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Objectives: Many animal and a few human studies have reported on the neural
connectivity of the substantia nigra (SN) and the ventral tegmental area (VTA). However,
it has not been clearly elucidated so far. We attempted to investigate any differences in
neural connectivity of the SN/VTA in the human brain, using diffusion tensor imaging (DTI).
Methods: Sixty-three healthy subjects were recruited for this study. DTIs were acquired
using a sensitivity-encoding head coil at 1. 5T. Connectivity was defined as the incidence
of connection between the SN/VTA and each brain regions in the brain.
Results: The connectivity of SN was higher than that of the VTA. This included in the
primary motor cortex, primary somatosensory cortex, premotor cortex, prefrontal cortex,
caudate nucleus, globus pallidus, putamen, nucleus accumbens, temporal lobe, amygdala,
pontine basis, occipital lobe, anterior and posterior lobe of cerebellum, corpus callosum,
and external capsule (p < 0.05). However, no significant differences were observed in the
red nucleus, thalamus, pontine tegmentum, and medial temporal lobe between the SN
and VTA (p > 0.05).
Conclusions: We found the differences in neural connectivity of the SN/VTA in the
human brain. The method and results of this study can provide useful information for
clinicians and researchers in neuroscience, especially who work for Parkinson’s disease
and patients with brain injury.
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INTRODUCTION
Dopamine is one of the major neurotransmitters in the brain
and is a key regulator involved in motor skill learning, emotion,
motivation, and cognition (Meyer and Quenzer, 2005; Mendoza
and Foundas, 2007; Molina-Luna et al., 2009; Nestler et al., 2009;
Kwak et al., 2010; Hosp et al., 2011; Kwak et al., 2012). There are
four primary dopaminergic nuclei in the brain: the pars compacta
of substantia nigra (SNc), the ventral tegmental area (VTA), the
retrorubral area in the mesencephalic reticular formation, and the
arcuate nucleus in the hypothalamus (Nestler et al., 2009). The
SNc and VTA have been the targets for research of dopaminergic
nuclei because the retrorubral area is relatively small comparing
with SNc and VTA, and the arcuate nucleus is involved in prolatin
secretion through the tuberoinfundibular pathway (Hirsch et al.,
1992; Francois et al., 1999; Meyer and Quenzer, 2005; Düzel et al.,
2009; Siegel and Sapru, 2010). In addition, the exact identification
of the retrorubral area and arcuate nucleus using brain MRI is
difficult in the live human brain.

The four major dopaminergic systems serve distinct functions,
which include the nigrostriatal pathway, the mesolimbic pathway,
the mesocortical pathway, and the tuberoinfundibular pathway
(Meyer and Quenzer, 2005; Nestler et al., 2009). Previous animal
studies have reported that the substantia nigra mainly works
for the nigrostriatal pathway and the VTA for the mesolimbic
and mesocortical pathways. Therefore, the nigrostriatal pathway
is involved in voluntary movement, in contrast, the mesolimbic

and mesocortical pathways are involved in cognition and emotion
(Phillipson, 1979; Swanson, 1982; Oades and Halliday, 1987; van
Domburg and ten Donkelaar, 1991). These results suggest that
there may be differences in neural connectivity between the SN
and the VTA. Many animal studies have reported on the neural
connectivity of the SN/VTA (Phillipson, 1979; Swanson, 1982;
Oades and Halliday, 1987; van Domburg and ten Donkelaar,
1991). A few studies have reported on this topic in the human
brain, however, it has not been clearly elucidated so far (Düzel
et al., 2009; Menke et al., 2010; Chowdhury et al., 2013).

