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Reading and writing are related but separable processes that are crucial skills to possess in
modern society. The neurobiological basis of reading acquisition and development, which
critically depends on phonological processing, and to a lesser degree, beginning writing
as it relates to letter perception, are increasingly being understood. Yet direct relationships
between writing and reading development, in particular, with phonological processing is
not well understood. The main goal of the current preliminary study was to examine
individual differences in neurofunctional and neuroanatomical patterns associated with
handwriting in beginning writers/readers. In 46 5–6 year-old beginning readers/writers,
ratings of handwriting quality, were rank-ordered from best to worst and correlated with
brain activation patterns during a phonological task using functional MRI, and with regional
gray matter volume from structural T1 MRI. Results showed that better handwriting
was associated negatively with activation and positively with gray matter volume in an
overlapping region of the pars triangularis of right inferior frontal gyrus. This region,
in particular in the left hemisphere in adults and more bilaterally in young children, is
known to be important for decoding, phonological processing, and subvocal rehearsal. We
interpret the dissociation in the directionality of the association in functional activation and
morphometric properties in the right inferior frontal gyrus in terms of neural efficiency, and
suggest future studies that interrogate the relationship between the neural mechanisms
underlying reading and writing development.

Keywords: phonological processing, voxel-based morphometry, functional MRI, inferior frontal gyrus pars

triangularis, writing, reading

INTRODUCTION
Writing by hand occupies 30–60% of a child’s school day (Stewart,
1992; Simner, 1998; Feder and Majnemer, 2007; Sassoon,
2007) and correlates with self-esteem and future academic suc-
cess. Children with deficient handwriting (10–30% of children;
Karlsdottir and Stefansson, 2002) take longer to complete writ-
ing tasks such as homework, which can increase the difficulty
of schoolwork and result in oppositional attitudes toward writ-
ing assignments that can generate problems both at school and
at home (Racine et al., 2008). Crucially, handwriting perfor-
mance also shares links with other language related skills. Of
particular relevance, there are important associations between
reading and learning to write. Studies have shown that learning
to write can improve letter perception (Longcamp et al., 2005),
pseudoletter learning (Richards et al., 2011), and word reading
(e.g., Berninger et al., 2004, 2006a; James and Engelhardt, 2012).

Correspondingly, children with learning disabilities such as devel-
opmental dyslexia, a specific reading impairment that is believed
to have phonological deficits at its core, often display writing
difficulties (O’Hare and Khalid, 2002).

With the increasing integration of computers into the edu-
cation system, the implied implications of reduced handwriting
practice have strengthened the interest of scientific investigators.
Recent neuroimaging studies have concluded that while free-
form handwriting practice clearly supports reading acquisition,
typing (Longcamp et al., 2005) and even tracing (James and
Engelhardt, 2012) do not. Impressively, James and Engelhardt
(2012) showed that preliterate children recruit well established
reading related brain regions, such as the fusiform gyrus, poste-
rior parietal cortex, and the inferior frontal gyrus, during letter
processing exclusively after handwriting practice compared to
typing or tracing. The emerging consensus is that the motor
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experience of manually creating letterforms helps children dis-
criminate the essential properties of each letter, which leads to
more accurate representations bolstering both skilled letter recog-
nition and later reading fluency. Therefore, understanding the
underlying neurological mechanisms that support handwriting
development is important not only for its independent rele-
vance to educational achievement, but also for its supportive
role in successful acquisition of other language skills such as
reading.

The neurological basis underlying handwriting is not well
understood but converging evidence points to key regions includ-
ing: (a) the fusiform gyrus, which has apparent selectivity to letter
(James and Gauthier, 2006) and word stimuli (Cohen et al., 2000;
Cohen and Dehaene, 2004) over other visual stimuli and may
provide a perceptual component for deriving “word-form” repre-
sentations that facilitate grapheme writing (Dehaene et al., 2005;
James, 2010); (b) the superior parietal lobule (SPL), a region
important for carrying out actions in space (Goodale and Milner,
2005) that is thought to be involved in both visuospatial and
visuomotor processing (Petrides and Pandya, 1984; Morecraft
et al., 2004; Segal and Petrides, 2012), and the execution of writ-
ing sequences (Otsuki et al., 1999); (c) the inferior frontal gyrus
(IFG), implicated for its involvement in phonological processes
(Eckert et al., 2003) and its associations with encoding letter-
forms and words (Grafton et al., 1997; Berninger and Winn,
2006b; Longcamp et al., 2008); and (d) Exner’s area, thought to
be the interface of orthographic or graphemic representations and
the complex movement sequences necessary for generating letters
and words (Anderson et al., 1990; Lubrano et al., 2004; Roux et al.,
2009) and may also be involved in retrieving letter shapes from
memory (James and Gauthier, 2006).

