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Introduction: Clarification of the relationship between external stimuli and brain
response has been an important topic in neuroscience and brain rehabilitation. In the
current study, using functional near infrared spectroscopy (fNIRS), we attempted to
investigate cortical activation patterns generated during execution of a rehabilitation
robotic hand.

Methods: Ten normal subjects were recruited for this study. Passive movements of the
right fingers were performed using a rehabilitation robotic hand at a frequency of 0.5
Hz. We measured values of oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR) and total-
hemoglobin (HbT) in five regions of interest: the primary sensory-motor cortex (SM1),
hand somatotopy of the contralateral SM1, supplementary motor area (SMA), premotor
cortex (PMC), and prefrontal cortex (PFC).

Results: HbO and HbT values indicated significant activation in the left SM1, left SMA,
left PMC, and left PFC during execution of the rehabilitation robotic hand (uncorrected, p <
0.01). By contrast, HbR value indicated significant activation only in the hand somatotopic
area of the left SM1 (uncorrected, p < 0.01).

Conclusions: Our results appear to indicate that execution of the rehabilitation robotic

hand could induce cortical activation.
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INTRODUCTION

In recent decades, many rehabilitation robots have been
developed for patients with brain injury (Aisen et al., 1997; Krebs
et al., 1998; Volpe et al., 2000; Lum et al., 2002, 2006; Kahn et al.,
2006; Masiero et al., 2007; Kwakkel et al., 2008; Rabadi et al.,
2008; Housman et al., 2009; Lo et al., 2010; Conroy et al., 2011;
Lapitskaya et al., 2011). These rehabilitation robots have been
designed to aid in improvement or to assist with functional activ-
ity of patients with brain injury. The basic principle of brain reha-
bilitation is based on manipulation of external stimuli, which can
induce activation of the cerebral cortex (Kaplan, 1988). Therefore,
clarification of the relationship between external stimuli and brain
response has been an important topic in neuroscience and brain
rehabilitation. Likewise, regarding use of rehabilitation robots for
patients with brain injury, elucidation of brain response by execu-
tion of rehabilitation robots would be important, however, little is
known about cortical activation patterns induced by propriocep-
tive inputs during execution of rehabilitation robots (Blicher and
Nielsen, 2009; Kamibayashi et al., 2009; Li et al., 2012).

Several functional neuroimaging techniques, including func-
tional MRI (fMRI), Positron Emission Tomography, and func-
tional near infrared spectroscopy (fNIRS) are available for use in
brain activation studies by external stimuli (Frahm et al., 1993;

Miyai et al., 2001; Perrey, 2008; LaPointe et al., 2009; Mihara
et al,, 2010; Kim et al.,, 2011; Leff et al., 2011; Gagnon et al.,
2012). Among these techniques, fMRI, which can be employed
repeatedly, produces no ionizing radiation, and shows high spa-
tial resolution, has been used most frequently (Frahm et al,
1993). However, it is sensitive to artifact resulting from motion
and metallic materials. Robots are usually made of metal, and
rehabilitation robots can perform large movements. Therefore,
fMRI might not be appropriate for use in brain activation study
of rehabilitation robots although some studies have reported
cortical effects by magnetic resonance-compatible rehabilitation
robots (Tsekos et al., 2007; Astrakas et al., 2012). By contrast,
less sensitivity of fNIRS to motion artifact and metal material has
been demonstrated; therefore, fNIRS could be more appropriate
for use in research on brain activation study of rehabilitation
robots (Arenth et al.,, 2007; Irani et al., 2007; Perrey, 2008; Mihara
et al., 2010; Leff et al., 2011). In addition, compared with other
functional neuroimaging techniques, the fNIRS has the advantage
of applicability in more realistic day-to-day rehabilitation settings.