Diffusion tensor imaging (DTI) has a unique advantage in
evaluation of white matter by virtue of its ability to visualize water
diffusion characteristics (Basser et al., 1994). Recently developed
multi-tensor model DTI allows to estimate more than one fiber
population in the each imaging voxel and suggests that prob-
ability corresponds to multiple fiber populations whereas the
single tensor model DTI analyzes only a dominant fiber bundle
(Smith et al., 2004; Parker and Alexander, 2005; Behrens et al.,
2007). Many multi-tensor model DTI studies have reported on
neural connectivity in normal subjects (Behrens et al., 2003b;
Guye et al., 2003; Parker and Alexander, 2005; Jang et al., 2013).
However, only few studies have reported on the difference of
neural connectivity of the SN/VTA in the human brain (Menke
et al., 2010; Chowdhury et al., 2013).

In the current study, we hypothesized that neural connectivity
of the SN/VTA is different in the human brain and attempted
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to investigate differences in neural connectivity of the SN/VTA,
using DTI.

METHODS
SUBJECTS
We recruited 63 healthy subjects (males: 31, females: 32, mean
age: 37.9 years, range: 20–67 years) with no previous history of
neurological, physical, or psychiatric illness for this study. All sub-
jects understood the purpose of the study and provided written,
informed consent prior to participation. The study protocol was
approved by the Institutional Review Board of the Yeungnam
university hospital (YUH-12-0421-O60).

DATA ACQUISITION
DTI data were acquired using a 6-channel head coil on a 1.5 T
Philips Gyroscan Intera (Philips, Ltd, Best, The Netherlands) with
single-shot echo-planar imaging. For each of the 32 non-collinear
diffusion sensitizing gradients, we acquired 67 contiguous slices
parallel to the anterior commissure-posterior commissure line.
Imaging parameters were as follows: acquisition matrix = 96 ×

96; reconstructed to matrix = 128 × 128; field of view = 221 ×

221 mm2; repetition time (TR) = 10,726 ms; echo time (TE) = 76
ms; parallel imaging reduction factor (SENSE factor) = 2; echo-
planar imaging (EPI) factor = 49; b = 1000 s/mm2; number of
excitations (NEX) = 1; and a slice thickness of 2.3 mm (acquired
voxel size 1.73 × 1.73 × 2.3 mm3).

PROBABILISTIC FIBER TRACKING
The Oxford Centre for Functional Magnetic Resonance Imaging
of the Brain (FMRIB) Software Library (FSL1) was used for
analysis of diffusion-weighted imaging data. Affine multi-scale
two-dimensional registration was used for correction of head
motion effect and image distortion due to the eddy current. Mean
translation and rotation was observed the sub-one pixel (0.51 ±

0.47 mm). Fiber tracking was performed using a probabilistic
tractography method based on a multi-fiber model, and applied
in the present study utilizing tractography routines implemented
in FMRIB Diffusion (5000 streamline samples, 0.5 mm step
lengths, curvature thresholds = 0.2) (Behrens et al., 2003a; Smith
et al., 2004; Behrens et al., 2007). This fiber tracking method
by multi-fiber model calculated and generated 5000 streamline
samples from seed region of interest (ROI) with consideration
of the both dominant and non-dominant orientation of diffu-
sion in each voxel and showed how connects the brain regions.
Therefore, it has advantage to solve the problem of the crossing
fiber. Especially, cross points of the corpus callosum and corona
radiata, corticospinal tract fibers and pontocerebellar fibers at
pons, and superior and medial frontal gyri are known to be
the crossing fiber point (Wiegell et al., 2000). For the connec-
tivity of the SN, a seed ROI was placed on the isolated SN
of the upper midbrain on the color-coded map (dorsomedially
next to the cerebral peduncle of the upper midbrain) (Mori
et al., 2004). For the connectivity of the VTA, a seed ROI
was placed on the VTA in the upper midbrain on the color-
coded map. We identified the VTA by reconstructing the adjacent

1www.fmrib.ox.ac.uk/fsl

structures: interpeduncular nucleus (anterior boundary), central
tegmental tract (posterior (www.fmrib.ox.ac.uk/fsl) boundary),
midline (medial boundary), red nucleus and SN (lateral bound-
ary) (Mori et al., 2004; Habas and Cabanis, 2007; Blood et al.,
2010; Figure 1A). Out of 5000 samples generated from the seed
voxel, results for contact were visualized with the threshold at
a minimum of five streamline through each voxel for analysis.
Connectivity represented the percentage as all hemispheres of
63 subjects. On the other hand, we measured the size of ROI for
the SN and VTA.

