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Novel experience and learning new skills are known as modulators of brain function.
Advances in non-invasive brain imaging have provided new insight into structural and
functional reorganization associated with skill learning and expertise. Especially, significant
imaging evidences come from the domains of sports and music. Data from in vivo imaging
studies in sports and music have provided vital information on plausible neural substrates
contributing to brain reorganization underlying skill acquisition in humans. This mini review
will attempt to take a narrow snapshot of imaging findings demonstrating functional and
structural plasticity that mediate skill learning and expertise while identifying converging
areas of interest and possible avenues for future research.
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INTRODUCTION
Neuroplasticity, which refers to the brain’s ability to change
its structure and function, is not an occasional state of the
brain, but rather the normal ongoing state of the human brain
throughout the life span (Zilles, 1992; Pascual-Leone et al., 2005;
Kempermann, 2006; Jancke, 2009). Plastic changes in the human
brain lead to brain reorganization that might be demonstrable at
the level of behavior, anatomy, and function and down to the cel-
lular and even molecular levels (Kolb and Whishaw, 1998; Kelly
and Garavan, 2005; Kleim et al., 2006).

Intentional practice in sports and music has been shown to
contribute to acquisition of expertise (Schlaug, 2001; Baker et al.,
2003; Hutchinson et al., 2003; Lotze et al., 2003; Calvo-Merino
et al., 2005; Ericsson, 2005; Cross et al., 2006; Hung et al., 2007;
Nielsen and Cohen, 2008). Acquisition of expertise is accom-
panied by structural and functional changes of the brain and
the advent of brain imaging methods has bolstered the study of
these changes in the human brain. Understanding of the neu-
ral mechanisms underpinning expertise may provide a basis for
determining what types of practice or training are most likely
to be beneficial for performance enhancement. This knowledge
may also provide a clue as to why some people show improve-
ment at different rates than others or reach much higher levels of
achievement. Thus, the study of plastic changes associated with
skill learning and expertise in the human brain is one of the most
challenging areas of current neuroscience research.

This mini review provides a summary of the in vivo imaging
evidence of longitudinal and cross-sectional studies on structural
and functional plasticity of the human brain in skill learning and
expertise with emphasis on sports and music. In the literature, a
cross-sectional approach has been most widely used, and many
interesting findings have been reported. However, one of the crit-
icisms of cross-sectional studies is that the differences in brain
organization are possibly correlational, and, thus, caution should

be used in order not to draw overly strong causal inferences from
the cross-sectional data. The concept of plasticity can involve
many levels of organization involving molecular, neuronal, or
chemical events, and these molecular views of neuroplasticity are
beyond the scope of this mini review.

STRUCTURAL NEUROPLASTICITY IN SKILL LEARNING AND
EXPERTISE
CROSS-SECTIONAL STUDIES
Cross-sectional imaging studies have demonstrated structural
changes of the human brain as a result of experience and learn-
ing in sports and music (Amunts et al., 1997; Gaser and Schlaug,
2003; Bangert and Schlaug, 2006; Jacini et al., 2009; Jäncke et al.,
2009; Park et al., 2009; Hänggi et al., 2010; Wan and Schlaug,
2010; Wei et al., 2011; Di Paola et al., 2013). For example, Jacini
et al. (2009) reported that elite judo players had significantly
higher gray matter volume in the frontal lobe, related to motor
planning and execution and in regions of the prefrontal cortex,
related to working memory and cognitive processes, compared
to control subjects. Training induced enlargement in gray matter
structure was not limited to brain regions associated with motor
planning and execution. When compared to age-matched con-
trol subjects, world-class mountain climbers showed significantly
larger vermian lobule volumes, possibly associated with highly
dexterous hand movements and eye-hand coordination in detec-
tion of and correction of visuomotor errors (Di Paola et al., 2013).
In the music domain, with measurement of the length of the pos-
terior wall of the precentral gyrus as an estimate of the size of
the hand motor area, Amunts et al. (1997) identified substantial
structural differences in the hand motor area between profes-
sional musicians and non-musicians: in general, the hand motor
area was larger in professional musicians than in non-musicians.
More importantly, the authors also found that the measures of
hand motor area on both hemispheres showed correlation with
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the age of commencement of musical training, implying that ear-
lier musical training results in a stronger impact on structural
changes in the hand motor area.

