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Behavioral data obtained with perceptual decision making experiments are typically
analyzed with the drift-diffusion model. This parsimonious model accumulates noisy
pieces of evidence toward a decision bound to explain the accuracy and reaction times of
subjects. Recently, Bayesian models have been proposed to explain how the brain extracts
information from noisy input as typically presented in perceptual decision making tasks.
It has long been known that the drift-diffusion model is tightly linked with such functional
Bayesian models but the precise relationship of the two mechanisms was never made
explicit. Using a Bayesian model, we derived the equations which relate parameter values
between these models. In practice we show that this equivalence is useful when fitting
multi-subject data. We further show that the Bayesian model suggests different decision
variables which all predict equal responses and discuss how these may be discriminated
based on neural correlates of accumulated evidence. In addition, we discuss extensions
to the Bayesian model which would be difficult to derive for the drift-diffusion model.
We suggest that these and other extensions may be highly useful for deriving new
experiments which test novel hypotheses.
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INTRODUCTION
One of the key questions in neuroscience is how our brain can
rapidly categorize its sensory inputs. One approach of addressing
this question has been termed perceptual decision making where
the typical experiment uses a two-alternative forced choice task
to judge differences in perceptual features (e.g., Newsome et al.,
1989; Heekeren et al., 2004; Summerfield et al., 2006). The prob-
ably best known of these experiments employs the random dot
motion task, where subjects decide whether some visually pre-
sented dots move either to the left or right (Ball and Sekuler,
1982; Newsome and Paré, 1988). Although this task seems as a
severe reduction of the question of how our brain maps its con-
tinuous stream of naturalistic, high-dimensional sensory input
to one of many different categories, random dot motion exper-
iments have provided a wealth of insightful findings about how
perceptual decisions are made (see Gold and Shadlen, 2007, for a
recent review).

One key feature of the random dot motion task is that the stim-
uli are rendered extremely noisy, as compared to input provided
under most naturalistic conditions. This high noise level makes
the task difficult so that subjects have to sample the sensory input
for hundreds of milliseconds to reduce their uncertainty about
the stimulus category so that they can commit to a decision. This
long observation period is motivated by the experimental aim to
delay decisions to differentiate between the mechanisms of evalu-
ating the sensory input and making a decision (Gold and Shadlen,
2007).

The perceptual process has been described by drift-diffusion
models where we use the term “drift-diffusion model” to com-
prise a large variety of similar models (Ratcliff, 1978; Bogacz
et al., 2006; Ditterich, 2006; Gold and Shadlen, 2007; Purcell
et al., 2010) which all implement the basic mechanism of evi-
dence accumulation with a drift-diffusion process. The under-
lying assumption commonly is that the brain extracts, per time
unit, a constant piece of evidence from the stimulus (drift) which
is disturbed by noise (diffusion) and subsequently accumulates
these over time. This accumulation stops once enough evidence
has been sampled and a decision is made. Drift-diffusion models
have been used successfully to quantitatively analyse behavioral
data, i.e., reaction times and accuracy (Ratcliff, 1978; Smith and
Ratcliff, 2004; Ratcliff and McKoon, 2008). Apart from the typical
perceptual decision making paradigms considered here, drift-
diffusion models have also been used to explain reaction time
distributions in a wide range of other categorization and mem-
ory retrieval tasks (see Voss et al., 2013, for review). Furthermore,
drift-diffusion models have been used to describe neurophys-
iological data qualitatively: The mean firing patterns of single
neurons, for example, in lateral intraparietal cortex (LIP) of non-
human primates exhibit crucial features of the mean trajectories
of drift-diffusion models (Ditterich, 2006; Gold and Shadlen,
2007; Purcell et al., 2010).

Another way of modeling the perceptual process is based on
Bayesian approaches. There are two different ways of modeling:
Firstly, Bayesian schemes have been used for better fitting the
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parameters of the drift diffusion model to behavioral data,
as compared to standard techniques (e.g., Lee et al., 2007;
Vandekerckhove et al., 2008; Wiecki et al., 2013). This is not
the approach considered here. Rather, we propose a generative
model for which we derive the Bayesian inference equations.
Similar Bayesian approaches have been used before (Rao, 2004,
2010; Beck et al., 2008; Dayan and Daw, 2008; Brown et al.,
2009; Shenoy and Yu, 2011; Denève, 2012; Drugowitsch et al.,
2012; Huang et al., 2012). The aim of this paper is to show the
exact equivalence between the Bayesian inference equations and
the drift diffusion model. The critical difference between the two
models is that only the Bayesian model is based on a description
of how the sensory input is generated precisely. As we will discuss
below, explicitly modeling the sensory input as in the proposed
Bayesian model enables a wide range of novel and potentially
useful model extensions. More generally, while one appealing fea-
ture of drift-diffusion models is their mathematical simplicity,
Bayesian models have gained recently a reputation as a potential
key to understand brain function in mechanistic-computational
terms (Knill and Richards, 1996; Doya et al., 2007; Chater and
Oaksford, 2008; Friston, 2010; Pouget et al., 2013). In particular,
Bayesian models naturally incorporate the perceptual uncertainty
of the observer as a key parameter for explaining behavior.

Specifically, we present a Bayesian model for the two-
alternative forced choice task and show that it is equivalent
to a pure drift-diffusion model (pDDM) (Bogacz et al., 2006;
Wagenmakers et al., 2007), which we call “pDDM” from here
on. Conceptually, it has long been known that the pDDM imple-
ments the sequential probability ratio test (SPRT) (Bogacz et al.,
2006), a procedure which makes statistically optimal decisions.
Here, we make the relation to a Bayesian model explicit. The
main result is a set of equations, which translate the parameters
of the pDDM directly to the parameters of the Bayesian model,
and vice versa. This means that one can translate experimen-
tally determined pDDM parameters to the parameterization of
a Bayesian model. We demonstrate and cross-validate this trans-
lation on a published data set (Philiastides et al., 2011) and
show that one can easily cast the drift and diffusion parame-
ters of the pDDM as internal uncertainties of a decision-making
observer about the sensory input (Yu and Dayan, 2005; Feldman
and Friston, 2010; Dayan, 2012). In addition, using the Bayesian
model, we investigate whether there is an experimental way of
identifying which computational variable is used by the brain
for accumulating evidence. The pDDM postulates that this vari-
able is the so-called log posterior odds while the Bayesian model
may also use the posterior or the log posterior. Although all
three variables lead to exactly the same decisions, their putative
neuronal implementations differ. Identifying which decision vari-
able is used by the brain would cast more light onto the precise
neuronal computations the brain performs during the sampling
period.

Furthermore, we discuss several potent future developments
based on the Bayesian model: For example, it is straightforward
to extend the Bayesian model to make specific predictions when
using more complex stimuli (as compared to the random dot
motion task and similar experimental designs). This may be the
basis for future experiments which can test specific and novel

hypotheses about the computational mechanisms of perceptual
decision making using both behavioral and neuronal data.

RESULTS
Our main result is the set of equations which relate the param-
eters of the pDDM and the Bayesian model to each other. To
provide the basis for these equations, we describe both models
and clarify the conditions under which the equivalence holds.
We validate that, in practice, fitting response accuracy and reac-
tion times either using the pDDM, or fitting the Bayesian model
directly leads to equivalent results. Finally, we consider three
different potential implementations of how the Bayesian percep-
tual decision making model may be realized in the brain and
show that these are unlikely to be differentiated based on current
experimental designs.

DRIFT-DIFFUSION MODEL
The pDDM (cf. Bogacz et al., 2006; Wagenmakers et al., 2007) is
a simple Wiener diffusion process with drift

dy = vdt + sdW (1)

where y(t) is the diffusion state, v is the drift, s determines the
amount of diffusion and dW denotes the standard Wiener pro-
cess. To show the equivalence we discretize the process to simplify
the following analytical treatment:

yt − yt−�t = v�t + √
�tsεt (2)

where εt ∼ N(0, 1) is a standard normally distributed noise vari-
able. When used as a model for making perceptual decisions
between two alternatives, the diffusion process is bounded above
and below by B such that decisions are made when

∣∣yt
∣∣ ≥ B. If

multiple alternatives are considered, a so-called race model may
be constructed in which multiple diffusion processes with differ-
ing drift race toward a bound in parallel (Bogacz et al., 2006; Gold
and Shadlen, 2007).