Many previous studies have reported on cortical activation by
passive movements of a joint (Reddy et al., 2001; Radovanovic
et al,, 2002; Chang et al., 2009; Szameitat et al., 2012). According
to these previous studies, passive movements induced cortical
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activation mainly in the primary sensorimotor cortex (SM1), and
premotor cortex (PMC) and supplementary motor area (SMA)
are also involved in processing of somatosensory input by passive
movements (Reddy et al., 2001; Radovanovic et al., 2002; Chang
etal., 2009). In addition, it has been shown that cortical activation
patterns during passive movements were similar to that of active
movements (Szameitat et al., 2012). In this study, we developed a
rehabilitation robotic hand and hypothesized that performance of
passive movements by our rehabilitation robotic hand can induce
the proper amount of somatosensory stimulation to induce acti-
vation of the cerebral cortex, particularly the contralateral SM1,
PMC and SMA.

In the current study, using fNIRS we attempted to investigate
cortical activation patterns generated during execution of a reha-
bilitation robotic hand.

SUBJECTS AND METHODS

SUBJECTS

Ten healthy right-handed subjects (6 males, 4 females; mean age
27.8 £ 2.5 years, range 24-32) with no history of neurological,
physical, or psychiatric illness were recruited for this study. All
subjects were asked to complete a questionnaire in order to
confirm that they had no history of neurological, physical, or
psychiatric illness. They understood the purpose of the study
and provided written, informed consent prior to participation.
The study protocol was approved by our Institutional Review
Board.

THE REHABILITATION ROBOTIC HAND
The rehabilitation robotic hand consists of two moving parts
for four fingers (from second to fifth finger) and thumb
(Figures 1A, B). The moving part for four fingers consists of a
finger holder, four bar linkage, one actuator, and a force-torque
sensor system, which is driven by a timing belt (Figure 1C). The
finger holders are made with Velcro straps that allow the human’s
hand to follow the end point trajectory of the robot (Figure 1D).
The grasping motion of the human’s hand can be realized using
four bar linkages, which are designed by imitating the trajectory
of real grasping motion (Figure 1E). The moving part for the
thumb consists of two wires, two pulleys, and a tension adjuster.
It is directly connected to the moving part for four fingers
by the cable driven system. It uses only 1 degree of freedom
(DOF) for grasping motion. When the motor rotates positive
90°, it performs grasping motion, and rotation of negative 90°
results in performance of extension motion. Continuous action
of the motor results in realization of repetitive flexion-extension
motion. For real time control, using the linux distros Fedora 10
with linux kernel ver. 2.6.24 and Realtime Hardware Abstraction
Layer (RTAI) ver. 3.7.1 systems, using an encoder and a Sensoray
$626 board, we realized real time sensing control. For more precise
control, we used time delay control. As a result, the rehabilitation
robotic hand showed a position error of 0.1 ~ 1°.

All subjects were asked to sit comfortably on a chair in an
upright position during conduct of the experiment. They were
instructed to relax their hands maximally and not to move

FIGURE 1 | Rehabilitation robotic hand. (A) Superior view of the
rehabilitation robotic hand, (B) lateral view of the rehabilitation robotic hand,
(C) fixed state of the right hand to the rehabilitation robotic hand, (D) finger

extension (second to fifth fingers) and thumb abduction state by the
rehabilitation robotic hand, (E) finger flexion (second to fifth fingers) and
thumb adduction state by the rehabilitation robotic hand.
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the hand voluntarily or imagine the movements during perfor-
mance of passive movements, which were executed by the robotic
hand. The subject’s right hand was fixed at the rehabilitation
robotic hand. Using a block paradigm design (three cycles; resting
(20 s)-movement by the robot (20 s)-resting (20 s)-movement by
the robot (20 s)-resting (20 s)-movement by the robot (20 s))
at a frequency of 0.5 Hz, flexion-extension movements of the
right fingers (from second to fifth) and abduction-adduction of
the right thumb were performed by the rehabilitation robotic
hand. During performance of passive hand movements, one
experimenter confirmed that there had been no movement of the
shoulder, elbow and wrist, and another experimenter observed
changes in cortical activities using the monitor screen of the
fNIRS system on a real-time basis (Yu et al., 2011; Dinomais et al.,
2013).

