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Research on the mechanisms underlying human facial emotion recognition has long
focussed on genetically determined neural algorithms and often neglected the question of
how these algorithms might be tuned by social learning. Here we show that facial emotion
decoding skills can be significantly and sustainably improved by practice without an external
teaching signal. Participants saw video clips of dynamic facial expressions of five different
women and were asked to decide which of four possible emotions (anger, disgust, fear, and
sadness) was shown in each clip. Although no external information about the correctness
of the participant’s response or the sender’s true affective state was provided, participants
showed a significant increase of facial emotion recognition accuracy both within and across
two training sessions two days to several weeks apart. We discuss several similarities and
differences between the unsupervised improvement of facial decoding skills observed in
the current study, unsupervised perceptual learning of simple visual stimuli described in
previous studies and practice effects often observed in cognitive tasks.
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INTRODUCTION
Dating from Darwin’s notion that “the different races of
man express their emotions [. . .] with remarkable uniformity”
(Darwin, 1872) facial expressions of emotion have long been
viewed as a hard-wired product of evolution that is universally
understood across human cultures and, to some extent, even
mammalian species. Although most researchers now agree that
human emotional facial expressions can vary considerably across
social groups and cultures (for a meta-analysis see Elfenbein and
Ambady, 2002), few studies have aimed to systematically investi-
gate how encoding and decoding of facial expressions is shaped
by social learning. Furthermore, the majority of studies that did
investigate learning of facial emotion recognition aimed to develop
training programs that might improve the participants’ social or
inter-cultural skills and therefore mixed different types of training
(e.g., McAlpine et al., 1992; Stewart and Singh, 1995; Bölte et al.,
2002; Silver et al., 2004; Solomon et al., 2004; Wölwer et al., 2005;
Matsumoto and Hwang, 2011).

Theoretical work has suggested that associative learning dur-
ing infancy might play an important role in the acquisition
of facial decoding skills. The reasoning is that because infants
are often exposed to similar emotional contexts as their moth-
ers, the sight of their mother’s facial expression in a given
context becomes gradually associated with the infant’s own emo-
tional state in that context through Hebbian learning. Such
associative learning, it is argued, can take place even if the
infant’s and the mother’s emotional state are different because the
mothers often mirror the infant’s emotional state (Keysers and
Perrett, 2004; Keysers and Gazzola, 2006). It has further been
proposed that once these links have been established, contex-
tual cues might be sufficient to fine-tune associations between
observed facial expressions and emotional meaning. Indeed,

the few studies that have systematically investigated learning of
facial emotional recognition provide evidence that facial decod-
ing skills can be sharpened both in adults (Elfenbein, 2006)
and children (Beck and Feldman, 1989) if appropriate informa-
tion about the affective content is provided on a trial-by-trial
basis.

While such information might often be available during normal
infant development, it will often be absent in adult life. Consider,
for example, an individual observing the expressive emotional
behavior of members of a different social group or culture. For this
individual the emotion giving rise to the emotional display might
be as obscure as the behavior itself. Thus, if cross peer-group and
cross-cultural learning of facial emotional expressions can take
place across the life span as suggested by the works by Elfenbein
and others (Elfenbein and Ambady, 2002; Elfenbein, 2006), then
some form of learning that does not rely on an external teaching
signal might be effective in this learning.

The neural processes and mechanisms underlying unsuper-
vised improvement of stimulus perception have extensively been
studied in vision research. These studies provide consistent evi-
dence that repeated exposure to simple visual stimuli such as
tilted lines can lead to enhanced stimulus detection, discrimi-
nation or categorization in the complete absence of an external
teaching signal (e.g., Poggio et al., 1992; Crist et al., 1997). A
well-known example for this is the texture discrimination task
in which participants learn to judge the orientation of a simple
target stimulus (a number of aligned lines) among a number of
distracter lines (Karni and Sagi, 1991). Interestingly, two recent
studies that aimed to show that training with appropriate feed-
back can improve emotion recognition skills provided evidence
that emotion recognition learning does not only take place if par-
ticipants receive appropriate feedback, but might also occur in the
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complete absence of feedback (Blanch-Hartigan, 2012; Hurley,
2012).