In summary, the pure drift-diffusion model [pDDM, Equation
(2)] accumulates Gaussian-distributed pieces of evidence with
mean v�t and variance �ts2 until a bound B is crossed. Although
these parameters can be fitted to the behavioral responses of a
subject, the model does not explain how pieces of evidences are
computed from the sensory input, but assumes that this has been
done at a lower-level processing stage (Gold and Shadlen, 2007).

BAYESIAN MODEL
A critical aspect of a Bayesian model is that it is based on a gen-
erative model of concrete sensory observations. To recognize a
presented stimulus a Bayesian model compares predictions, based
on a generative model, to the observed sensory input. Through
Bayesian inference, this comparison leads to belief values indi-
cating how probable it is that the stimulus caused the sensory
observations. Note that this is conceptually different from the
pDDM where the decision process accumulates random pieces
of evidence and there is no explicit representation of raw sen-
sory input. Consequently, a Bayesian model is more complex than
the pDDM. As shown in Figure 1 there are four required model
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components: (i) the generative input process (reflecting the phys-
ical environment) which generates noisy observations of stimulus
features just as those used in the actual experiment (e.g., dot
movements), (ii) internal generative models of the decision maker
which mirror the generative input process under the different,
hypothesized decision alternatives, (iii) the inference mechanism
which translates observations from (i) into posterior beliefs over
the correctness of the alternatives using the generative models (ii),
and (iv) a decision policy which makes decisions based on the
posterior beliefs from (iii). Note that the input process (i) is for
neuroscience applications often left unspecified, because exper-
imental data will be used as sensory input. Here, we make the
parameterization of the input process explicit, because in typi-
cal perceptual decision making experiments, the actual sensory
input is not saved or considered relevant, but approximated by its
summary measures such as the coherence of random dot motion.
For this case, the input process is used as an approximation of
the actual sensory input shown to subjects. Figure 1 presents a
schematic of the Bayesian model and its four components. For
each component, we aimed at choosing the simplest formula-
tion to match the mathematical simplicity of the pDDM. In the
following we detail our choices for these four components.

Input process
The input process models sensory processes in the brain which
translate sensory, e.g., visual, input into simple, noisy feature val-
ues that are used for decision making. As we do not know the
actual feature values xt computed by the brain, we presume that
they are drawn from a Gaussian distribution whose parameters
we will infer from the behavioral data. In particular, we postu-
late that a feature value (observation) at time t is drawn from a
Gaussian distribution

xt ∼ N(μi,�tσ2), (3)

if the stimulus that is presented in that trial belongs to decision
alternative i. The value μi represents the feature value which the
brain would extract under perfect noise-free observation condi-
tions. For example, in a task where subjects have to discriminate
cars and faces the feature values μ1 = −1 and μ2 = 1 could rep-
resent perfect car-ness and perfect face-ness, respectively. When
noise is added to the presented stimuli, feature values can only
be extracted imperfectly, which may also be due to physiolog-
ical noise along the visual pathway in the brain. In this case,
the extracted feature values xt become noisy. We quantify the
amount of resulting noise with the variance �tσ2. In the stan-
dard random dot motion paradigm (Newsome and Paré, 1988;
Gold and Shadlen, 2007) where two opposite directions of motion
have to be recognized μ1 = −1 would represent one of them
(e.g., left) and μ2 = 1 the other (e.g., right). Here, the variance
�tσ2 would represent the coherence of the dots (greater variance
equals smaller coherence) together with physiological noise in the
brain.

Generative models
For each decision alternative, there is one generative model.
We assume that the decision maker aims to adapt its internal

generative models to match those of the input process (whose
parameters are in principle unknown to the decision maker),
but allow for some remaining error between generative models
and real input. Consequently, we define the generative model of
an abstracted observation xt for an alternative Ai as Gaussian
densities

p(xt |Ai) = N(μ̂i, �tσ̂2), (4)

where μ̂i represents the mean and σ̂ the internal uncertainty of
the decision maker’s representation of its observations.

Bayesian inference
Bayesian inference prescribes the computations which result in a
posterior belief p(Ai|xt) that alternative Ai is true given observa-
tion xt . In perceptual decision making paradigms, where obser-
vations xt arrive sequentially over time, a key quantity is the
posterior belief p(Ai|X1:t) where X1:t = {x1, . . . , xt} collects all
observations up to time t. This posterior belief can be computed
recursively over time using Bayesian inference

p(Ai | x1) = p(x1 | Ai)p(Ai)

M∑
j = 1

p(x1 | Aj)p(Aj)

(5)

p(Ai | X1:t) = p(xt | Ai)p(Ai | X1:t − 1)

M∑
j = 1

p(xt | Aj)p(Aj | X1:t−1)

(6)

where M is the number of considered alternatives. This recur-
sive scheme is commonly known as Bayesian updating, but in
this particular form it only applies if consecutive observations
are independent of each other, as is the standard assumption of
drift-diffusion models. Equations (5, 6) state that the posterior
belief of alternative Ai is computed by weighting the likelihood
of observation xt under alternative Ai with the previous posterior
belief and normalizing the result. This amounts to a comparison
of likelihoods across alternatives. At the initial time step the pre-
vious belief is the prior belief over alternatives p(Ai) which can
implement biases over alternatives. To implement the absence of
a bias, the prior can be chosen to be a uniform distribution.

Decision policy
Decisions in the Bayesian model are based on the posterior beliefs
p(Ai|X1:t). Similarly to the threshold mechanism in the pDDM,
a decision is made for the alternative with the largest poste-
rior belief when any of the posterior beliefs reaches a predefined
bound λ:

max
i

p(Ai | X1:t) ≥ λ. (7)

Alternatively, decisions can be based on transformations of the
posterior beliefs. We here consider two other decision variables
which are functions of the posterior beliefs (see, e.g., Dayan and
Daw, 2008, for a discussion): the log-posteriors

max
i

log p(Ai | X1:t) ≥ λ′ (8)
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FIGURE 1 | Schematic of the components of the Bayesian model and

how they interact when making decisions at a time point t within a

trial. In the physical environment a stimulus is presented by the
experimenter and observed by the subject. Components inside the shaded
rectangle model internal processes of the subject. Sensory processes in the
subject’s brain translate the stimulus into an abstract representation xt (e.g.,
in a feature space). The input process (i) of the Bayesian model approximates
this translation by mapping the stimulus identity (decision alternative Ai out
of M alternatives) to a value xt drawn from a Gaussian distribution with mean

μi and variance �tσ2. Bayesian inference (iii) recursively computes posterior
beliefs over the correctness of a decision alternative given all previous
observations p(Ai |X1:t ), X1:t = {x1, . . . , xt } from the previous beliefs
p(Ai |X1:t−1) and the internal generative models (ii). The generative models
map decision alternatives to different Gaussian densities which mirror those
in the input process (but are allowed to differ) and which are used to compute
the likelihood of the current observation xt under the different alternatives.
Decisions are made using a decision policy (iv) based on the computed
posterior beliefs and a bound λ.

and, in the two-alternative case (M = 2), the log posterior odds

∣∣∣∣log
p(A1 | X1:t)
p(A2 | X1:t)

∣∣∣∣ ≥ λ∗. (9)

All three decision policies lead to equivalent decisions (see below).
Yet, they prescribe that decisions are based on different quantities
(decision variables). Which of them does the brain use? This issue
touches on the important question of whether and how the brain
represents and computes with probabilities, see e.g., (Denève,
2008; Pouget et al., 2013). One key question is whether the brain
represents Bayesian posteriors directly or whether it implements
additive accumulation as would be expected for the log posterior
odds as used by the pDDM. Principally, their neural correlates
should provide an answer, but we show in the results below
that, even under ideal experimental conditions, standard percep-
tual decision making experiments currently cannot discriminate
between these decision variables.

EXACT EQUIVALENCE BETWEEN BAYESIAN MODEL AND THE pDDM
Note that the following derivations should not be confused
with Bayesian inference methods for parameter fitting of drift-
diffusion models (Vandekerckhove et al., 2008; Wiecki et al.,
2013). These methods define generative models over the param-
eters of a drift-diffusion model and infer posterior parameter
distributions from decisions which have been observed in an
experiment. Here, we do something different: we define a gen-
erative model for sensory observations and infer posterior beliefs
over the correctness of several decision alternatives. It is, like the
pDDM, a model for the internal decision process in the brain

where our aim is to show exact equivalence between these two
models.