FUNCTIONAL NEAR INFRARED SPECTROSCOPY (NIRS)

The fNIRS system (FOIRE-3000; Shimadzu, Kyoto, Japan), with
continuous wave laser diodes with wavelengths of 780, 805,
and 830 nm, was used for recording of cortical activity at a
sampling rate of 10 Hz; we employed a 49-channel system
with 30 optodes (15 light sources and 15 detectors). Based

on the modified Beer-Lambert law, we acquired values for
oxy-hemoglobin (HbO), deoxy-hemoglobin (HbR), and total-
hemoglobin (HbT: mmol) following changes in levels of cortical
concentration (Cope and Delpy, 1988). The international 10/20
system, with cranial vertex (Cz) located beneath the 18th channel,
between the fourth light source and the seventh detector, was used
for positioning of optodes; locations of the nasion, left ear, and
right ear were identified in each subject. A stand-alone application
was used for spatial registration of the 49 acquired channels on the
Montreal Neurological Institute (MNI) brain based on locations
of the nasion, left ear, and right ear, and the 18th channel on the
Cz (Ye et al., 2009).

The software package NIRS-SPM! implemented in the MAT-
LAB environment (The Mathworks, USA) was used in analysis
of fNIRS data. Gaussian smoothing with a full width at a half
maximum (FWHM) of 2 s was applied to correction of noise
from the fNIRS system (Ye et al., 2009). The wavelet minimum
description length (MDL) based detrending algorithm was used
for correction of signal distortion due to breathing or movement
of the subject and general linear model (GLM) analysis with a

Uhttp://bisp.kaist.ac.kr/NIRS-SPM

FIGURE 2 | (A) Four regions of interest based on the Brodmann area (BA)
and anatomical location of areas of the brain. The primary sensory-motor
cortex (SM1): BA 1, 2, 3, and 4; premotor cortex (PMC): BA 6 (BA 6,
except for the SMA); supplementary motor area (SMA) (anterior boundary:
vertical line to the anterior commissure, posterior boundary: anterior
margin of M1, medial boundary: midline between the right and left

Uncorrected, P <0.01

Hand area
of SM1

hemispheres, lateral boundary: the line 15 mm lateral from the midline
between the right and left hemispheres); prefrontal cortex (PFC): BA 8, 9,
44, 45, and 46. (B) Group-average activation map of HbO, HbR, and HbT
during performance of passive movements of the right fingers, which
were executed by the rehabilitation robotic hand using NIRS-SPM
(uncorrected, p < 0.01).
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canonical hemodynamic response curve was then performed in
order to model the hypothesized HbO response under the experi-
mental condition (Ye et al., 2009). Statistical parametric mapping
(SPM) t-statistic maps were computed for group analysis, and, for
stricter analysis, HbO, HbR, and HbT were considered significant
at an uncorrected threshold of p < 0.01 (Ye et al., 2009).

In order to investigate the cortical changing aspects of HbO,
HbR and HbT during performance of finger movements, which
were executed by the rehabilitation robotic hand, we selected five
regions of interest (ROI) based on the Brodmann area (BA) and
anatomical locations of brain areas: SM1 (BA 1, 2, 3, and 4),
the hand somatotopic area of the SM1 (medial boundary: medial
margin of the precentral knob, lateral boundary: lateral margin
of the precentral knob), PMC (BA 6, except for the SMA), SMA
(anterior boundary: vertical line to the anterior commissure, pos-
terior boundary: anterior margin of primary motor cortex (M1),
medial boundary: midline between the right and left hemispheres,
lateral boundary: the line 15 mm lateral from the midline between
the right and left hemispheres), and the prefrontal cortex (PFC)
(BA 8, 9, 44, 46) (Figure 2A; Afifi and Bergman, 2005; Mayka
et al., 2006).