DETERMINATION OF CONNECTION BETWEEN SUBSTANTIA NIGRA
(SN), VENTRAL TEGMENTAL AREA (VTA) AND BRAIN REGIONS
Connectivity was defined as the incidence of connection between
the SN/VTA and each brain region: primary motor cortex (M1,
brodmann area [BA]: 4), primary somatosensory cortex (S1, BA:
1, 2, 3), premotor cortex (PMC, BA: 6), prefrontal cortex (BA: 9,
10, 11, 12), caudate nucleus, putamen, globus pallidus, nucleus
accumbens, thalamus, external capsule, red nucleus, amygdala,
medial temporal lobe (BA: 27, 28, 34, 35, 36, 37), temporal
lobe (superior, middle, inferior, BA: 20, 21, 22), pontine basis,
pontine tegmentum, anterior lobe of cerebellum, posterior lobe of
cerebellum, corpus callosum, and occipital lobe (BA: 17, 18, 19).

STATISTICAL ANALYSIS
SPSS software (v.15.0; SPSS, Chicago, IL) was used for statistical
analysis. The Chi-square test was used for determination of the
difference in connectivity between the right and left hemispheres,
and between the SN and VTA. In addition, we performed an
independent t-test for determination of differences in size of
ROI between the SN and VTA, and between the right and left
hemispheres. The significant level of the p value was set at 0.05.

RESULTS
Connectivity of the SN/VTA is summarized in Table 1. In all sub-
jects, the SN showed 100% connectivity to the red nucleus, tha-
lamus, globus pallidus, corpus callosum, M1, S1, PMC, pontine
tegmentum, and posterior lobe of cerebellum. By contrast, other
brain regions showed over 70% connectivity: caudate nucleus,
putamen, nucleus accumbens, prefrontal cortex, temporal lobe,
amygdala, pontine basis, occipital lobe, and anterior lobe of
cerebellum. As for connectivity of the VTA, red nucleus, thala-
mus, and pontine tegmentum revealed 100% connectivity in all
subjects. By contrast, the VTA revealed over 70% connectivity
in the following brain regions: globus pallidus, posterior lobe of
cerebellum, prefrontal cortex, M1, and amygdala (Figure 1B). On
the other hand, the sizes of ROI for the SN and VTA were 40.3 ±

5.2 mm and 10.8 ± 1.9 mm, respectively.
In comparison to the difference of connectivity between the

SN and the VTA, there were significant differences in the globus
pallidus (p = 0.007), corpus callosum (p = 0.000), M1 (p =
0.000), S1 (p = 0.000), PMC (p = 0.000), posterior lobe of
cerebellum (p = 0.000), caudate nucleus (p = 0.000), putamen
(p = 0.000), nucleus accumbens (p = 0.000), prefrontal cortex
(p = 0.000), temporal lobe (p = 0.000), amygdala (p = 0.006),
pontine basis (p = 0.000), occipital lobe (p = 0.000), anterior
lobe of cerebellum (p = 0.000), and external capsule (p = 0.000)
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FIGURE 1 | Neural connectivity of substantia nigra and ventral tegmental
area. (A) The region of interest (ROI): a seed ROI for substantia nigra (SN,
orange), is placed on the isolated SN of the upper midbrain on the B0 and
color-coded map (dorsomedially next to the cerebral peduncle of the upper
midbrain). A seed ROI for ventral tegmental area (VTA, sky-blue), is placed on
the isolated VTA of the upper midbrain on the B0, and color-coded map. We
use other structures to isolate the VTA such as interpeduncular nucleus
(anterior boundary, red), central tegmental tract (posterior boundary,
white-lined rectangular), midline (medial boundary), red nucleus (blue) and SN

(lateral boundary). (B) SN/VTA: results of diffusion tensor tractography for the
connectivity of SN/VTA (a: cortex level, b: upper corona radiata level, c: upper
internal capsule level, d: lower internal capsule level, e: bicommissure level f:
midbrain level, g: upper pons level, h: lower pons level). a to b levels: primary
motor cortex, primary somatosensory cortex, premotor cortex, prefrontal
cortex, corpus callosum, c to e levels: caudate nucleus, putamen, globus
pallidus, nucleus accumbens, thalamus, external capsule, f to h level: red
nucleus, amygdala, medial temporal lobe, temporal lobe pontine basis, pontine
tegmentum, anterior lobe of cerebellum, posterior lobe of cerebellum.