The pDDM has been linked to statistical models in the past.
The random walk of the pDDM can be easily related to the SPRT
(Bogacz et al., 2006) and the SPRT is known to be Bayes optimal
(Wald and Wolfowitz, 1950). Via the SPRT it is then straight-
forward to see that the Bayesian model and the pDDM must be
equivalent: for uniform priors p(Ai) in the Bayesian model the
log posterior odds equal the accumulated log-likelihoods, which
can also be used to implement the SPRT:

log
p(A1 | X1:t)
p(A2 | X1:t)

=
∑

t
log

p(xt | A1)

p(xt | A2)
. (10)

We took a direct approach to prove equivalence of the two
by showing that sequential updates for the posterior log odds
from the Bayesian model implement an update equation of the
pDDM form [Equation (2)], see Methods. This resulted into the
following relation between parameters of the two models:

v = μ̂2
2 − μ̂2

1

2(�t)2σ̂2
+ μi

μ̂1 − μ̂2

(�t)2σ̂2
(11)

s = σ
μ̂1 − μ̂2

�tσ̂2
(12)

B = λ∗. (13)

Equation (11) states that the drift v is a linear function of the fea-
ture value of the presented stimulus μi where the slope and offset
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of the linear function are determined from the parameters of the
generative models. Similarly, Equation (12) says that the diffu-
sion s is a linear function of the input noise σ with (almost) the
same slope as the one for the drift. In other words, drift and dif-
fusion depend on the actual input to the decision maker, but are
modulated by its assumptions about the input as expressed in its
generative models. Finally, Equation (13) simply states that the
pDDM bound equals the bound on the log posterior odds, i.e.,
that the log posterior odds equal the diffusion state yt .

In addition, for any given Bayesian model in the presented
form we can identify a pDDM which makes exactly the same
decisions (and at the same time) as the Bayesian model. This is
because the decision policy based on the log posterior odds is
equivalent to a decision policy operating directly on the posterior
under the constraint that

λ∗ = log

(
λ

1 − λ

)
(14)

(see Methods for derivation).

CONSTRAINING THE BAYESIAN MODEL
While the pDDM has three parameters, the Bayesian model has
seven parameters. Therefore, to relate Bayesian model parame-
ters to pDDM parameters, four appropriate constraints must be
defined. These constraints can take the simple form of putting
absolute values on specific parameters, fixing the ratio of two
parameters, or similar. Note that constraints are also required
for the pDDM when fitting behavioral data, because the behav-
ioral data only informs about two parameters. Therefore, pDDMs
are typically used with the drift fixed to s = 0.1 (Bogacz et al.,
2006; Vandekerckhove and Tuerlinckx, 2007; Wagenmakers et al.,
2007; Ratcliff and McKoon, 2008). The over-parameterization of
the Bayesian model does not pose a principled problem, because
more parameters may be identified by using either more complex
stimulus material or additional data, such as neuronal measure-
ments, see Discussion.

In the next sections, we will motivate and describe two intu-
itive sets of constraints. By using either of these, one can translate
empirically determined parameters of the pDDM to the param-
eters of the Bayesian model. Although we use below only one of
these sets of constraints, we derive both to show that the inter-
pretation of determined parameters given data depends on the
chosen constraints.

Equal amount of drift for both stimuli
In typical applications of the pDDM it is assumed that the drift
for one stimulus is just the negative of the drift for the other stim-
ulus (Wagenmakers et al., 2007; Ratcliff and McKoon, 2008). One
reasoning behind this approach is that the log likelihood ratio, on
which the pDDM is based, shows this relationship:

log
p(xt | A1)

p(xt | A2)
= − log

p(xt | A2)

p(xt | A1)
. (15)

However, Equation (11) shows that the drift not only depends
on the generative models p(xt |Ai), but in addition on the dis-
tribution of xt as defined by the input process. Therefore, the

absolute amount of drift v may, in general, differ for different
stimuli.

To map between pDDM and the Bayesian model we also need
to ensure that the absolute drift is equal for the two stimuli. There
are two different ways to implement this, as shown next.

Constraint: symmetric means
The first way to ensure an equal amount of drift for both stimuli
is to assume that the means of the input process and the means of
the generative models are symmetric around zero, i.e., that their
absolute values are equal:

μ1 = μ, μ2 = −μ, μ̂1 = μ̂, μ̂2 = −μ̂. (16)

Here we denote the common, absolute feature value μ while the
actual feature values for the two alternatives remain μi = ±μ

where i ∈ {1, 2} and indicates a particular alternative. These con-
straints (constraints 1 and 2) result [by plugging into Equations
(11, 12)] in the necessary condition that the signal-to-noise ratios
of the pDDM and the input process should be the same (subject
to appropriate scaling due to discretization):

v

s
�t = μi

σ
. (17)

Unfortunately, Equations (11, 12) do not allow determining the
internal uncertainty σ̂ from drift and diffusion under the con-
straints of Equation (16). We, therefore, fix it to an arbitrary
value σ̂ = a (constraint 3). Furthermore, either μ (remember that
μi = ±μ) or σ needs to be fixed to determine the other variable
from Equation (17). We choose to set σ = σ̂ = a (constraint 4)
in this example to obtain an explanation based on the means of
the input process and generative models only. Using Equations
(11, 17), the equations mapping drift v and diffusion s to the
amplitude of the means of the input process μ and the generative
models μ̂ are:

μ = v

s
�tσ (18)

μ̂ = 1

2

s

σ
�tσ̂2. (19)

Thus, with these constraints, the model explains different
responses of subjects by different feature values assumed in the
input process and the generative models.

Constraint: equal means between input process and generative
models
The second way to ensure an equal amount of drift for both stim-
uli is to assume that subjects can determine the means of the two
stimuli, as present in the input process, perfectly, i.e.,

μ̂1 = μ1, μ̂2 = μ2. (20)

(constraints 1 and 2). Under these constraints Equation (11)
becomes

v = ± (μ1 − μ2)
2

2(�t)2σ̂2
. (21)
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where v is positive, if stimulus 1 was presented, else negative.
Because drift Equation (21) and diffusion Equation (12) then
only depend on the difference between means μ1 − μ2, the means
cannot be determined uniquely from drift and diffusion and need
to be constrained further. Therefore, we center the means around
zero as above, i.e., set μ1 = μ and μ2 = −μ (constraint 3), with-
out changing the subsequent decisions. We also note that, if the
noise standard deviation σ and internal uncertainty σ̂ are scaled
by the same constant, the resulting model is invariant with respect
to a scaling of μ [cf. Equations (12, 21) where the common scaling
does not change drift and diffusion]. Therefore, without chang-
ing the resulting decisions, we can set μ = 1 (constraint 4). The
remaining free parameters are the noise variance σ2, the internal
uncertainty σ̂ and the bound on the posterior belief λ which can
now be determined uniquely from pDDM parameters as

σ̂2 =
∣∣∣∣μi(r)

μ1 − μ2

(�t)2v

∣∣∣∣ = 2

(�t)2v
(22)

σ =
∣∣∣∣ s�t

μ1 − μ2

∣∣∣∣ σ̂2 = 1

�t

s

v
(23)

λ = eB

1 + eB
. (24)

These constraints lead to a model which explains response accu-
racy and reaction time distribution of a subject as the difference
between the amount of input noise and the internal uncertainty
of the subject while assuming that she has thoroughly internalized
the stimulus feature values over a sufficient amount of learn-
ing [Equation (20)]. For everyday decisions subjects may have
obtained these feature values through general learning about the
world, such as when learning about faces and cars. They will then
also be able to discriminate, e.g., faces and cars without additional
training in a corresponding experiment. Yet, subjects may also
refine feature values during an experiment, for example, to bet-
ter reflect the particular selection of face and car pictures used in
the experiment. Then, the constraints in Equation (20) stipulate
that the constrained model applies when the feature values have
stabilized.

We can use any of the two sets of constraints introduced in the
preceding and this section to reparameterize previous results from
the pDDM within the present Bayesian model. In the following,
we will use the second set of constraints. Our main motivation to
choose this specific set of constraints is that it allows us to explain
variation in behavior solely with noise and internal uncertainty
while the stimulus feature values are kept fixed. As a result, the
same uncertainty-mechanism can be applied to dynamic stimuli
where the underlying stimulus feature values change with time
(see Discussion).