In a study using the voxel-based morphometry (VBM) tech-
nique, it was found that skilled golfers (professional and low
handicap golfers) had larger gray matter volumes in a fronto-
parietal network, including premotor and parietal areas (Jäncke
et al., 2009). Using the VBM approach, Gaser and Schlaug (2003)
reported that professional keyboard players showed differences in
gray matter volume in motor, auditory, and visual-spatial brain
regions when compared with a matched group of amateur play-
ers and non-keyboard players. While the majority of studies on
structural neuroplasticity have reported increased gray matter
density or volume in expert brains, few studies have reported on
the inverse relationship, that is, decreased gray matter volume
(Draganski et al., 2006; Hänggi et al., 2010). The several possi-
ble reasons for discrepant findings were suggested (Hänggi et al.,
2010).

A handful of studies have investigated differences in white mat-
ter structure between experts and non-experts, using diffusion
tensor imaging (DTI); however, the results have been inconsis-
tent. Using DTI, Jäncke et al. (2009) demonstrated decreased
white matter volume and fractional anisotropy (FA) values in
several brain structures, including the corticospinal tract (CST),
in skilled golfers, compared with less-skilled golfers. Additional
evidence for decreased white matter volume and FA values was
reported in a study of professional ballet dancers (Hänggi et al.,
2010). Contrary to decreased FA values in white matter structures,
a very recent study on professional gymnasts showed increased FA
values in the bilateral CST in elite gymnasts, possibly in response
to long-term gymnastic training as compared to the control sub-
jects (Wang et al., 2013). Inconsistent results have also been
reported in the music domain. Imfeld et al. (2009) reported sig-
nificantly lower FA values in both the left and the right CST in
professional musicians compared to non-musicians. However, in
another study, pianists who practiced frequently showed higher
FA values (Han et al., 2009). Therefore, it appears that acquisition
of further evidence will be necessary in order to make a conclu-
sion with regard to whether specific structural changes in white
matter can be induced by extensive training.

LONGITUDINAL STUDIES
To date, only a small number of longitudinal studies have investi-
gated structural brain reorganization as a result of experience and
learning. Draganski et al. (2004) investigated the training effect of
juggling in inexperienced young jugglers. After a 3-month train-
ing period, subjects in the training group showed changes in gray
matter density in the intraparietal sulcus and the midtemporal
area of visual cortex. The intraparietal sulcus is involved in trans-
forming retinotopic into body centered information necessary
to visually control movements. The midtemporal area of visual
cortex is a highly specialized brain area for analyzing visual move-
ment information. Of particular interest, the authors also found
that after another 3 months without juggling practice, the increase
in gray matter density following practice had diminished in all
subjects in juggling practice, indicating that structural plasticity is
reversible. In a recent study of 60-year old elderly individuals who

were able to learn juggling, gray matter changes related to skill
acquisition were observed in the midtemporal area of visual cor-
tex similar to that found in young subjects, suggesting that age is
not in itself a limiting factor for structural brain plasticity driven
by skill learning (Boyke et al., 2008). In a more recent longitudinal
study using VBM, in golf novices between the ages of 40 and 60
years, 40 h of golf training showed an association with gray matter
increases in a task-relevant cortical network encompassing senso-
rimotor regions and areas belonging to the dorsal stream (Bezzola
et al., 2011). More importantly, in that study, a strong positive
relationship was observed between the increase in gray matter and
training intensity in the parieto-occipital junction (POJ), a critical
structure of the dorsal stream. A recent review provided evidence
of a close association of the POJ with visuomotor processes, par-
ticularly in the on-line control and on-line correction of visually
guided arm movements (Kravitz et al., 2011). For musical train-
ing, Hyde et al. (2009) found that 6-year-old children receiving
instrumental musical training for 15 months showed structural
change in brain areas such as the precentral gyrus, which is known
to be involved in control of playing a musical instrument. Most
of these brain areas are part of the cortical motor system; how-
ever, structural changes in the auditory system, such as the Heschl
gyrus and the corpus callosum, were also observed. These struc-
tural changes in the brain showed correlation with performance
on various auditory and motor tasks. In addition, in the music
domain, the evidence suggests that training-induced plasticity in
musicians appears to be most prominent in those who engaged
in practice early in childhood (for a review, see Wan and Schlaug,
2010).