(p < 0.05). However, no significant differences were observed
in the red nucleus (p = 1.000), thalamus (p = 1.000), pontine
tegmentum (p = 1.000), and medial temporal lobe (p = 0.058)
between the SN and VTA (p > 0.05) In addition, there were
no significant differences in connectivity between right and left
hemispheres (p > 0.05). Regarding the size of ROI, significant
difference was observed in size of ROI between the SN and VTA
(p < 0.05), however, no significant difference was observed in size
of ROI for the SN and VTA between the right and left hemispheres
(p > 0.05).

DISCUSSION
In the current study, using multi-tensor model DTI, we inves-
tigated differences in neural connectivity between the SN and
the VTA. We observed that: (1) the SN showed more than

70% connectivity in all brain regions except for external capsule
and medial temporal lobe, whereas the VTA showed less than
70% connectivity in many brain regions (corpus callosum, S1,
PMC, caudate nucleus, putamen, nucleus accumbens, temporal-
occipital lobe, pontine basis, anterior lobe of cerebellum, external
capsule); (2) in several specific brain areas, the connectivity of the
SN was higher than in the VTA: basal ganglia, primary sensori-
motor cortex, PMC, prefrontal cortex, nucleus accumbens, cere-
bellum, corpus callosum, temporooccipital lobe, amygdala, and
pontine basis.

Previous studies have reported that about 75% of dopamine
neurons existed in the SNc, 15% in the VTA, and 10% in the
retrorubral field in human and primates (Hirsch et al., 1992;
Francois et al., 1999; Düzel et al., 2009). These data indicate that
the neural connectivity of the SN could be much higher than that
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Table 1 | Comparison of connectivity between substantia nigra and
ventral tegmental area with brain regions.

Brain regions SN VTA p

Red nucleus 100% 100% 1
Thalamus 100% 100% 1
Globus pallidus 100% 93.65% .007∗

Corpus callosum 100% 28.57% .000∗

Primary motor cortex (BA: 4) 100% 70.63% .000∗

Primary somatosensory cortex 100% 36.51% .000∗

(BA: 1, 2, 3)
Premotor cortex (BA: 6) 100% 29.37% .000∗

Pontine tegmentum 100% 100% 1
Posterior lobe of cerebellum 100% 89.68% .000∗

Caudate nucleus 99.21% 68.25% .000∗

Putamen 99.21% 68.25% .000∗

Nucleus accumbens 97.62% 65.87% .000∗

Prefrontal cortex (BA: 9, 10, 11, 12) 95.24% 73.81% .000∗

Temporal lobe (BA: 20, 21, 22) 88.89% 63.49% .000∗

Amygdala 84.92% 70.63% .006∗

Pontine basis 80.95% 8.73% .000∗

Occipital lobe (BA: 17, 18, 19) 76.98% 34.13% .000∗

Anterior lobe of cerebellum 70.63% 2.38% .000∗

External capsule 50.79% 0 .000∗

Medial temporal lobe 13.49% 6.35% .058
(BA: 27, 28, 34, 35, 36, 37)

SN: Substantia nigra, VTA: Ventral tegmental area, BA: Brodmann area, p:

statistics value for comparison to the connectivity between SN and VTA,

Connectivity (%), * p < 0.05.