Here, we provide further evidence that mere practice without
an external teaching signal can improve facial emotion decod-
ing skills in adults. In addition, we explore whether interpersonal
traits can explain interindividual differences in learning. During
two training sessions several days to weeks apart, participants saw
video clips of dynamic facial expressions of five different women
and were asked to decide which of four possible emotions (anger,
disgust, fear, and sadness) was shown in each video. Although no
information about the correctness of the participant’s response or
the woman’s true affective state was provided, participants showed
a significant increase of facial emotion recognition accuracy both
within and between training sessions. This effect was modulated
by stimulus duration and interpersonal traits. We discuss several
similarities and differences between the unsupervised learning of
facial decoding skills observed in the current study, unsupervised
perceptual learning of simple visual and auditory stimuli described
in previous studies and practice effects often observed in cognitive
tasks.

MATERIALS AND METHODS
ETHICS STATEMENT
Participants gave their informed consent before participation
according to the guidelines of the American Psychological Associ-
ation (http://www.apa.org/ethics) and the study was approved by
the Ethics Committee of the Universität zu Lübeck. All data were
analyzed anonymously.

PARTICIPANTS
Forty female participants were recruited from the Universität zu
Lübeck, Germany. All participants were German-speaking Cau-
casians and none of the participants reported current or previous
neurological or psychiatric illnesses. To investigate possible effects
of the duration of the consolidation interval between the first and
the second training session on learning, half of the participants
had their second training sessions 2 days after the first training
session (2-days consolidation interval), the other half 40–80 days
(mean 59 days) after the first training session (2-months consolida-
tion interval). Two participants were not available for the second
training session; data of these participants were excluded from the
analysis. The final sample consisted of 38 participants (20 with a
2-days consolidation interval, 18 with the 2-months consolidation
interval) with an average age of 22.2 years (range 19–28 years).

ASSESSMENT OF INTERPERSONAL TRAITS
To examine possible relations between interpersonal traits and
improvement of facial decoding skills participants completed the
German 16-item version of the Interpersonal Reactivity Index (IRI,
Davis et al., 2003), the Saarbrücker Persönlichkeitsfragebogen (SPF,
http://psydok.sulb.uni-saarland.de/volltexte/2009/2363/) after the
first training session. The IRI assesses the participant’s interper-
sonal traits on four different subscales: spontaneous attempts to
adopt the perspectives of other people (perspective-taking), ten-
dency to identify with characters in movies, novels, plays, and
other fictional situations (fantasy scale), feelings of warmth, com-
passion, and concern for others (empathic concern) and feelings

of anxiety and discomfort when observing another’s negative
experience (personal distress).

STIMULI
In order to investigate subtle changes of ecologically valid facial
emotion decoding skills we sought to use a stimulus set in
which (i) senders expressed their true emotional state (rather
than just showing a given prototypical facial expression) and (ii)
senders communicated their true emotional state to a socially
significant person (rather than just looking into a camera).
Thus, we used video clips recorded in a previous fMRI (func-
tional magnetic resonance imaging) study in which participants
(senders) were asked to imagine and submerge themselves into
a cued emotional situation and to facially express their feel-
ing to their romantic partner who they believed was observing
them online via a video camera (Anders et al., 2011). Anal-
ysis of the data from that study showed that observers were
not only able to identify the sender’s emotional state above
chance at the behavioral level, but that showing and observing a
given emotion evoked emotion-specific patterns of brain activ-
ity that were highly similar in the sender’s and the observer’s
brain (Anders et al., 2011). For the current study, we selected
videos clips of anger, disgust, fear, and sadness, each expressed
by five different female Caucasian senders. These clips were
selected from eight videos (two per emotion) recorded from each
sender, whereby each video comprised four 20 s periods of a
given emotion, separated by 20 s neutral periods. Only nega-
tive emotions were selected to avoid ceiling effects introduced by
joy (which is usually very easily recognized among the negative
emotions).

In order to permit the investigation of possible effects of stimu-
lus duration on learning, videos were cut into clips of five different
lengths (2 s, 4 s, 6 s, 8 s, and 10 s), each beginning with the onset
of an emotional period. The final set of 100 different video clips
contained one sample of each sender-by-emotion-by-length com-
bination. These video clips were shuffled and divided into five
subsets of twenty video clips, with the restriction that each sub-
set contained one sample of each length-by-emotion combination
and one sample of each sender-by-emotion combination. Subsets
were presented in a counterbalanced order across participants,
and a different order was used for the first and second training
session of each participant. Analysis of hit rates for the five subsets
during the first training session revealed no significant difference
between stimulus subsets (one-way ANOVA with factor stimulus
set, F[4,148] = 1.4, p = 0.23), indicating that facial expressions
were evenly distributed across stimulus sets with regard to emotion
recognition difficulty.

