by the introduction of more extreme correla-
tion values through scrubbing (Figure 11). As shown in our prior

work (Yan et al., 2013a), this is to be expected, as scrubbing inher-
ently decreases the degrees of freedom, and systematic differences
can be introduced across subjects as a function of the number
of frames scrubbed. As suggested by Power et al. (2014), one can
try to balance the impact of scrubbing in group comparisons by
balancing the number of frames scrubbed between groups, but
this cannot be easily accomplished in the study of inter-individual
differences.

Under no condition was partial correlation (using graphical
lasso) able to remove motion relationships to the extent that GSR
was able to. This was surprising, as a signal present through-
out the brain due to motion should be accounted for by partial
correlation. One possibility that will be discussed in the next sec-
tion is that residual relationships with motion may reflect the
neural correlates of head motion, which would be expected to
survive correction with partial correlation. Regarding standard-
ization approaches, we found that regression of mean iFC and
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FIGURE 11 | Impact of scrubbing on correlation distribution.

Twenty-five subjects with highest motion (to allow a number of time
points being scrubbed) of the 158 subjects were selected to form the
mean distribution in the case of without GSR (A) or with GSR (B). Top:
the distribution of Fisher’s Z across region pairs were averaged across
the 25 subjects for either without scrubbing (blue) or with scrubbing

(red). Bottom: The difference in distribution between with and without
scrubbing was averaged across the 25 subjects. Scrubbing reduces the
correlation coefficients overall in the case of without GSR, i.e., left
shifting the distribution. However, in the case of with GSR, the
mean-centered distribution (GSR’s property) is widened by scrubbing, i.e.,
scrubbing increased the possibility of extreme correlation values.

mean FD at the connection and topologic parameter stages was
effective in removing the majority of relationships with motion,
but once again, not as completely as GSR. In sum, GSR appears to
possess a unique property that clearly merits future understand-
ing, even if the approach itself is not well justified for continued
use by the literature.

MOTION ARTIFACT vs. MOTION-RELATED NEURAL ACTIVITY
Our prior work raised a key concern in the interpretation of
motion-relationships with the BOLD signal and its derivatives—
namely the possibility that they may in part be driven by the
neural origins of motion, or reflect kinetic traits, rather than
being solely the product of intensity fluctuations induced by
motion (Yan et al., 2013a). In our prior work, this notion was
supported by findings that low and high motion framewise dis-
placements had differential effects on the BOLD signal. For
individuals with a high frequency of framewise displacements
greater than 0.2 mm, we found negative motion-BOLD relation-
ships in the prefrontal areas, where displacements resulting from
head motions are greatest; for individuals with particularly high
amounts of motion (e.g., children), these negative relationships
were even more widespread throughout the brain. Scrubbing
largely removed these negative relationships. In contrast, positive
motion-BOLD relationships were primarily present in motor-
related cortices (e.g., primary motor, supplementary motor) and
were relatively unaffected by scrubbing procedures—suggesting
against origins in imaging artifact. One other theme of note
arose from our analysis of relationships between differences in
motion and differences in R-fMRI metrics across participants.

In these analyses, we found that individuals with higher motion
tended to have higher scores for a number of R-fMRI measures in
motor-related cortices, and lower in default mode regions.

In the present work, we note that individuals with higher
motion appeared to be characterized by higher centrality in
dorsal parietal and dorsal frontal areas, and lower centrality
in the default network—a finding that remains after motion
correction approaches, including scrubbing. While this could
still be a reflection of problematic effects of the low degree
of motion present in the data, we find this highly unlikely.
Instead, we posit, that our findings may in fact reflect either a
trait marker of individual with higher kinetic traits, or at least
higher kinetic states during the scan session. The unique abil-
ity of GSR to remove motion relationships is interesting, as it
demotes the centrality of those regions that appear to be most
associated with motion (even in scrubbed data) and increase the
centrality of regions least associated with motion (Figure 10).
Given that the global signal is known to have neural compo-
nents (Scholvinck et al., 2010), a link may exist. Nonetheless,
future efforts may benefit from working to find novel (and
likely multimodal) ways of differentiating between image arti-
facts resulting from head motion and motion-related neural
activity.

EMERGING RECOMMENDATIONS FOR OPTIMIZING PROCESSING FOR
GRAPH THEORETICAL ANALYSIS: WHAT TO OR NOT TO DO
While a growing number of studies have begun to revisit the
challenges of motion-correction for the purposes of R-fMRI, sig-
nificant empirical and analytic work is needed before developing
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guidelines for addressing motion. Nonetheless, the present work
has yielded multiple insights to help guide researchers as follows:

• Global Signal Regression. GSR appears to be the single-most
effective approach for reducing motion-relationships—both at
the individual and group-level. Despite this seeming success,
we cannot recommend continued use of GSR without cau-
tion, as it can alter relative relationships within the connectome
graph in a way that is unexplainable at present (particularly
when weaker connections are included in the graph—i.e., when
higher density graphs are used). Neither aggressive motion-
correction (i.e., scrubbing) nor statistically accepted methods
to accounting for confounding global signals (i.e., partial cor-
relation) altered hub relationships, as GSR did.

• Individual-level Motion Correction. Consistent with prior
reports, we found that neither model-based nor volume cen-
soring approaches to motion correction are adequate for the
removal of motion-relationships completely at the individual
level.