of the VTA. Therefore, our results that the neural connectivity
of the SN was higher than that of the VTA are in accordance
with the results of previous studies (Hirsch et al., 1992; Francois
et al., 1999; Düzel et al., 2009). As for the connection areas, many
animal studies have described the difference in the working areas
of the SN and VTA (Phillipson, 1979; Swanson, 1982; Oades and
Halliday, 1987; van Domburg and ten Donkelaar, 1991). The clas-
sical concept was that the SNc mainly works for the nigrostriatal
pathway, whereas the VTA works for both the mesolimbic and
mesocortical pathways (Phillipson, 1979; Swanson, 1982; Oades
and Halliday, 1987; van Domburg and ten Donkelaar, 1991).
Therefore, it has been known that SNc is mainly connected
with the striatum and VTA is mainly with nucleus accumbens
and frontal cortex. However, in 2009, Düzel et al. described
that the functional difference between the SNc and the VTA
seemed subtle (Düzel et al., 2009). Furthermore, they reported
that the mesolimbic and mesocortical dopaminergic system were
dispersed throughout the SN/VTA in the human brain (Düzel
et al., 2009). Our results that the whole SN showed more neural
connectivity to the frontal cortex and nucleus accumbens as well
as basal ganglia compared to the VTA appears to be coincided with
the Düzel’s study.

To the best of our knowledge, only few studies have reported
on the neural connectivity of the SN or the VTA in the human
brain, using DTI (Menke et al., 2010; Chowdhury et al., 2013).
In 2011, Menke et al. divided the SN into the SNc and the pars
reticularis of the SN (SNr) using segmentation (Menke et al.,
2010). These maps showed that the SNc was connected with the
posterior striatum, the pallidum, the anterior limb of the internal

capsule, anterior thalamic nuclei, and anterior thalamic radiation
leading to the prefrontal cortex. By contrast, the SNr was con-
nected to the posterior striatum, ventral thalamus, posterior limb
of internal capsule, and tracts leading to premotor and primary
sensori-motor cortices. The fact that we could not isolate the
SNc from the SNr is a limitation of this study. That was because
we could not identify the SNc from the SN on conventional
MRI and DTI. Recently, Chowdhury et al. (2013) investigated
the connectivity between the SN and the striatum by parcellation
of the SN based on the anatomical connectivity to the stria-
tum (Chowdhury et al., 2013). They found that a dorsomedial
region of the SN preferentially connected to the ventral striatum
(nucleus accumbens) whereas a more ventrolateral region of the
SN connected to the dorsal striatum (the caudate and putamen).
In addition, the connectivity of the dorsomedial region of the SN
to the ventral striatum showed a positive correlation with reward
dependence score. Lack of behavioral data in this study would be
a limitation of this study. Consequently, this is the first DTI study
that compares differences in neural connectivity of the VTA/SN
in the human brain.

In conclusion, we found that the SN showed more neural
connectivity to fronto-temporo-occipital lobe, cerebellum, and
nucleus accumbens as well as basal ganglia compared to the VTA.
The method and results of this study can provide useful infor-
mation for clinicians and researchers in neuroscience, especially
who work for Parkinson’s disease and patients with brain injury.
However, several limitations of DTI should be considered (Lee
et al., 2005; Parker and Alexander, 2005; Yamada, 2009; Fillard
et al., 2011; Jeurissen et al., 2013). First, DTI may underestimate
the fiber tracts. DTI is a powerful anatomic imaging tool that
can demonstrate gross fiber architecture, but not functional or
synaptic connections. However, the probabilistic approach which
was adopted in this study can lead to less serious underesti-
mation because this approach would depict more fibers than
the deterministic approach (Yamada et al., 2009). Second, DTI
could lead to both false positive and negative throughout the
white matter of brain because of complex fiber configurations
such as crossing or kissing fiber and partial volume effects
(Lee et al., 2005; Parker and Alexander, 2005; Yamada, 2009;
Fillard et al., 2011; Jeurissen et al., 2013). Third, the low tesla
(1.5), channels (6), and diffusion directions (32) which were
employed in this study are another limitations of this study.
We suggest further DTI studies to overcome these DTI lim-
itations which may not estimate the real neural connectivity
accurately.
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