PROCEDURE
Participants were tested in two training sessions, either 2 days or
40–80 days (mean 59 days) apart (see above). Video presentation
during each training session was divided into five blocks, each
containing one subset of video clips. Video clips were presented
on a 15′′ TFT laptop screen approximately 500 mm in front of
the participant’s face. Each video clip was preceded by a 1 s fixa-
tion cross on a dark background. Immediately after the video clip,
a response screen appeared with four small boxes, each labeled
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with one emotion ( “anger”, “disgust”, “fear”, “sadness”), indicat-
ing the participant to convey her decision by button press. Four
keys on the keyboard (D, G, J, L), each labeled with one emotion,
were used as response buttons (whereby the order of the labeled
boxes on the screen corresponded to the order of the response but-
tons on the keyboard). As soon as the participant had entered her
response (maximal response interval of 5 s), the response screen
was replaced with a dark screen for a fixed intertrial interval of
3 s. Importantly, the assignment of response buttons was coun-
terbalanced across participants and a different assignment was
used for the first and second training session for each partici-
pant. A response was defined as correct if the response button
pressed by the participant corresponded to the emotion cued to
the sender and as incorrect otherwise. A missing response was
counted as an incorrect response. The presentation of a complete
subset of video clips took a maximum of 20 × 15 s = 5 min,
depending on the participant’s response time. After each of these
blocks, a short break was inserted (< 3 min), resulting in a max-
imum duration of 5 × 8 min = 40 min for each training session
(Figure 1).

To familiarize participants with the experimental setting, each
training session was preceded by three practice trials with video
clips of a sender that was not used in the main experiment.
Stimulus presentation and response logging were implemented
with Presentation software (Neurobehavioral Systems Inc., Albany,
CA, USA).

DATA ANALYSIS
First, emotion recognition data were reduced by computing aver-
age hit rates and response times for each block and participant.
Second, to obtain an estimate of initial performance and block-
to-block increase (hit rates) or decrease (response times) of
performance during each training session for each participant,
a straight line with slope bj and constant cj was fitted through
block averages, separately for each training session, using the least
square criterion such that

yji = bj .xji + cj + eji, with i = 1, 2, . . . , 5 and j = 1, 2

where yji is the estimated hit rate in block i of training session j, xji

is the mean-corrected number of block i of training session j, and
eji is the error in block i of training session j.

In our main analysis, we then tested (i) whether learning slopes
(b1,b2) were larger (hit rates) or smaller (response times) than
zero (indicating learning within training sessions) and (ii) whether
there was a significant increase (hit rates) or decrease (response
times) of estimated performance from the first block of the first
training session to the first block of the second training session
(y2,1 − y1,1) (indicating consolidation across training sessions). To
test for consolidation across training sessions, we used estimated
hit rates/response times during the first block of each training ses-
sion (y1,1 and y2,1) rather than average performance during each

FIGURE 1 | Stimulus presentation. Top row: A fixation cross on dark
background signaled the beginning of a trial. After 1 s, the fixation cross
screen was replaced with a video of 2 s, 4 s, 6 s, 8 s, or 10 s length.
Immediately after the video, a response screen appeared with four small
boxes, each labeled with one emotion (whereby the order of the labeled
boxes on the screen corresponded to the order of the response buttons on

the keyboard) indicating the participant to convey her decision by button press
(maximal response interval of 5 s). As soon as the participant had conveyed
her response, the response screen was replaced with a dark screen for 3 s,
after which the next trial began. Bottom row: A complete training session
comprised five blocks of 20 trials. Each block of 20 trials contained a different
subset of video clips.
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session because they represent unbiased estimates of performance
at the beginning of each training session.

For hit rates, we performed three additional analyses. First,
to examine whether stimulus duration had an effect on learning,
we tested for differences in initial performance (y1,1), learning
slopes (b1, b2), and consolidation (y2,1 − y1,1) between short and
long video clips. For this analysis, the parameters b and y were
computed as described above, but this time separately for short
videos (2–4 s) and long videos (8–10 s).