RESULTS

During performance of passive movements of the right fingers,
which were executed by the rehabilitation robotic hand, a signif-
icant increase of HbO and HbT values was observed for both the
left SM1 and the left SMA (uncorrected, p < 0.01). In addition,
a significant increase of HbT value was also observed for the left
PMC and PFC during performance of passive movements of the
right fingers. By contrast, in terms of HbR value, only the hand
somatotopic area of the left SM1 showed a significant decrease,
compared with other ROIs (uncorrected, p < 0.01) (Figure 2B).
In the time-course of actual hemodynamic responses, increased
HbO and decreased HbR values were observed in ROI on the SM1
during performance of passive movements of the right fingers,
which were executed by the rehabilitation robotic hand, and
decreased or increased during rest phases (Figure 3).

DISCUSSION

HbO, HbR and HbT, which measure neural activity indirectly by
detecting hemodynamic changes of the underlying cerebral cor-
tex, are the most commonly used parameters of fNIRS (Irani et al.,
2007; Perrey, 2008). The rationale for use of these parameters
is based on the concept that neural activation in response to a
stimulus results in increased energy demands in the activated area;
consequently, an increase of HbO and concomitant decrease of
HDR in the activated area occurs during neural activation (Perrey,
2008; Leff et al,, 2011). In the current study, we investigated
change of HbO, HbR, and HbT in five ROIs (SM1, hand soma-
totopy of the SM1, PMC, SMA, and PFC) during performance
of passive movements of the fingers, which were executed by
the rehabilitation robotic hand. With regard to HbO and HbT
values in each of the five ROIs, we observed cerebral activation
in the hand somatotopy of the contralateral SM1 and total SM1,
contralateral PMC and SMA and contralateral PFC. In terms of
HbR value, we observed cerebral activation only in the hand
somatotopy of the contralateral SM1. On the other hand, the

hemodynamic responses in ROI on the SM1 showed irregular
fluctuation during the rest phases, as shown in Figure 3. These
results might be related to repetitive stimulation to the cortical
area or effects of nonlinear neurovascular coupling (Hudetz et al.,
1992; Mayhew et al., 1996; Toronov et al., 2000).

Our rehabilitation robotic hand appears to work for the brain
mainly via proprioceptive input by passive movements of fingers.
This proprioceptive input is the sense for the change of the
relative position of the hand and strength of passive movements,
and is generated from millions of sensory receptors in skin,
muscles, joints, and ligaments. Since introduction of functional
neuroimaging techniques, many studies have reported activation
of both the primary motor cortex (M1) and primary somatosen-
sory cortex (S1) as a result of passive movements (Mima et al.,
1999; Radovanovic et al., 2002; Francis et al., 2009; Blatow et al.,
2011; Lee et al.,, 2012). Recently, using fMRI, Szameitat et al.
(2012) reported that passive movements of wrist joint induced
cortical activation in the SM1and SMA, and this cortical activa-
tion pattern was similar to that of active movements of wrist joint
(Szameitat et al., 2012). However, training with active movements
induces more significant improvements in motor performance
with facilitation of cortical networks, compared with passive
movements (Lotze et al., 2003; Perez et al., 2004).