FUNCTIONAL NEUROPLASTICITY IN SKILL LEARNING AND
EXPERTISE
CROSS-SECTIONAL STUDIES
In motor function, a common finding is the functional enlarge-
ment or focused activation of the motor area involved in con-
trol of that particular skill (Krings et al., 2000; Pearce et al.,
2000; Lotze et al., 2003; Haslinger et al., 2004; Meister et al.,
2005; Bangert and Schlaug, 2006). For example, Pearce et al.
(2000) reported that the cortical representation of the hand
used for playing is larger in professional racquet ball players
as compared with novices. In music, one study demonstrated
a differential brain adaptation depending on instrument played
(Bangert and Schlaug, 2006). More specifically, keyboard players
had the left motor area more pronounced as they predomi-
nantly use the right hand. In contrast, string players had the
right motor area pronounced as the left hand is crucially engaged
while playing.

Recent neuroimaging studies have attempted to elucidate the
neural activity during action observation in expert brain (Calvo-
Merino et al., 2006; Pilgramm et al., 2010; Kim et al., 2011).
For example, Calvo-Merino et al. (2006) demonstrated the neural
bases of motor influences on action observation in expert ballet
dancers. They have shown an effect of motor expertise on neural
activation within the ventral premotor area and also stronger acti-
vation in the inferior parietal and cerebellar regions when observ-
ing dance videos, suggesting that the action observation network
is more extended than previously suggested (Di Pellegrino et al.,
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Table 1 | Imaging evidences for structural and functional plasticity in sports and music.

Study Skill Design Method Main findings

STRUCTURAL PLASTICITY

Jacini et al., 2009 Sports Cross-sectional VBM Judo players showed larger GM volume in frontal and prefrontal
cortex

Jäncke et al., 2009 Sports Cross-sectional VBM, DTI Golfers showed Larger GM volumes in premotor and parietal
cortices; smaller FA along the internal and external capsule and
the parietal operculum

Di Paola et al., 2013 Sports Cross-sectional VBM Mountain climbers showed significantly larger vermian lobule
volumes

Draganski et al., 2004 Sports Longitudinal VBM Three months’ practice-induced GM expansion in mid-temporal
area and posterior intraparietal sulcus, followed by a decreased
to baseline levels after 3 months with no practice

Bezzola et al., 2011 Sports Longitudinal VBM Forty hours of golf training showed an association with gray
matter increases in a task-relevant cortical network

Amunts et al., 1997 Music Cross-sectional MRI Hand motor area was larger in professional musicians than in
non-musicians

Gaser and Schlaug, 2003 Music Cross-sectional VBM GM volume differences in sensorimotor cortex, premotor
cortex, and cerebellum

Han et al., 2009 Music Cross-sectional VBM, DTI Musician showed higher GM density in sensorimotor cortex
and cerebellum; higher FA in internal capsule

Hyde et al., 2009 Music Longitudinal DBM Fifteen months of musical training in early childhood showed
structural change in brain areas which are known to be involved
in control of playing a musical instrument

FUNCTIONAL PLASTICITY

Pearce et al., 2000 Sports Cross-sectional TMS Cortical representation of the hand used for playing is larger in
professional racquet ball players

Milton et al., 2007 Sports Cross-sectional fMRI Elite athletes showed neural efficiency in the cortical processes
during the specific challenge in which they are highly practiced

Sekiguchi et al., 2011 Sports Cross-sectional fMRI Elite rugby players differ in visuospatial abilities directly tied to
their domain of expertise

Doyon et al., 2002 Sports Longitudinal fMRI Shift of activation from the cerebellar cortex to the dentate
nucleus during early learning, and from a cerebellar–cortical to a
striatal–cortical network with extended practice

Cross et al., 2009 Sports Longitudinal fMRI Emergence of action resonance processes in the human brain
based on 5 day observational learning of dance sequence
without physical practice

Lotze et al., 2003 Music Cross-sectional EMG Professional violinists showed focused cerebral activations in
the motor network as compared to amateur violinists during the
imagination of violin-playing movements