Second, to test for possible relations between interpersonal
traits and (learning of) facial decoding skills, we correlated each
participant’s initial performance (y1,1) and average learning slopes
(b1 + b2) with her scores on the four IRI subscales (fantasy,
empathic concern, perspective taking, personal distress).

Finally, we asked whether learning differed across emotions.
Because of the limited number of trials per emotion, data were
averaged across the five blocks of each training session for this
analysis. Because hit rates for single categories can be affected
by response biases, we computed average unbiased hit rates huj ,e

(Wagner, 1993), huj ,e = (# of hits × # of hits)/(# of responses × #
of stimuli) for each emotion and training session, where huj ,e is the
unbiased hit rate for emotion e in training session j. Differences
between emotions were assessed by a four-by-two ANOVA with
factors emotion and training session.

Student’s t-test was used to test for differences unless otherwise
indicated. In cases where we had a one-sided hypothesis, statistical
tests were performed one-tailed, in all other cases two-tailed.

RESULTS
MAIN ANALYSIS
Behavioral data are summarized in Table 1. Participants showed a
significant block-to-block increase of hit rates during both training

sessions [training session 1, T(37) = 1.7, p = 0.046, training
session 2, T(37) = 2.9, p = 0.033, Figure 2A], and there was
no significant difference in learning slopes between training ses-
sions [training session 1 minus training session 2, T(37) = –0.4,
p > 0.50 (two-tailed)]. Learning slopes did not differ between
the two groups [2-days interval minus 2-months interval, training
session 1, T(36) = 0.1, p > 0.50 (two-tailed); training session 2,
T(36) = 0.0, p > 0.50 (two-tailed)], and there was no interaction
between consolidation interval and training session [T(36) = 0.1,
p > 0.50 (two-tailed)]. This indicates that significant learning took
place within training sessions, independent of the interval between
training sessions.

Importantly, there was also a significant increase in hit rates
from the first block of the first training session to the first block of
the second training session [T(37) = 2.6, p = 0.007, Figure 2B].
Again there was no significant difference between groups [2-days
interval minus 2-months interval, T(36) = –1.2, p > 0.10]. This
indicates that increased emotion recognition accuracy consoli-
dated across training sessions, independent of the consolidation
interval between training sessions.

A similar pattern was observed for response times. There was a
significant block-to-block decrease of response times during both
training sessions [training session 1, T(37) = –3.7, p < 0.001;
training session 2, T(37) = –2.0; p = 0.017], although this decrease
was significantly stronger during the first than during the sec-
ond training session [training session 1 minus training session 2,
T(37) = –2.1, p = 0.021]. Learning slopes did not differ between
groups in the first training session [two-days interval minus longer
interval, T(36) = 0.3, p > 0.50 (two-tailed)], although in the
second training session participants with a 2-days consolidation
interval showed a stronger decrease of response times than partic-
ipants in with a 2-months consolidation interval [2-days interval

Table 1 | Mean hit rates, response times, and unbiased hit rates for all stimuli.

Hit rate (%) Response time (ms) Unbiased hit rate (%)

Short videos Long videos All videos All videos Anger Disgust Fear Sadness

Training session 1

Block 1 48 (±3) 52 (±4) 50 (±2) 982 (±74)

Block 2 46 (±3) 50 (±3) 50 (±2) 924 (±59)

Block 3 48 (±3) 58 (±4) 54 (±2) 877 (±59)

Block 4 44 (±3) 60 (±3) 53 (±3) 859 (±65)

Block 5 48 (±3) 60 (±3) 53 (±2) 785 (±55)

Mean 47 (±2) 56 (±2) 52 (±2) 885 (±58) 30 (±2) 40 (±3) 26 (±1) 23 (±2)

Training session 2

Block 1 48 (±3) 60 (±2) 55 (±2) 871 (±61)

Block 2 54 (±3) 60 (±2) 57 (±2) 820 (±56)

Block 3 54 (±2) 63 (±3) 59 (±2) 825 (±74)

Block 4 52 (±3) 65 (±2) 59 (±1) 797 (±60)

Block 5 58 (±3) 67 (±2) 59 (±2) 799 (±66)

Mean 53 (±3) 63 (±2) 58 (±1) 882 35 (±2) 48 (±2) 31 (+/-1) 28 (+/-2)

Numbers in brackets indicate SEM (N = 38).