Therefore, we believe that our results indicating activation of
the SM1 by the rehabilitation robotic hand are consistent with
those reported in previous studies. The pathway of M1 activation
by somatosensory stimulation has not been clearly elucidated.
Previously, it was thought that an afferent input arrives at the
M1 through the S1 (Forss et al., 1994). However, there is general
agreement that the M1 receives somatosensory input directly
from the thalamus or dorsal column (Desmedt and Cheron, 1980;
Dinner et al., 1987; Canedo, 1997; Jang et al., 2012). In addition,
results of animal studies have demonstrated direct involvement
of somatosensory input to the motor cortex in execution of
voluntary movements (Asanuma and Arissian, 1984; Favorov
et al., 1988), and branching axons to dorsal column nuclei were
observed in the corticospinal tract (Bentivoglio and Rustioni,
1986; Martinez et al., 1995; Steward et al., 2004). However, in
the current study, except for the contralateral SM1, the secondary
motor area, including contralateral SMA and contralateral PMC,
were activated by execution of our rehabilitation robotic hand.
The secondary motor area is known to receive somatosensory
input directly and this appears to be the basic mechanism of
activation of the secondary motor area; likewise, activation of
the SM1 (Hummelsheim et al., 1988; Rouiller et al., 1999; Chung
et al., 2005; Kishi et al., 2009).

Although many rehabilitation robots have been developed for
patients with brain injury, studies on cortical activation during
execution of the robots are limited (Aisen et al., 1997; Krebs
et al., 1998; Volpe et al., 2000; Lum et al., 2002, 2006; Kahn
et al.,, 2006; Masiero et al., 2007; Kwakkel et al., 2008; Rabadi
et al., 2008; Housman et al., 2009; Lo et al., 2010; Conroy et al.,
2011; Lapitskaya et al., 2011). To the best of our knowledge,
only a few studies using transcranial magnetic stimulation or
fNIRS have demonstrated the cerebral effect by rehabilitation
robots (Blicher and Nielsen, 2009; Kamibayashi et al., 2009; Li
et al., 2012). In 2009, using transcranial magnetic stimulation
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FIGURE 3 | Time course of hemodynamic responses for
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cortex during performance of passive movements of the right fingers,
which were executed by the rehabilitation robotic hand in a subject
(a 28-year-old male).

in 13 normal subjects, Blicher and Nielsen investigated the cor-
tical effect of robotic gait training using a driven gait orthosis
(Blicher and Nielsen, 2009). They found that the decrease in
short-interval intracortical inhibition after passive training in this
gait robot may reflect a decrease in intracortical GABA activity,
which could aid in acquisition of new motor skills. During the
same year, Kamibayashi et al. investigated change of corticospinal
excitability to the lower limb muscles using transcranial magnetic

stimulation and transcranial electrical stimulation of the motor
cortex while 13 normal subjects stepped passively in a robotic
driven-gait orthosis (Kamibayashi et al., 2009). According to their
findings, corticospinal excitability to the lower limb muscle was
facilitated by load-related afferent inputs. In a recent study, Li
et al. (2012), who developed a motion-tracking training robot by
elbow flexion-extension movements, demonstrated the effect of
this robot using fNIRS in 14 normal subjects (Li et al., 2012). They
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reported an increase in motion tracking precision and cortical
activation in motor-control-related regions (SM1, SMA, PMC,
and somatosensory areas) following motion-tracking training.
In addition, they observed that, in terms of cortical activation,
bimanual training was better than single-limb training.

In conclusion, we investigated cortical activation patterns dur-
ing execution of our rehabilitation robotic hand; according to
our results, the contralateral SM1, along with the contralateral
PMC, contralateral SMA, and contralateral PFC were activated.
Our results appear to suggest that execution of the rehabilita-
tion robotic hand could induce cortical activation; therefore, we
believe that our results would be helpful in research on devel-
opment of rehabilitation robots. In addition, fNIRS could be
a useful tool in research on the cortical effect of rehabilitation
robots. For the clinical application, conduct of further studies on
the optimal conditions for cortical activation and robot-assisted
rehabilitation therapy by decoding of movement intention will be
necessary (Gomez-Rodriguez et al.,, 2011). In addition, further
studies on the training effect of this robotic hand in normal
subjects and the clinical effect for patients with brain injury are
also encouraged. However, the limitation that we did not monitor
passive movements using an electromyographic method should
be considered.
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