Given the data set of fitted pDDM parameters presented in
Wagenmakers et al. (2007) we show in Figure 2 typical values
of these parameters identified by applying Equations (22–24).
Interestingly, the resulting values of the internal uncertainty σ̂

and bound λ appear implausible, becauseλ is extremely close
to the initial posterior values of 0.5 and σ̂ is three orders of
magnitude larger than the noise standard deviation σ. This is

due to an arbitrary common scaling of the parameters v, s, and
B which is resolved by setting the diffusion to s = 0.1 in the
pDDM (Ratcliff, 1978; Bogacz et al., 2006; Vandekerckhove and
Tuerlinckx, 2007; Wagenmakers et al., 2007; Ratcliff and McKoon,
2008). Consequently, we can scale v, s, and B by a common con-
stant c without changing the fit. For c > 1 the posterior bound λ

increases and the internal uncertainty σ̂ decreases such that both
of them move toward plausible values.

INFERENCE ABOUT PARAMETERS USING BEHAVIORAL DATA
Having established that there is a mapping between the pDDM
and the Bayesian model, we tested whether this (theoretical) map-
ping holds in practice, i.e., when using three different inference
methods for a concrete multi-subject data set. Two of these were
widely-used inference methods for the pDDM and the third was
a method designed for the present Bayesian approach. After fit-
ting with the first two methods we translated the two resulting
sets of pDDM parameters to the Bayesian model using Equations
(22–24). We expected to find qualitative equivalence and probably
minor differences due to the different inference methods.

The data were acquired in a transcranial magnetic stimulation
(TMS) experiment which investigated the role of the dorsolat-
eral prefrontal cortex (dlPFC) in perceptual decision making
(Philiastides et al., 2011). In the two-alternative forced choice
experiment participants had to decide whether a presented noisy
stimulus was a face or a car. The (static) pictures of faces or
cars were masked with high amounts of noise so that subjects
required hundreds of milliseconds to make informed decisions.
The authors found that TMS applied over dlPFC made responses
slower and less accurate compared to a SHAM stimulation irre-
spective of stimulus noise level. We use these behavioral data
(reaction times and accuracy) to illustrate the analysis and inter-
pretation using the Bayesian model. A more detailed description
of the data can be found in Methods.

The three different fitting methods we considered were: (1)
EZ: A method proposed by Wagenmakers et al. (2007) which fits
the pDDM to error rate, mean and variance of reaction times of
correct responses. (2) DMAT: The diffusion model analysis tool-
box (DMAT) contains methods presented in Vandekerckhove and
Tuerlinckx (2007) which fits various pDDMs to error rates and
reaction time distributions of correct and error responses. (3)
MCMC: we used a Markov chain Monte Carlo (MCMC) scheme
to fit the parameters of the Bayesian model to error rate and
reaction time distribution of correct and error responses.

Note that in the pDDM the choice accuracy and reaction
times can determine the parameters of the pDDM only up to an
arbitrary scaling. The same scaling issue applies to the Bayesian
model, but to the internal uncertainty σ̂ and bound λ because the
noise standard deviation σ relates to the fraction of diffusion to
drift [Equation (23)] for which a common scaling cancels. This
means, on top of using the second set of constraints, for fitting
data, there is a fifth constraint necessary. Following the pDDM
approach we fix the bound on the posterior λ = 0.7 to prevent
misleading variation in parameters due to an arbitrary scaling.
We chose this particular value, because it is intermediate between
the theoretical extremes of 0.5 and 1 (note that λ is defined on the
posterior probability of making a correct decision). In particular,
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FIGURE 2 | Estimated parameters of Bayesian model derived from

pDDM fits by translating the set of pDDM parameters presented in

Wagenmakers et al. (2007). (A) Noise standard deviation σ, (B) internal

uncertainty σ̂, and (C) bound on the posterior λ using Equations (22–24). Gray
bars summarize the tail of the distribution by also counting data with values
larger than the bar edges.

we have observed above (cf. Figure 2) that values of λ close to
0.5 lead to unreasonably large values of the internal uncertainty
σ̂. For the intermediate value λ = 0.7 the internal uncertainty
and noise standard deviation σ take comparable magnitudes (see
below). Finally, for both pDDM and Bayesian model, we add a
non-decision time parameter, Tnd, which models delays unre-
lated to decision making such as due to signal transduction and
motor preparation in the brain (Bogacz et al., 2006; Ratcliff and
McKoon, 2008). We provide details about the fitting methods in
Methods.

Figure 3 presents the fitted parameter values for all three
methods. All of them allow drawing two qualitatively equivalent
main conclusions, in terms of the Bayesian model parameteriza-
tion: (i) The increased uncertainty about the stimuli of the “low-
evidence” compared to the “high-evidence” condition is reflected
in higher values of both noise standard deviation (Figure 3C)
and internal uncertainty (Figure 3B). (ii) The fitted parameters
(internal uncertainty σ̂, and amount of input process noise σ)
show an effect of TMS (difference between green vs. black lines in
Figures 3B,C), which is reduced from the first half of the exper-
iment (Figure 3, top row) to the second half (Figure 3, bottom
row). These findings are equivalent to those presented in the orig-
inal publication (Philiastides et al., 2011). For completeness we
show the equivalent diffusion parameters in Figure 4. These also
show the effect reported in the original paper that TMS temporar-
ily reduces drift (Figure 4C). Note, however, that the analysis
presented here is based on the pure drift diffusion model applied
to data from all subjects. The original analysis in Philiastides
et al. (2011) used an extended drift diffusion model to analyse
responses of single subjects. Therefore, quantitative differences
between the two results should be interpreted with care.

Despite the qualitative consistency of the results across differ-
ent inference methods there are also minor differences between
methods. Compared to MCMC and DMAT, EZ generally inferred
a lower amount of noise and internal uncertainty (σ and σ̂,
Figures 3B,C) and compensated for longer reaction times by an
increased non-decision time Tnd (Figure 3A). These differences
between EZ on one side and DMAT and MCMC on the other

may be caused by differences in outlier handling and different
representations of the observed reaction time distributions (see
Methods).

When comparing MCMC and DMAT, the estimates of inter-
nal uncertainty σ̂ were slightly larger for DMAT (Figure 3B). We
found that these differences are due to different choices of the
objective function which weigh accuracy and reaction times dif-
ferently, and to a minor degree, due to differences in the assumed
discretization of the two methods (DMAT operates in the con-
tinuous limit of the diffusion model where �t → 0, whereas
MCMC works with �t > 0). DMAT in its standard setting puts a
larger weight on reaction times than MCMC, therefore resulting
in better fits of accuracy for MCMC. For example, in the “low-
evidence” SHAM condition in the first half of the experiment the
error rate in the data was 0.19 (plot not shown, see Figure 2A of
Philiastides et al., 2011) which was also predicted by the Bayesian
model, but the DMAT parameters fit an error rate of 0.15. This
underestimation allows DMAT to fit reaction times slightly better
than MCMC in some conditions, but at the expense of discarding
a larger portion of trials with very long reaction times as outliers.

The MCMC fitting method provides an approximate posterior
distribution over the fitted parameters which we used to quan-
tify whether the fitted DMAT or EZ parameter values were closer
to those found by MCMC. We implemented this by modeling
the posterior MCMC samples with a multivariate Gaussian dis-
tribution and evaluating the probability density of the resulting
Gaussian at the DMAT and EZ parameter values. In general the
estimated density values were very low (<0.0001) for all condi-
tions and halves, indicating that DMAT and EZ parameter sets
were rather unlikely under the MCMC posterior (cf. parame-
ter values lying outside of the MCMC error bars in Figure 3).
When comparing density values of DMAT and EZ parameters,
DMAT parameters were slightly closer to MCMC parameters in
the high evidence (low noise) conditions while EZ parameters
were closer to MCMC parameters in the low evidence (high noise)
conditions.