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 77 | 4

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Huelle et al. Unsupervised learning of facial emotion recognition

FIGURE 2 | Improvement of facial emotion recognition accuracy.

Participants showed a significant linear increase in emotion recognition
accuracy within both training sessions (bold red lines in (A). Emotion
recognition accuracy also increased significantly from the first block of the
first training session to the first block of the second training session,
indicating consolidation of emotion recognition accuracy across training
sessions (dashed red lines in (A), bar charts in (B). Filled circles in (A)

represent block averages across all participants. Learning and consolidation

did not differ between participants who had a two-day interval between the
two training sessions (open circles and narrow dashed black line in (A), only
shown for the second training session) and participants who had a longer
interval between the two training sessions (open circles and wide dashed line
in (A), only shown for the second training session). Numbers on the y-axis
indicate percentage of correctly recognized facial expressions (note that
chance level is 25 percent). Error bars indicate SEM. Asterisks indicate
significant effects (p < 0.05).

minus 2-months interval, T(36) = –2.3, p = 0.027 (two-tailed)];
this interaction between consolidation interval and training ses-
sion did not reach statistical significance [T(36) = –1.6, p > 0.10
(two-tailed)].

Response times decreased significantly from the first block of
the first training session to the first block of the second training
session [T(37) = –2.2, p = 0.017] and there was no significant
difference between groups [2-days interval minus 2-months inter-
val, T(36) = 0.4, p > 0.30]. Together, these data indicate that
response times decreased both within and across training ses-
sions, independent of the consolidation interval between training
sessions.

LONG vs. SHORT STIMULUS DURATION
As expected, there was a trend for long videos (8–10 s) to be initially
recognized less accurately than short videos (2–4 s) [long minus
short videos, T(37) = 1.3, p = 0.10]. This difference increased dur-
ing the first training sessions and remained nearly stable during
the second training session: while long videos showed a signifi-
cant block-to-block increase of hit rates during the first and the
second training session [training session 1, T(37) = 3.0, p = 0.002;
training session 2, T(37) = 3.1, p = 0.002], short videos showed
a significant block-to-block increase of hit rates only in the sec-
ond training session [training session 1, T(37) = –0.3, p > 0.50;
training session 2, T(37) = 2.2, p = 0.017, Figure 3A]. The dif-
ference between learning slopes for long and short videos in the
first, but not in the second, training session was statistically sig-
nificant [long minus short videos, training session 1, T(37) = 2.1,
p = 0.021, training session 2, T(37) = 0.2, p > 0.50], with an
interaction just below statistical significance [stimulus duration x
training session, T(37) = 1.6, p = 0.059]. A similar trend was

observed when estimated hit rates during the first blocks of the
first and second training sessions were compared [long minus short
videos, T(37) = 1.6, p = 0.059, Figure 3B]. Together, these data
show that initial performance was more accurate for long than
for short videos, and that emotion recognition accuracy improved
faster for long than for short videos.

INTERPERSONAL TRAITS
Participants’ IRI scores deviated less than one SD from the norm
of their German age reference group (Christoph Paulus, Nor-
mentabellen des SPF, Universität des Saarlandes, 2011) on all four
subscales (perspective taking, mean = 3.5, SD = 0.6, norm 3.7;
fantasy, mean = 3.5, SD = 0.8, norm 3.6; empathic concern,
mean = 3.6, SD = 0.7, norm 3.6; personal distress, mean = 2.6,
SD = 0.8, norm 2.8).

Overall, correlations between interpersonal traits and initial
performance or learning were weak. However, we observed a sig-
nificant positive correlation between empathic concern and initial
hit rates (y1,1) for long videos [r = 0.27, T(36) = 1.7, p = 0.050
(uncorrected)] and between empathic concern and learning slopes
for short videos [r = 0.36, T(36) = 2.3, p = 0.014 (uncorrected)].
Thus, empathic concern predicted both initial performance for
long videos and improvement in emotion recognition accuracy
for short videos.

SINGLE EMOTIONS
Average unbiased hit rates (Wagner, 1993) showed a significant
increase from the first training session to the second training ses-
sion for each and every emotion [anger, T(37) = 2.6, p = 0.007;
disgust, T(37) = 2.9, p = 0.003; fear, T(37) = 3.2, p = 0.001;
sadness, T(37) = 2.5, p = 0.009], and this improvement of
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emotion recognition accuracy was similar across all emotions
[four-by-two ANOVA with factors emotion and training session,
emotion × training session interaction, F(3,11) = 0.8, p > 0.50,
Figure 4].