• Group-level Motion Correction. Consistent with prior reports,
we found that group-level covariate analysis (e.g., ANCOVA) is
beneficial as a means of alleviating confounding motion effects
in the study of inter-individual or population differences in
topological parameters (Fair et al., 2012; Satterthwaite et al.,
2012; Van Dijk et al., 2012; Yan et al., 2013a). We found correc-
tion in the final stage of analysis to be more advantageous to
earlier group-level correction prior to graph construction, and
the combination of the two approaches without clear merit.

• Partial Correlation. Using partial correlation rather than full
correlation can reduce head motion effects substantially, due
to its ability to remove signals present throughout the connec-
tivity matrix. Calculation of partial correlation via graphical
lasso is an effective way of overcoming insufficient number
of degrees of freedom present in most R-fMRI time series.
However, further studies are needed to evaluate the resid-
ual motion effects, as well as neurobiological significance of
the brain graphs revealed by graphical lasso rather than full
correlation.

LIMITATIONS
Several limitations in the current work merit consideration. First,
the head motion parameters were estimated from the fMRI data
themselves, and limited to between-volume motions (i.e., motion
occurring within the period of a single scan volume cannot be
accounted for). Future studies require objective external mea-
surement of motion to obtain a true gold standard of head
motion. Second, simultaneously recorded cardiac and respira-
tory signals were not available for the dataset used in the current
study, which prevented the definitive separation of head motion
effects from physiological noise sources as well as meaningful
neural signals. Third, the current methods explored graphi-
cal lasso as a statistical method to evaluate partial correlation;
although effective and generally accepted, alternative approaches
exist (e.g., ridge and elastic net) and should be considered for
further exploration. Fourth, in order to facilitate group com-
parisons, we created two groups of participants using mean
FD (high motion vs. low motion) for our two-sample t-test

based analyses; however, mean FD is not all encompassing—
other aspect of motion attributes can vary across participants
and groups in an uncontrolled manner. Additionally, while we
controlled sex and age between the two groups, other uncon-
trolled traits (e.g., IQ, social economical status, extraverts vs.
introverts) may differ between the two groups. Future studies
may consider the creation of within-subject designs for compar-
ison of motion states, i.e., high motion vs. low motion scans for
each subject. Fifth, for the group-level mean FD correction, we
only take mean FD itself but not the interaction term (mean
FD ∗ Group) into account. If the interaction term is modeled
and significant, interpretation of findings related to the main
group effect can be difficult. In such a case, methods such as
the Johnson-Neyman procedure can be carried out to deter-
mine within which range of covariates the main group effect
is significant, and which range is not (D’Alonzo, 2004). Finally,
in our previous work on standardization (Yan et al., 2013b),
we standardized global SD beyond global mean (e.g., method
of mean regression + SD division). In the current work, SD
division for each individual had no effects on the graph construc-
tion, as it doesn’t change the relative order of connections for
a given participant. Further studies focusing on addressing the
multiplicative effects might be helpful in mitigating head motion
effects.

CONCLUSIONS
While graph theoretical measures, including local and global
topological parameters, possess significant promise for the
advancement of our quantification and understanding of inter-
individual differences in human brain function, they can be
profoundly confounded by the presence of motion if not
properly accounted for. The present work explored various
options to individual-level correction approaches, generating
a set of recommendations for future work and demonstrat-
ing the continued necessity for using ANCOVA-based cor-
rections at the group-level. A key challenge for the field
as it moves forward is to develop empirical and analytic
approaches that are capable of differentiating associations
with motion between reflective of artifact and reflective of
neural signals underlying motion in the scanner, or trait
markers.
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APPENDIX

Table A1 | Abbreviations for the regions in the AAL-atlas.

Cortical regions Abbreviations

Precental gyrus PreCG

Superior frontal gyrus, dorsolateral SFGdor

Superior frontal gyrus, orbital part ORBsup

Middle frontal gyrus MFG

Middle frontal gyrus, orbital part ORBmid

Inferior frontal gyrus, opercular part IFGoperc

Inferior frontal gyrus, triangular part IFGtriang

Inferior frontal gyrus, orbital part ORBinf

Rolandic operculum ROL

Supplementary motor area SMA

Olfactory cortex OLF

Superior frontal gyrus, medial SFGmed

Superior frontal gyrus, medial orbital ORBsupmed

Gyrus rectus REC

Insula INS

Anterior cingulate and paracingulate gyri ACG

Middle cingulate and paracingulate gyri DCG

Posterior cingulate gyrus PCG

Hippocampus HIP

Parahippocampal gyrus PHG

Amygdala AMYG

Calcarine fissure and surrounding cortex CAL

Cuneus CUN

Lingual gyrus LING

Superior occipital gyrus SOG

Middle occipital gyrus MOG

Inferior occipital gyrus IOG

Fusiform gyrus FFG

Postcentral gyrus PoCG

Superior parietal gyrus SPG

Inferior parietal, but supramarginal and angular gyri IPL

Supramarginal gyrus SMG

Angular gyrus ANG

Precuneus PCUN

Paracentral lobule PCL

Caudate nucleus CAU

Lenticular nucleus, putamen PUT

Lenticular nucleus, pallidum PAL

Thalamus THA

Heschl gyrus HES

Superior temporal gyrus STG

Temporal pole: superior temporal gyrus TPOsup

Middle temporal gyrus MTG

Temporal pole: middle temporal gyrus TPOmid

Inferior temporal gyrus ITG
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