In summary, these results show that all methods, despite minor
differences, provide for a qualitatively equivalent inference.
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FIGURE 3 | Bayesian parameters resulting from using three different

inference methods (EZ, DMAT, MCMC). EZ—EZ method of Wagenmakers
et al. (2007), DMAT—fit using diffusion model analysis toolbox of
Vandekerckhove and Tuerlinckx (2007) and MCMC—direct Markov chain
Monte Carlo fitting of Bayesian model. The parameters of the pDDM fits
were translated to the Bayesian model. The data were obtained from
Philiastides et al. (2011). L—low evidence (high noise) condition, H—high

evidence (low noise) condition, TMS—TMS applied over dlPFC,
SHAM—SHAM stimulation instead of TMS. Error bars for MCMC results
correspond to double standard deviation of posterior samples. The two rows
correspond to the two subsequent halves of the experiment. (A) Fits of the
non-decision time Tnd , (B) fits of the internal uncertainty σ̂, and (C) fits of the
noise uncertainty σ. All methods allow for qualitatively similar conclusions,
see text.

FIGURE 4 | Equivalent diffusion parameters for the results as presented in Figure 3 (same format). The fitted Bayesian model parameters were translated
to their equivalent pDDM parameters. (A) Non-decision time Tnd (repeated from Figure 3A), (B) threshold B, and (C) drift v .
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DECISION VARIABLES IN THE BRAIN
As an example application of the Bayesian model, we now con-
sider the three different decision variables (i) posterior, (ii) log
posterior, and (iii) log posterior odds. It is unclear which of the
underlying computational mechanisms is used by the brain. This
issue touches on the important question of whether and how the
brain represents and computes with probabilities (Rao, 2004; Ma
et al., 2006; Yang and Shadlen, 2007; Denève, 2008; Fiser et al.,
2010; Bastos et al., 2012; Bitzer and Kiebel, 2012; Pouget et al.,
2013). One key question is whether the brain represents Bayesian
posteriors directly or whether it “only” implements additive accu-
mulation as would be expected for the log posterior odds. The
differences are in how exactly the evidence is transformed: The
posterior multiplies the evidence for one of the alternatives fol-
lowed by normalization across alternatives [Equation (6)]. The
log posterior corresponds to an inhibited summation of evidence.
The simplest form of accumulation is used by the log posterior
odds which just sum relative evidences. Note that this formulation
is used by the pDDM.

How can one differentiate between these three alternatives
experimentally? Behaviorally, all three variables lead to exactly the
same decisions and reaction times so that neuronal measurements
must be used to address this question. Several neural correlates
of decision variables have been identified, e.g., the firing rates
of single neurons in monkey parietal cortex (Gold and Shadlen,
2007), or a centro-parietal signal in the human EEG (O’Connell
et al., 2012). Here we present simulations using the Bayesian
model which suggest that a naive approach of using typical per-
ceptual decision making experiments would most likely not allow
discriminating between the three different decision variables.

The potential difference, which may be accessible with neu-
ronal measurements, is the asymptotic behavior of the decision
variables when reaching high certainty for the decision. Figure 5
shows example trajectories of the three decision variables for
exactly the same noisy input. We simulated the trajectories using
the Bayesian model with the posterior means inferred from the
“high-evidence” SHAM condition in the first half of the experi-
ment (σ = 18.1, σ̂ = 28.6, see Figure 3).

Figure 5 shows that the posterior converges toward 1 and 0
(Figure 5A, left), the log posterior converges to 0 at the top
and is unbounded at the bottom (Figure 5A, middle), and the
log posterior odds are unbounded both at the top and bottom
(Figure 5A, right). These differences could be used to discrim-
inate decision variables based on measurements of their neural
correlates. However, these plots ignore the bounds on the decision
variables, which model that the subject’s brain stops accumulating
when committing to a decision. Thus, these trajectories cannot
be observed experimentally. When we apply the bounds from the
quantitative analysis of the (Philiastides et al., 2011) data (λ =
0.7), the trajectories become indistinguishable after appropriate
scaling (Figure 5B). The difference in absolute amplitude across
decision variables cannot be used for differentiation, because
there may be an unknown scaling in the mapping of these vari-
ables to their neuronal expression. Therefore, it is unlikely that,
under the conditions of the typical experiment, decision vari-
ables can be discriminated based on neural correlates, because the
accumulation of evidence stops considerably before the decision
variables converge toward their asymptotes.

This result depends on the specific choice for the bound which
we arbitrarily fixed to λ = 0.7 for fitting the data of Philiastides
et al. (2011). The inability to differentiate decision variables may,
thus, be due to our modeling choices and not an intrinsic prop-
erty of the decision mechanisms. If we had chosen the much
higher bound λ = 0.99 during fitting, which is already close to
the asymptote of the posterior at 1, the internal uncertainty would
have been σ̂ = 12.3 instead of σ̂ = 28.6 (note the arbitrary scal-
ing between σ̂ and λ). The responses predicted by the model with
these parameters would be the same, but individual steps in the
decision variables would be larger and would partially cancel the
effect of the increased bound. Consequently, even with such a
high bound, the asymptotic behavior of the decision variables
is not apparent (Figure 5C) such that it appears that they can-
not be discriminated based on neural correlates of accumulated
evidence.

More light may be shed on this issue by setting up experi-
ments where subjects are made to use larger bounds at the same
noise level of the stimuli and same internal uncertainty. For exam-
ple, for λ = 0.99 without changing any of the other parameters
the trajectories of the decision variables would closely resemble
those of Figure 5A, because decisions become very slow (plots not
shown).

DISCUSSION
We have presented a Bayesian model with which behavioral data
from perceptual decision making experiments can be analyzed.
The main result of this paper is that the Bayesian model is equiv-
alent to the pDDM which underlies many widely used models of
perceptual decisions (Bogacz et al., 2006; Gold and Shadlen, 2007;
Wagenmakers et al., 2007; Ratcliff and McKoon, 2008; Purcell
et al., 2010). Conceptually, the Bayesian model allows interpret-
ing the perceptual decision process in terms of predictive coding
which postulates that decisions are based on a comparison of
predicted and observed sensory input. We have shown that per-
ceptual decision making behavior can be explained by varying
amounts of sensory noise and the decision maker’s uncertainty.
A major advantage of the Bayesian model is that it can easily
be extended to incorporate prior knowledge about the decision
process, see below.

We derived equations which translate parameters obtained
by fitting the pDDM to parameters of the Bayesian model, and
vice versa. In this way, already published pDDM results can
be interpreted in terms of the Bayesian model, for example, in
terms of uncertainties perceived by the decision maker. In addi-
tion, we showed that this equivalence also holds in practice,
for a previously published behavioral study (Philiastides et al.,
2011), by comparing the inferred parameters of the Bayesian
model with the translated versions of the fitted parameters of
two different, well-established inference schemes for the pDDM
(Vandekerckhove and Tuerlinckx, 2007; Wagenmakers et al.,
2007). As a further example application of the Bayesian model we
addressed the question of which decision variable (posterior, log-
posterior, or log posterior odds) the brain may use and pointed
to experimental conditions which may allow investigating this
question based on neural measurements.

The particular Bayesian model we chose is based on one of the
simplest models that can be used to describe perceptual decisions.
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FIGURE 5 | Sample trajectories from 10 trials (thin lines) and average

trajectory over 300 trials (thick lines) of the different decision variables

(left: posterior, middle: log posterior, right: log posterior odds) for the

same noisy input. Shading around average trajectories indicates their
standard error. Green lines: correct alternative, red lines: incorrect
alternative. The sample trajectories were simulated using the Bayesian
model with parameters which fit behavioral data of the experiment in
Philiastides et al. (2011). (A) All trajectories are shown for the maximum
length of a trial, ignoring the bounds (λ for posteriors, log λ for log
posteriors and λ∗ for log posterior odds). Decision variables can be

differentiated based on asymptotic behavior. (B) Sample trajectories (thin
lines) are only plotted until crossing a bound and averages (thick lines) are
based only on data points before crossing the bound. Rescaling is applied
to account for unknown scaling of neural correlates of the decision
variables. Note that standard errors of averages increase with time
because fewer trials contribute data at later time points. Average
trajectories stop when less than 12 trials contribute data. Decision
variables cannot be distinguished. (C) Simulation with parameters which
still produce the same decisions, but with very high bound (λ = 0.99).
Decision variables may be distinguished, but effects are minor.

In particular, we assumed that the stimuli are represented by a
single feature value with additive Gaussian noise. This parsimo-
nious choice is owed to the lack of better knowledge about the
stimulus representations which are used by the brain to make per-
ceptual decisions. This specific representation as a single feature
value applies to a wide range of stimuli (e.g., left vs. right motion
in random dot stimuli, or faces vs. cars in Philiastides et al., 2011).