DISCUSSION
We observed a significant improvement of facial emotion decod-
ing skills in healthy adults in a forced-choice emotion recognition
paradigm without any external feedback. Participants’ emotion
recognition accuracy increased significantly both within and
between two training sessions two days to several weeks apart.
Although the study population and stimulus sample in the cur-
rent study were limited to female Caucasian senders and observers,
the current study extends previous evidence that facial emotion
decoding skills can be significantly and sustainably improved by
learning mechanisms that do not rely on external teaching signals.

The neural processes and mechanisms underlying unsuper-
vised learning have extensively been studied in vision research,
but improved performance after practice without feedback has
also been observed in more cognitive tasks. Below, we discuss sim-
ilarities and differences between the unsupervised improvement
of facial decoding skills observed in the current study, unsuper-
vised perceptual learning of simple stimuli, and other forms of
unsupervised learning.

COMPLEX VERSUS SIMPLE STIMULI
Improvement of perceptual skills after repeated stimulus expo-
sure without external feedback has been most intensively studied
in the visual domain (e.g., Karni and Sagi, 1991; Poggio et al.,
1992; Crist et al., 1997; more recently Özgen and Davies, 2002),
but has also been observed in the auditory (e.g., Goudbeek et al.,
2009) and olfactory (e.g., Li et al., 2006) modality. In these stud-
ies, participants were typically asked to detect, discriminate or
categorize simple visual, auditory or olfactory stimuli. The deci-
sion boundary could either be explicitly given (such as “upright”
for discrimination of tilted lines) or implicitly defined by the
structure of the stimulus set (e.g., for a stimulus set consist-
ing of lines whose tilt angles cluster around 45◦ and –45◦ tilt
angle, respectively, “upright” can be derived as decision bound-
ary from the structure of the stimulus set). In the first case,
stimulus exposure results in enhanced perceptual discrimination
along the relevant physical dimension (perceptual discrimina-
tion learning), particularly around the decision boundary. In
the second case, stimulus exposure leads to learning of previ-
ously unknown categories (perceptual category learning), which
in turn can result in perceptual discrimination learning. Both
processes could in principle have contributed to the improve-
ment of facial emotion decoding skills observed in the current
study. However, the learning problem in the current study dif-
fered from that in studies using simple visual or auditory stimuli
in at least two important factors: First, the physical feature space
spanned by the facial emotional expressions used in the current
study comprised far more dimensions than the space spanned by
the simple stimuli used in previous studies. Second, participants
in the current study had extensive prior (perceptual and semantic)
knowledge about the categorical structure underlying the stimulus
space.

PHYSICAL FEATURE SPACE AND PRIOR KNOWLEDGE
Recent studies show that humans easily learn new stimulus cate-
gories without feedback if these categories are defined by a single
physical dimension (such as tilt angle), but are surprisingly inept
in learning perceptual categories without an external teaching sig-
nal if learning requires the integration of two or more perceptual
dimensions (such as tilt angle and length (information integration
learning); Ashby et al., 1999; Goudbeek et al., 2009). This suggests
that prior category knowledge might play an important role in
facial emotion recognition learning.

In further support of this, a study on chimpanzee facial emotion
recognition found that human observers perceived prototypical
chimpanzee (Pan troglodytes) facial expressions categorically if
they had previously learned (nonsense) verbal labels for each cat-
egory (Fugate et al., 2010), while extensive perceptual experience
with non-human primate facial expressions alone did not result in
categorical perception (it should be noted though that participants
in that study were also counted as having perceptual expertise
if they had prior experience with a primate species other than
chimpanzees). Another study on visual category learning found
that semantic category knowledge can help to direct attention to
relevant stimulus dimensions (Kim and Rehder, 2011).