Oechslin et al., 2013 Music Cross-sectional fMRI Levels of musical expertise stepwise modulate higher order
brain functioning

Bangert and Altenmüller,
2003

Music Longitudinal EEG Auditory-sensorimotor co-activity occurred within only 20 min
and the effect was enhanced after 5-week training, contributing
elements of both perception and action to the mental
representation of the instrument

Herdener et al., 2010 Music Longitudinal fMRI Following the aural skills training, hippocampal responses to
temporal novelty in sounds were increased

MRI, magnetic resonance imaging; VBM, voxel-based morphometry; GM, gray matter; DTI, diffusion tensor imaging; FA, fractional anisotropy; DBM, Deformation

based morphometry; TMS, transcranial magnetic stimulation; fMRI, functional MRI; EMG, Electromyography; EEG, electroencephalography.

1992). For motor planning in expertise, an fMRI study using
motor imagery task, which refers to the mental rehearsal of motor
acts, demonstrated that the task-related neural networks of expert
golfers are focused and efficiently organized, whereas novices have
difficulty filtering out irrelevant information (Milton et al., 2007).
This finding is consistent with the notion of relative economy

(neural efficiency) in the cortical processes of elite athletes during
the specific challenge in which they are highly practiced. Similar
finding was also observed in professional musicians. Lotze et al.
(2003) reported that professional violinists showed focused cere-
bral activations in the contralateral primary sensorimotor cortex,
the bilateral superior parietal lobes, and the ipsilateral anterior
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FIGURE 1 | Advances in neuro imaging technique have provided new

insights into the neuroplastic changes underlying skill learning and

expertise at both structural and functional levels. At structural level, a
main finding is increased gray matter volume or density of brain areas

associated with skill learning. In functional reorganization, functional imaging
evidence has shown that functional neuroplasticity occurs not only in the
motor domain but also in cognitive and perceptual domains associated with
improved performances.

cerebellar hemisphere as compared to amateur violinists during
the imagination of violin-playing movements.

As for the visuospatial abilities in sport, evidences seem to
suggest that experts differ in visuospatial abilities directly tied
to their domain of expertise. For example, one study reported
that expert athletes did not differ in their visuospatial capac-
ity than novices as measured on the general visuospatial test
(Furley and Memmert, 2010). However, a recent study using
fMRI reported quantitative differences in brain activation during
visuospatial processing between elite rugby players and novices,
indicating the possible existence of a strategy (a bird’s eye view)
regarding visuospatial cognitive processing for elite rugby play-
ers that differs from that of novices (Sekiguchi et al., 2011). More
recently, Seo et al. (2012) investigated possible difference in cogni-
tive strategy between archery experts and novices in visuospatial
working memory processing. According to their results, archery
experts have increased activation in cortical regions important
for visuospatial attention and working memory, suggesting that
degree of expertise may modulate higher order brain function-
ing. Taken together, these studies therefore demonstrated that
the differences in visuospatial abilities are pronounced in specific
domain but those differences did not transfer outside the domain
to general visuospatial ability. The possible modulation on func-
tion of working memory and attention by expertise was also
recently demonstrated in music training. In their multilevel cross-
sectional study, Oechslin et al. (2013) found evidence for stepwise
modulation of brain responses according to level of music exper-
tise in a fronto-temporal network hosting functions of working
memory and attention.

LONGITUDINAL STUDIES
For motor skill acquisition, previous studies using fMRI demon-
strated that learning of sequential finger movements initially leads

to a functional expansion in the primary motor cortex (M1)
and this change in M1 follows more dynamic, rapid changes in
the cerebellum, striatum, and other motor-related cortical areas,
suggesting an experience-dependent shift of activation from a
cerebellar–cortical to a striatal–cortical network with extended
practice (Karni et al., 1995; Doyon et al., 2002). In addition,
repetition of movements has been suggested to result in motor
memories in the primary motor cortex and probably other cor-
tical areas that encode the kinematic details of the practiced
movements (Classen et al., 1998; Butefisch et al., 2000; Stefan
et al., 2005; Cross et al., 2009). Of particular interest, previ-
ous studies have demonstrated that motor memory can also be
encoded by action observation and this form of action obser-
vation can enhance the effects of motor training on memory
encoding, possibly through modulation of intracortical excitatory
mechanisms (Stefan et al., 2005; Celnik et al., 2006).