The present Bayesian model is related to previous Bayesian
models of decision making. For example, Dayan and Daw
(2008) described Bayesian decision models in the context of par-
tially observable reinforcement learning problems and suggested
Gaussian models for sequential inference in perceptual decision

making but without establishing the details of the equivalence
to the pDDM. Daunizeau et al. (2010) inferred parameters of a
Bayesian model very similar to the one presented here from reac-
tion times in a learning task, but the model was not aimed at
perceptual decision making since the process of how noisy evi-
dence is accumulated within a single trial was not modeled. A
Bayesian model closely related to the present model was pre-
sented in Drugowitsch et al. (2012). This model consists of a
Gaussian input process, Gaussian generative models, computes
the posterior beliefs and has a decision policy based on them.
Drugowitsch et al. (2012) further showed that the posterior beliefs
can be expressed as a function of the accumulated samples from
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the input process and elapsed time. Our approach has the advan-
tage that the equations which relate the parameters of the two
models [Equations (11–14)] can be derived in a straightforward
fashion.

To establish the translation of pDDM parameters to those
of the Bayesian model, we had to impose additional constraints
on the Bayesian model parameterization, because the Bayesian
model, in its full version, has seven parameters, but the pDDM
has only three. We considered two different sets of constraints,
which made different assumptions about parameters or parame-
ter ratios. For fitting a multi-subject data set (Philiastides et al.,
2011), we used one of these constraint sets where the decision
maker optimally represents the means of the stimulus features.
This set of constraints leaves the uncertainty of the stimulus
(amount of noise) and the internal uncertainty of the genera-
tive stimulus models of the decision maker as free parameters.
Although it may be tempting to interpret these variances as
reflecting two different sources of noise in the brain, one external,
sensory noise and one internal, decision noise, this interpretation
would be misleading: the internal uncertainty rather quanti-
fies the decision maker’s expectation about the variance of the
only noise source in the model, the input process. This expec-
tation modulates (by a gain factor) how the decision maker
processes the input [see, e.g., Equations (11, 12)], but the pieces
of evidence which result from this computation are accumu-
lated perfectly. Incidentally, experimental evidence for almost
perfect accumulation in humans and rats has been reported
recently (Brunton et al., 2013). Using the model, it would be
interesting to investigate discrepancies between the actual noise
variance and the decision maker’s expectation about this vari-
ance as resulting from fits of these parameters to responses.
However, the use of constraints on other key parameters (see
section Constraint: Equal Means Between Input Process and
Generative Models) currently does not allow this interpreta-
tion. The behavioral data (choices and reaction times) enable
the identification of two parameters only; if the model can be
extended to include other data sources, e.g., neuronal data, more
parameters may be resolved and one may investigate how well
individual decision makers estimate their input distributions for
a given task.

The equivalence of pDDM and Bayesian model means that
their results can be easily translated between parameterizations.
We presented an example where we fitted the pDDM to data
and translated the determined parameters to the Bayesian model.
This approach has the advantage that the previously suggested
and highly efficient methods for fitting the diffusion model
(Vandekerckhove and Tuerlinckx, 2007; Wagenmakers et al., 2007;
Ratcliff and McKoon, 2008) can be used for the Bayesian model
as well. In addition, we also demonstrated a fitting technique for
the Bayesian model based on a MCMC approach. The MCMC
method is computationally intensive, as individual experiments
are repeatedly simulated to estimate corresponding summary
statistics of the data. However, the advantage of the MCMC
method is its flexibility. For example, it can be applied with any
set of constraints and can be used for fitting extended Bayesian
models (see below) for which there is no correspondence to a
pDDM.

The Bayesian model can be used to investigate novel exper-
imental questions. For example, we have shown that three
different decision variables can be derived from the posterior
probabilities of the decision alternatives. All three decision vari-
ables can lead to the same decisions and reaction times and
we have shown that under typical experimental conditions it is
hard to discriminate them even based on neural correlates of
accumulated evidence. Consequently, to investigate which of the
decision variables may be implemented in the brain we pro-
posed to manipulate the bound subjects use to make decisions.
It has been suggested that the bound depends on the reward of
making a correct, or the cost of making a wrong choice (Wald,
1947; Gold and Shadlen, 2002; Dayan and Daw, 2008; Rao, 2010;
Drugowitsch et al., 2012; Huang et al., 2012). Manipulating the
rewards associated with choices may, therefore, lead to the desired
increases of the bound in different experimental conditions and
a discrimination of the three decision variables may be possible.
However, note that the perceptual processes considered here may
not be easily modifiable by task conditions, but may be rather set
in their ways. A recent study showed that rats, even when given
reward, cannot deliberately lengthen their accumulation period
for specific tasks (Zariwala et al., 2013).

EXTENSIONS
One key advantage of Bayesian models is the ease of including
prior information in an analysis. This enables the incorporation
of additional, even uncertain information about the involved pro-
cesses and model components. We here discuss such possible
extensions of the present Bayesian model.

In the description above [Equations (3–9)] we did not specify
the number of decision alternatives to highlight that the Bayesian
model applies equally to decisions involving an arbitrary number
of alternatives. For two alternatives the Bayesian model imple-
ments the SPRT, just as the diffusion model (Bogacz et al., 2006).
For multiple alternatives the Bayesian model implements a “mul-
tihypothesis sequential probability ratio test” (MSPRT) (Dragalin
et al., 1999), but there is no longer a direct correspondence to a
simple diffusion model in the form of Equation (2). Instead, simi-
lar models based on inhibition between diffusive integrators have
been proposed to implement the MSPRT (Bogacz and Gurney,
2007; Ditterich, 2010; Zhang and Bogacz, 2010). These models,
therefore, should be (approximately) equivalent to the Bayesian
model, but the exact relations between parameters of the models
are unknown.

Ratcliff ’s diffusion model (Ratcliff, 1978) includes several
extensions of the pDDM in Equation (1) which allow for better
fits of reaction time distributions (see Ratcliff and McKoon, 2008
for a review). These extensions can be easily incorporated into the
Bayesian model. The first extension is adding a bias which leads
to preference of one alternative over the other. Subjects have been
shown to use such a bias when making perceptual decisions (e.g.,
Mulder et al., 2012, and references therein). In the Bayesian model
a bias can be realized by using non-uniform priors over alter-
natives [p(Ai) in Equation (5), see Methods section Equivalence
of Bayesian Prior and pDDM Bias]. The remaining extensions
implement across-trial variability in bias, drift and non-decision
time which can equally be implemented in the Bayesian model
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by considering the relations between parameters. For example,
in Ratcliff ’s diffusion model drift v is assumed to be drawn ran-
domly from a Gaussian distribution at the start of a trial. Using,
e.g., Equations (22, 23) we can determine the particular variabil-
ity in σ and σ̂ which would replicate the distribution of v in the
Bayesian model.

A powerful way to extend the Bayesian model is to consider
decision theory. As mentioned above, the bound can imple-
ment optimal decisions reflecting the reward structure of the task
(Wald, 1947; Gold and Shadlen, 2002; Dayan and Daw, 2008;
Solway and Botvinick, 2012; Summerfield and Tsetsos, 2012). For
example, Drugowitsch et al. (2012), have investigated how exper-
imentally observed decisions can be explained by time-varying,
internal costs of the subjects. By allowing for time-varying,
reward- and cost-dependent bounds they fitted reaction time dis-
tributions better than with the pDDM. An equivalent analysis
would apply to the Bayesian model presented here: By assuming
rewards for correct responses, costs for error responses and time-
varying costs for sampling new observations time-varying bounds
can be derived which lead to new predictions for the quality and
timing of decisions.

If more information about the stimulus features and their
encoding in the brain is available, this information can in prin-
ciple be incorporated into the Bayesian model by appropriately
adapting the definitions of input process [Equation (3)] and gen-
erative models [Equation (4)]. For example, if stimulus features
are believed to be better described by a Poisson distribution (cf.
Gold and Shadlen, 2001), the input process can be adapted cor-
respondingly. The resulting model would clearly not map to a
Gaussian diffusion model as defined by Equation (1). It is further
interesting to note that the equivalence between Bayesian model
and pDDM only holds as long as the generative models use equal
variances for the two alternatives (σ̂1 = σ̂2). For unequal vari-
ances the diffusion becomes non-Gaussian and the pDDM does
not apply anymore.