In addition to semantic category knowledge, innate or learned
perceptual knowledge might play an important role in facial
emotion recognition learning. Specifically, innate or acquired
neural algorithms that favor processing along biologically rel-
evant higher-order perceptual dimensions (e.g., anger–disgust,
anger–fear, anger–sadness, disgust–fear, disgust–sadness, fear–
sadness) rather than physical dimensions (e.g., form and relative
spacing of lips, brows, and eyes) could substantially reduce the
dimensionality of the relevant perceptual space and thereby facil-
itate unsupervised learning. Empirical support for the assump-
tion that such algorithms indeed develop early in life comes
from the observation that infants, but not adults, readily learn
multidimensional speech–sound categories by mere exposure
(Maye et al., 2002; Goudbeek et al., 2009). In the current study,
learning was facilitated both by empathic abilities and initial
performance.

One important task for future studies will be to examine the
effects of prior (learned or innate) semantic or perceptual knowl-
edge on unsupervised learning of facial emotion decoding skills.
This is particular interesting as observers will likely have less
prior knowledge about the emotional behavior of senders who
have a different social, cultural or ethnic background than the
observer.

SPECIFIC VERSUS GENERALIZED LEARNING
Early studies on perceptual learning using simple physical stimuli
in the visual domain found that training effects were remark-
ably specific to the particular stimuli used for training (e.g., an
increased ability to discriminate distances between vertical lines
did not generalize across line orientation or even visual location,
Poggio et al., 1992; Crist et al., 1997). This has been taken as evi-
dence that perceptual learning can take place very early in the
visual processing stream (Gilbert, 2001). Thus the question arises
whether the improvement of facial decoding skills observed in the
current study is limited to the particular sample of individuals
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FIGURE 3 | Improvement of facial emotion recognition accuracy (long

vs. short videos). Participants showed a significant linear increase in
emotion recognition accuracy within both training sessions for long videos
but not for short videos; for short videos a significant increase in emotion
recognition accuracy was observed only in the second training session
(dark/bright bold red lines in A). In line with this, emotion recognition
accuracy increased significantly from the first block of the first training

session to the first block of the second training session for long, but not
for short videos (dark/bright dashed red lines in A, dark/bright bar charts
in B). Dark/bright gray filled circles in A represent block averages for
long/short videos across all participants. Numbers on the y-axis indicate
percentage of correctly recognized facial expressions (note that chance
level is 25%). Error bars indicate SEM. Asterisks indicate significant
effects (p < 0.05).

FIGURE 4 | Response frequency during the first (A) and the second training session (B). Error bars indicate SEM.

seen during training or whether it generalizes beyond individual
senders and maybe even sensory modalities.

Interestingly, there is accumulating evidence from neuroimag-
ing studies that improved perceptual performance can be related
to neural changes at different cortical levels, possibly depending
on the particular perceptual task (Schoups et al., 2001; Schwartz
et al., 2002; Furmanski, 2004; Little and Thulborn, 2005; Sigman
et al., 2005; Li et al., 2006; Op de Beeck et al., 2006; Jiang et al.,
2007; Law and Gold, 2008; van der Linden et al., 2008; Yotsumoto
et al., 2008; Li et al., 2009; Wong et al., 2009; Zhang et al., 2010;
Kahnt et al., 2011; Folstein et al., 2012; Myers and Swan, 2012),
and that neural changes in higher cortical areas are associated with
less specific learning effects (for review, see Sasaki et al., 2010).
Extrapolating this evidence to the current study one might pro-
pose that if improved facial emotion decoding skills are related