Formation of multisensory connection during motor learn-
ing has often been reported in music. In a longitudinal EEG
study (Bangert and Altenmüller, 2003), beginning pianists, who
had never played an instrument before, were trained on a
computer piano over a period of 5 weeks. They listened to
short piano melodies, and, after a brief pause, they were then
required to replay the melodies using their right hand. After 5
weeks of practice, listening to piano tunes produced additional
activity in the sensorimotor regions and in turn, playing on a
keyboard produced additional activity in the auditory regions.
Therefore, this study nicely demonstrates how dynamic brain
adaptations accompany these multisensorimotor learning pro-
cesses. In another longitudinal study using fMRI (Herdener et al.,
2010), the neural responses of musical students in acoustic nov-
elty detection were compared before and after two semesters of
intensive aural skills training. Following the training period, hip-
pocampal responses to temporal novelty in sounds were increased
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in music students. A previous study suggested involvement of the
hippocampus in various forms of novelty detection in addition to
its role in memory (Knight, 1996; Strange et al., 1999). Therefore,
this study provides evidence for functional plasticity in the adult
hippocampus related to musical training.

CONCLUDING REMARKS
Over the past decades, advances in human brain imaging have
provided new insights into the neuroplastic changes under-
lying skill learning and expertise in both sports and music
(Table 1). These plastic changes can be seen at both structural
and functional levels (Figure 1). A main finding of struc-
tural plasticity is increased volume and gray matter den-
sity of brain areas involved in control of the practiced task.
Another major finding in structural plasticity is that experi-
ence dependent structural changes can disappear when prac-
ticing stops, indicating that structural plasticity is possible in
all directions. In musical expertise, one of the distinctive fea-
tures of structural neuroplasticity is that brain plasticity can be
found more clearly if practice starts at a young age. That is,
a period might exist, beyond which music-induced structural
changes and learning effects are less pronounced. Unfortunately,
such studies on a sensitive period are missing in the sport
domain.

In functional reorganization, a common finding is the func-
tional enlargement or focused activation of the motor area
involved in control of that particular skill. In addition, because
expert performance is mediated by cognitive and perceptual
motor skills, functional imaging evidence has shown that func-
tional neuroplasticity occurs not only in the motor domain
but also in cognitive and perceptual domains associated with
improved performances. Furthermore, in music, evidence has
demonstrated a strong coupling of sensorimotor and auditory
processing for music expertise. Practice in playing a music instru-
ment involves constant improvement of complex sensory-motor
coordination through repeated execution of motor activities
under the controlled monitoring of the auditory system.

Despite accumulation of significant imaging evidence, as
discussed in the current mini-review, understanding of mecha-
nisms underlying these plastic changes is still far from complete—
which opens a broad avenue for future research. For example,
neuroplasticity can be traced to cellular and molecular levels, and,
thus, one of the main challenges is linking human brain imag-
ing findings to the underlying molecular events. Because the poor
specificity of macroscopic MR imaging signals largely precludes
molecular information, other non-invasive approaches would be
needed. Of these methods, molecular imaging using positron
emission tomography (PET) is a good candidate. Although there
is still a lack of prospective studies on plasticity, integration
of PET into MRI with simultaneous recordings of molecular
and hemodynamic brain responses opens new and promising
prospects for the future (Judenhofer et al., 2008). Another chal-
lenge for the understanding of neural mechanisms underlying
plastic changes is time scale of neural activity, because the tem-
poral resolution of fMRI in the order of seconds is approximately
three orders of magnitude away from the time scale of neu-
ral events in milliseconds order. Therefore, for measurement

of brain activity on a time scale of neuronal activity and for
assessment of specific neurophysiological events in human, com-
bined fMRI with non-invasive electrophysiological methods such
as electroencephalography (EEG) would be beneficial for simul-
taneous measurement of neuronal and neural brain responses.
Combined EEG and fMRI studies can thus take advantage of
both, the good spatial resolution of fMRI and the good tem-
poral resolution of EEG (Thees et al., 2002; Debener et al.,
2005).
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