Finally, the Bayesian model allows for the important exten-
sion that the average amount of evidence can change within a
trial. In particular, Equation (6) only applies under the assump-
tion that individual observations xt are independent from each
other, but a similar recursive formula can be derived for stimuli
whose mean feature values μ vary predictably within a trial, i.e.,
for general dynamic stimuli such as biological motion (Bitzer and
Kiebel, 2012). In the pDDM time-varying average evidence trans-
lates into a time-dependent drift. Similar models have been used
to discriminate between decision mechanisms (Cisek et al., 2009;
Tsetsos et al., 2012; Brunton et al., 2013) based on simple, pulsed
stimuli. In the Bayesian model, one could use dynamic genera-
tive models which represent biological motion stimuli so that the
evolution of the decision variable in response to a specific, contin-
uous stimulus can be predicted. We will consider this extension in
a future publication.

In summary, we have presented a Bayesian model and its
equivalence with the pDDM. As we have shown, this provides for
deeper insight into the underlying assumptions made by models
of perceptual decision making. In practice, as we illustrated on a
multi-subject data set, parameters can be translated between the
pDDM and the Bayesian model in a straightforward fashion. The

key advantage of the Bayesian model is that it can be extended
easily to model experimental data different from the prototypical
random dot motion experiment. In particular, these extensions
may allow for new insights into the mechanisms underlying
perceptual decision making in the future.

METHODS
EQUIVALENCE PROOF
Here we derive the equivalence of the diffusion model defined by
Equation (2) and the Bayesian model defined by Equations (3–9).

Equivalence of Bayesian decision policies
First, we show that the three decision policies [Equations (7–9)]
make the same decisions when the bound is appropriately cho-
sen. It becomes clear immediately that the policy on the posterior
[Equation (7)] and the log posterior [Equation (8)] make the
same decisions, if the bound on the log posterior equals the log-
arithm of the bound on the posterior, i.e., λ′ = log λ (the log is
applied to both sides). To establish equivalence between the pos-
terior and the log posterior odds [Equation (9)] we first assume
without loss of generality that stimulus 1 was presented such that
the log posterior odds tend to be positive and the absolute value
bars can be dropped in Equation (9). It follows that the poste-
rior for decision alternative 1 is the largest such that we can take
i = 1 in Equation (7). We further define zi,t = p(Ai | X1:t) and the
unnormalized posterior values as z̃i,t = p(xt | Ai)p(Ai | X1:t−1).
Then the decision policy on the posterior is

z̃1,t

z̃1,t + z̃2,t
≥ λ (25)

⇔ log z̃1,t − log
(
z̃1,t + z̃2,t

) ≥ log λ. (26)

By using the log-sum-exp trick (Murphy, 2012, p. 86) and using
the assumption that z̃1,t > z̃2,t , because stimulus 1 was presented,
it follows that

log z̃1,t − log
(
z̃1,t + z̃2,t

) ≥ log λ (27)

⇔ log z̃1,t − log z̃1,t − log
(
exp(0)

+ exp
(
log z̃2,t − log z̃1,t

)) ≥ log λ (28)

⇔ (
1 + exp

(
log z̃2,t − log z̃1,t

))−1 ≥ λ (29)

⇔ log

(
1

λ
− 1

)
≥ log z̃2,t − log z̃1,t (30)

⇔ log z̃1,t − log z̃2,t ≥ log

(
λ

1 − λ

)
= λ∗ (31)

where we have used

log
p(A1 | X1:t)
p(A2 | X1:t)

= log z̃1,t − log z̃2,t (32)
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in the last step. This shows that the decision policy defined on the
posterior with bound λ equals the decision policy defined on the
log posterior odds, if the bound λ∗ relates to λ via Equation (14).

Equivalence of accumulation mechanisms
We now show that there is a simple recursive formula for the log
posterior odds which provides the equivalence relations presented
in Equations (11–13).

Let us define

qt = log
p(A1 | X1:t)
p(A2 | X1:t)

= log z1,t − log z2,t (33)

A recursive formula for qt results from using the recursive Bayes
update equation [Equation (6)]:

qt = log z1,t − log z2,t

= log p(xt | A1) + log z1,t−�t − log Zt

− log p(xt | A2) − log z2,t−�t + log Zt

= log p(xt | A1) − log p(xt | A2) + qt−�t (34)

where Zt = p(xt | A1)z1,t−�t + p(xt | A2)z2,t−�t is the normaliza-
tion constant of the posterior.

By plugging the definition of the generative models [Equation
(4)] into Equation (34) one obtains

qt = − log Z − 1

2�tσ̂2

(
xt − μ̂1

)2 + log Z

+ 1

2�tσ̂2

(
xt − μ̂2

)2 + qt−�t

= 1

2�tσ̂2

(
2
(
μ̂1 − μ̂2

)
xt + μ̂2

2 − μ̂2
1

) + qt−�t

= v̂ + ŝxt + qt−�t (35)

with

v̂ = μ̂2
2 − μ̂2

1

2�tσ̂2
and ŝ = μ̂1 − μ̂2

�tσ̂2
. (36)

Using the definition of xt from the input process [Equation (3)]
one can write

qt − qt−�t = v̂ + ŝ
(
μi(r) + √

�tσεt

)
= v�t + √

�tsεt

(37)

where now v and s are defined by Equations (11) and (12), respec-
tively, and it can be seen that the resulting update equation equals
that of the pDDM [Equation (2)].

Equivalence of Bayesian prior and pDDM bias
The Bayesian model defines a prior probability over alternatives:
p(Ai). In the two-alternative case of the pDDM this prior directly
translates to an offset y0 of the initial diffusion state. To show this
we consider the log posterior odds at the first time point:

q1 = log
p(A1 | x1)

p(A2 | x1)
= log p(x1 | A1) − log p(x1 | A2) + y0 (38)

where we have defined

y0 = log p(A1) − log p(A2) = log
p(A1)

p(A2)
. (39)

Because the prior over all alternatives needs to sum to 1, we can
replace p(A1) = p0 and p(A2) = 1 − p0 such that we arrive at the
following relationship between Bayesian prior and diffusion bias:

y0 = log
p0

1 − p0
(40)

p0 = e y0

1 + e y0
(41)

which simply replicates the relation between the bounds of the
Bayesian model (λ) and the pDDM (B).

DATA OF (PHILIASTIDES ET AL., 2011)
The experiment used a two-factorial design consisting of fac-
tors “evidence level” (high vs. low) and “stimulation” (TMS vs.
SHAM), respectively (Philiastides et al., 2011). Each subject per-
formed two blocks of 400 two-alternative forced choice trials; one
with TMS and the other with SHAM stimulation applied before
the beginning of a block. The order of TMS and SHAM was coun-
terbalanced among subjects. In each block, trials with different
evidence levels (high/low) were interleaved. In the analysis the
400 trials in each block were divided into the first and second half
(200 trials each). For each of the halves, trials were further divided
into those with high and low evidence. In sum, each of the four
experimental conditions (a combination of a particular level from
both the “evidence level” and “stimulation” factors) had 100 trials
per half and there were 800 trials per subject in total. Philiastides
et al. (2011) tested 11 subjects whose data (response and reac-
tion time) we pooled into one big data set with 1100 trials per
condition per half of a block. We fitted the Bayesian model (see
below) independently to each of these eight data sets (2 × 2 ×
2: TMS/SHAM stimulation × high/low evidence × first/second
half). As in Philiastides et al. (2011) trials in which no deci-
sion had been reported within 1.25 s were declared as outliers
and removed from further analysis. For further details about the
subjects, design, and acquisition see Philiastides et al. (2011).

FITTING METHODS
We will first sketch the methods based on fitting the pDDM and
then describe the method used to fit the Bayesian model.