to neural plasticity in higher visual areas [e.g., occipito-temporal
areas that support facial emotion recognition independent of facial
identity (Fox et al., 2009)], then these learning effects should gen-
eralize beyond individual senders. Even more interestingly, one
might ask whether learning effects can also generalize across sen-
sory modalities. For example, it would be highly interesting to
see whether perceivers who become more accurate at discrimi-
nating between facial emotional expression of different categories
would at the same time become more accurate at discriminating
vocal emotional expressions of the same categories (see Shams
et al., 2011 for a related account). This would point towards
increased discrimination accuracy at a neural level that receives
input from different sensory modalities. Further combined behav-
ioral and neuroimaging studies are needed to address these
questions.
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ACTIVE DECISION MAKING AND STIMULUS SALIENCE
Another factor that might have an important effect on unsuper-
vised learning of facial decoding skills is explicit decision-making
versus passive observation. One of the first reports of perceptual
learning is the observation that passive exposure to visual stim-
uli can increase visual discrimination in rats (Gibson and Walk,
1956). In most perceptual learning studies in humans, partici-
pants were required to actively make a decision, but there are also
a few studies that report perceptual learning after mere stimulus
exposure in humans (e.g., Skrandies and Fahle, 1994). Although
these findings suggest that explicit decision making is not essential
for perceptual learning to occur, active decision making could still
act as an enhancing factor. In a recent review, Sasaki et al. (2010)
underline the role of signal strength in perceptual learning, and
there is evidence that if participants are required to make a deci-
sion in the absence of external feedback an internal error signal
is created that can serve as reinforcement signal and thereby facil-
itate learning (Daniel and Pollmann, 2012). Similarly, emotional
salience might act as an internal signal amplifier and thereby facil-
itate learning in real life. Empirical evidence for this comes from
a series of studies of physically abused children that showed that
abused children recognize angry facial expressions more rapidly
than controls (Pollak et al., 2009). Furthermore, compared to
healthy controls, abused children’s category boundaries for angry
expressions were shifted towards fearful and sad facial expressions
(Pollak and Kistler, 2002). Although these studies do not allow
to completely separate effects of emotional salience from effects
of frequent exposure they provide some evidence that emotional
salience might play a role in learning of facial emotion recogni-
tion. Behavioral studies that closely model real life situations are
needed to investigate the role explicit decision making, salience,
and related factors in more detail.

OTHER FORMS OF UNSUPERVISED LEARNING
In a study on auditory perceptual learning, Hawkey et al. (2004)
distinguished between perceptual learning (which refers to perfor-
mance changes, “brought about through practice or experience,
that improve an organism’s ability to respond to its environment”,
p. 1055) and procedural learning (which refers to “improvement
in performance on a task that results from learning the responds
demands of the task”, p. 1055). In the current study, procedu-
ral learning would refer to any improvement in performance that
is not specific for facial emotional expressions (or, in fact, for
any expressive emotional behavior, see below) but for features
of the particular experimental set-up used in the current study,
e.g., selecting and pressing the appropriate response button on a
keyboard. Another possible factor that might confound results in
studies that require participants to repeatedly classify stimuli into
a number of predefined categories is that over the course of the
experiment participants might acquire knowledge about a partic-
ular stimulus set (e.g., the frequency distribution of stimuli of a
particular class) which could help them to develop response strate-
gies that increase performance in the absence true stimulus-related
learning (see e.g., Scherer and Scherer, 2011).

In the current study, we partly controlled for procedural learn-
ing by switching response buttons across training sessions. A more
stringent control that should certainly be implemented in future

studies would be to test the participants’ facial decoding skills
after training on a completely different experimental set-up (e.g.,
by showing the participants static images rather than videos and
asking them to respond orally rather than via a computer).

Improved performance after practice without feedback has
also frequently been observed in more cognitive tasks, for exam-
ple when participants are tested on cognitive abilities (e.g.,
Hausknecht et al., 2002, 2007). A number of factors have been dis-
cussed to explain increased performance in such tasks, the most
relevant for the current observation perhaps being reduced anxi-
ety and increased motivation. Although these factors are probably
more important in settings where participants know or have the
impression that they being assessed for their personal abilities,
future studies on facial decoding skills should include additional
affective and motivational state questionnaires to control for these
factors.

CONCLUSION
In sum, the current study extends previous evidence that facial
emotion decoding skills can be significantly and sustainably
improved by learning mechanisms that do not rely on an exter-
nal teaching signal. Such mechanisms might provide a basis for
dynamic, life-long tuning of facial emotion decoding skills in
humans. Importantly, the particular pattern of improvement of
facial decoding skills observed in the current study, i.e., depen-
dency of learning on stimulus duration and empathy-related
personally traits, are difficult to explain by any confounding
factors. Nevertheless, the results of the current study call for
further systematic behavioral and neuroimaging studies that inves-
tigate (i) the degree to which unsupervised learning of facial
emotion decoding skills relies on prior semantic and percep-
tual knowledge (ii) the degree to which improved emotion
recognition generalizes across senders and sensory modalities,
(iii) possible modulating effects of explicit decision making and
stimulus salience and (iv) control more stringently for confound-
ing effects. Such studies will, hopefully, (i) allow to develop
efficient training programs to improve cross-cultural emotion
decoding skills and (ii) draw the attention of the neuroscience
community to the role of neural plasticity in human social
behavior.
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