EZ
Wagenmakers et al. (2007) presented the EZ-diffusion model
to provide a relatively simple way of fitting a drift-diffusion
model to accuracy and reaction times. They showed that the
free parameters of the EZ-diffusion model (drift v, bound B,
and non-decision time Tnd) can directly be determined from
the proportion of correct decisions, the mean reaction time for
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correct decisions (MRT) and the variance of reaction times for
correct decisions (VRT). This method, therefore, assumes that the
summary statistics MRT and VRT are sufficient to describe the
observed reaction time distribution. Furthermore, the method
assumes that MRT and VRT are noiseless statistics describing
the reaction time distribution generated by the diffusion model
in continuous time [Equation (1), or �t → 0 in Equation (2)].
Although outlier trials, for example, defined by too large reac-
tion time, may be removed before estimating MRT and VRT from
experimental data, the reaction time distribution predicted by
the diffusion model is implicitly allowed to exhibit large reac-
tion times which exceed the outlier definition. This discrepancy
between data preprocessing and modeling may lead to minor
distortions in the fitted parameter values when compared to a
method that considers outliers during RT distribution modeling
(see next section).

We use the implementation of the fitting equations in ezd-
iff.m of DMAT (see below) to obtain values for v, B, and Tnd.
Subsequently, we find a common scaling of drift v, diffusion s, and
bound B which implements the constraint in the Bayesian model
that the bound on the posterior is λ = 0.7. The corresponding
scaling constant c is

c = log

(
λ

1 − λ

)
/B. (42)

Note that the EZ-diffusion model is not parameterized directly
with the bound B, but instead determines a boundary separa-
tion a with B = a/2, because the initial state of the drift-diffusion
process is set to a/2. We determine the translated parameters of
the Bayesian model from the scaled diffusion parameters using
Equations (22–24).

DMAT
The publicly available diffusion model analysis toolbox (DMAT,
http://ppw.kuleuven.be/okp/software/dmat/) provides Matlab
routines for fitting extended pDDMs to accuracy and reaction
time data (Vandekerckhove and Tuerlinckx, 2007). In contrast to
EZ this method uses quantiles or histograms to represent reac-
tion time distributions for both correct and error responses. It
therefore allows for more flexible representations of the reaction
time distributions which can capture more variation in reaction
times than EZ. Also, other than for the EZ method, there is no
closed-form solution which provides best fitting diffusion param-
eters in the DMAT formulation. Instead, in DMAT parameters are
fitted using non-linear optimization which maximizes a multi-
nomial likelihood function based on numerical estimates of the
cumulative reaction time distribution predicted by the extended
pDDM (Vandekerckhove and Tuerlinckx, 2007). Similar to EZ,
these predictions are determined for the continuous limit of the
pDDM (�t → 0) via the first passage time distributions for a
bounded drift-diffusion process (Ratcliff, 1978; Vandekerckhove
and Tuerlinckx, 2007).

DMAT provides highly flexible routines suited for comparison
of different parameterizations of the drift-diffusion model within
different experimental designs. For the purposes of the present
study we restricted the drift-diffusion model in DMAT to the

EZ-diffusion model [cf. Equation (1)], set the outlier treatment
to a simple check for whether reaction times exceeded 1.25 s and
fitted data from different experimental conditions independently.
Even though we used the EZ-diffusion model in this DMAT anal-
ysis, the fitting procedure still differed from the EZ method as
described in the paragraph above. We obtained parameters of
the Bayesian model from the optimized DMAT parameters as
described for EZ above.

MCMC
For fitting the Bayesian model directly to accuracy and reaction
times we used stochastic optimization based on a MCMC
procedure. We defined a Gaussian model of the residuals between
observed accuracy and reaction time and the model predictions
given a specific parameter set. In particular, we defined the log
likelihood of the data given all parameters θ = {

σ, σ̂, Tnd
}

as

log p(Acc, RT | θ) = log p(Acc | θ) + log p(RT | θ) ∝
− wAcc(Acc − Acc(θ))2 − wRT(RT − RT(θ))2

(43)

where Acc is the accuracy observed experimentally, Acc(θ) is the
accuracy predicted by the Bayesian model with parameters θ, RT
is an observed reaction time and RT(θ) is that predicted by the
model. The weights wAcc and wRT correspond to the expected pre-
cisions of the observed measures (see below for the approach of
setting these).

Following Philiastides et al. (2011) and as done in DMAT
we chose to represent the reaction time distributions of correct
and error responses in terms of seven quantiles (0.02, 0.05, 0.1,
0.3, 0.5, 0.7, and 0.9). Consequently, the complete log likelihood
function was

L(θ) ∝ −wAcc (Acc − Acc(θ))2 −
1∑

e = 0

7∑
i = 1

wqe,i

(
qe,i − qe,i(θ)

)2

(44)

where qe,i is the ith of the seven quantiles for either correct or
error responses as indicated by e.

To evaluate the log likelihood function we estimated the pre-
dictions of the model for a given parameter set. We did this by
simulating the experiment of Philiastides et al. (2011) with the
Bayesian model, i.e., for a given experimental condition in one
half of the experiment (see description of experiment above) we
simulated 1100 two-alternative forced choice trials resulting in a
set of 1100 decisions and reaction times from which we computed
accuracy and reaction time quantiles. Because these estimates
were noisy, we repeated the simulation 30 times and used the
average values as estimates of Acc(θ) and qe,i(θ).

Repeating the simulation 30 times also allowed us to estimate
how much the observed accuracies and reaction time quantiles
would vary, if the experiment was repeated. These estimates then
determined the weight wAcc and the 14 quantile weightswqe,i .
Before fitting, we set the weights to the inverse variance over
30 repetitions for a particular parameter set which we knew to
exhibit a relatively large spread of values (providing an upper
bound on the expected variability and resulting in weights:
wAcc = 4246, mean of the 14 wqe,i = 3.78). We did not update
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FIGURE 6 | Comparison of approximate posterior distributions for

different parameter priors. We show two-dimensional scatterplots of
samples for each possible pair of parameters [(A) non-decision time Tnd

vs. internal uncertainty σ̂, (B) Tnd vs. noise standard deviation σ, and (C)

σ̂ vs. σ]. Green dots show samples from posterior with priors reported in
Equation (45). Red dots show samples from posterior with double as
wide priors. Lines visualize the corresponding means over samples. For

comparison we also plot the parameter values found by EZ (blue star)
and DMAT (black star). The fitted data were obtained from the “low
evidence,” SHAM condition of the second half of the experiment of
Philiastides et al. (2011). This specific condition showed the largest
differences between posteriors (using the two different Gaussian priors),
i.e., for all other conditions, we found smaller and often vanishing
differences.

the weights during fitting, because they represent an estimate of
the precision of the experimental observations and not of the
precision of the model predictions.

For the simulations we chose �t = 28.3 ms which provided us
with sufficient resolution with only 45 time steps until the outlier
threshold at 1.25 s was crossed.

For simplicity we further used wide (effectively uninformed)
Gaussian priors over the model parameters (cf. final estimates in
Figure 3):

p(σ) ∼ N(0, 4002) p(σ̂) ∼ N(0, 4002) p(Tnd) ∼ N(0, 10.22).

(45)
The Gaussian priors over standard deviations σ and σ̂ trans-
late into positive-only priors for the corresponding variances.
Although the prior over non-decision time Tnd is also defined
for negative values we subsequently restrict values to be positive
using a corresponding setting in the sampling method we used.
This method was DRAM of Haario et al. (2006) (Matlab mcm-
cstat toolbox available at http://helios.fmi.fi/∼lainema/mcmc/)
which is based on Metropolis-Hastings sampling and computes
an approximate posterior parameter distribution p̂(θ|Acc, RT).
We initialized the Markov chain at σ = σ̂ = 2, Tnd = 0.42 s
and ran it for 3000 samples. We ignored the first 1000
samples (burn-in period) and selected every tenth sample
to avoid dependencies within the Markov chain leaving us
with 200 samples to estimate the parameter posterior. We
visually confirmed that the posteriors were unimodal and
approximately Gaussian. Finally, we report the mean and
standard deviation of the samples from these posteriors (cf.
Figure 3).

To check any influence of the priors on the posterior distri-
bution we repeated the procedure with priors which were double
as wide as those in Equation (45). The resulting posteriors (see
Figure 6 for an example) differed only slightly from the posteri-
ors reported in Results. In particular, the differences had no effect
on the interpretations above.

The described fitting procedure was used as a first approxima-
tion to obtaining full parameter posteriors for the Bayesian

model. We also found that the stochastic optimization
implemented by the MCMC procedure handles the noisi-
ness of our objective function [Equation (44)] well. More refined
approaches to this problem have been suggested (e.g., Turner and
Zandt, 2012) and we will consider these for future applications.
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