While advances have been made, a complete understanding of
the brain’s writing system remains elusive. The inherent complex-
ities involved in the task of writing, coupled with the excessive
variability of its definition in the existing literature, make it chal-
lenging to delineate the extent of neuronal specialization specific
to handwriting from other inter-related aspects, such as spelling.
In a recent neuroimaging metaanalysis of writing in adults, how-
ever, authors dissociated linguistic input and motoric aspects of
writing and identified IFG for processing linguistic input as it
relates to writing, and left superior frontal sulcus/middle frontal
gyrus (Exner’s), left superior parietal lobule, and the right cerebel-
lum as “writing-specific” regions (Planton et al., 2013). Another
study has shown that the brain differentially recruits specialized
regions based on a multiplicity of letter representations (e.g.,
motoric similarities “B” vs. “P,” visual similarities “A” vs. “R,”
abstract similarities “A” vs. “a”) (Rothlein and Rapp, 2014). What
is lacking is detailed examination of the emergence of “neural spe-
cialization” during the period when writing skills develop and the
brain basis of the underlying process (except see work by Karen
James cited in this paper). Further, more investigations of asso-
ciation between the brain basis of writing and other processes
of written language such as reading is greatly needed. Findings
from such studies may not only offer important insights to
improve research methodology and educational instruction, but
may also contribute to a fuller understanding of the development
of written language processing in the human brain.

The present study sought to focus on the neural correlates of
handwriting quality in children at the beginning of formal hand-
writing instruction. Operationally, handwriting quality refers to
the legibility, form, slant, spacing, and general appearance of let-
ters and words. Handwriting researchers have generally agreed on
the relevance of these key features (Freeman, 1959; Kaminsky and
Powers, 1981; Graham, 1982; Ziviani and Elkins, 1984; Graham
and Weintraub, 1996). Given that handwriting exposure in prelit-
erate children has been associated with reading related processes
such as letter perception and related brain activation (James and
Engelhardt, 2012), it is plausible to consider that especially dur-
ing early stages of development, handwriting also share links
with phonological processing a skill that for decades has been
casually linked to reading acquisition (Castles and Coltheart,
2004; Byrne et al., 2008). Therefore, we sought to investigate
the unproven idea that handwriting and reading may rely on a
common neuroanatomical mechanism at an early developmental
stage of reading/writing. We therefore hypothesized handwrit-
ing quality will be associated with neuroanatomical patterns in
one or more of the following: (a) IFG if phonological decod-
ing coding is relevant to handwriting quality, (b) Exner’s area if
successful integration of orthography and motor programs are
relevant to handwriting quality, (c) SPL if sequential motor move-
ments and/or kinesthetic modulation are relevant to handwriting
quality, and/or (d) fusiform gyrus if visual letter or word recogni-
tion is relevant to handwriting skill. Then, in order to investigate
the direct relationship of handwriting and reading abilities, in
particular of phonological processing, we associated handwriting
quality with brain activation during a task aimed at engag-
ing the brain’s phonological processing circuit. If handwriting is
associated with the development of reading, and phonological
processing plays a causal and reciprocal relationship with reading
acquisition, we hypothesized that brain activation patterns asso-
ciated with phonological processing, may also be associated with
handwriting skills in these emergent readers / writers.

MATERIALS AND METHODS
Our data come from a study focused on examining brain activa-
tion during phonological processing and the relationship between
reading-related behavioral measures. While the original study
was not focused on the brain basis of handwriting, and hence
the behavioral measures and fMRI tasks were not necessarily
optimized for the purpose of the current study, yet these data
provided an opportunity to investigate whether neuroanatomical
patterns and brain activation during phonological processing are
associated with handwriting in beginning readers and writers.

PARTICIPANTS
A total of 51 (29 boys, 22 girls) healthy, native English-speaking
5- and 6-year-old children (aged 5.59 ± 0.42) toward the begin-
ning of formal schooling participated in this study. Standard
behavioral assessments of the children, along with MRI data were
collected. We later excluded five left-handed children, leaving 46
remaining right-handed children to be included in all analyses
unless there was missing data or excessive movement motion
or severe scanner artifacts (fMRI analyses, N = 41). While we
did not exclude children based on attention deficit hyperactivity
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disorder (ADHD) for example, the children in this study did
not have any parental report of formal diagnosis of neurologi-
cal or psychiatric disorders besides specific learning disabilities;
they were not on medication and had no contraindications to
MRI. Behavioral Assessment System for Children −2 (Reynolds
and Kamphaus, 2006) showed that all children were within typical
range.

To help prepare participants for imaging, parents received
a packet of informational material, including a CD of com-
mon scanner sounds and a DVD of a child going into the
scanner. Parents were instructed to review these supplemen-
tal materials with their children to familiarize and desensitize
participants to the scanner environment. In addition, chil-
dren participated in a guided MRI simulation at the center
where they practiced lying still in the bore and underwent
training to minimize motion related artifacts. Participants
with excessive, uncorrectable motion were eliminated from the
study.

The Stanford University Panel on Human Subjects in Medical
Research and the University of California, San Francisco Human
Research Protection Program approved the study and informed
consent and assent were obtained from parents/guardians and
participants, respectively.

BEHAVIORAL MEASURES
We administered a standard battery of neuropsychological assess-
ments, which included the Woodcock-Johnson III (WJ-III)
Spelling (Woodcock et al., 2001), an untimed real-word spelling
test, in order to assess spelling accuracy and handwriting quality
(see below); the Beery Visual-Motor Integration (BVMI; Beery
and Beery, 2004), where children copied and traced a series
of moderately complex geometric figures; and the Oromotor
Sequences subtest from the Developmental Neuropsychological
Assessment (NEPSY-II; Korkman et al., 2007) to assess oral-
motor praxis, or the ability to sequence oral-motor move-
ments without articulation difficulty, without visual demands.
Additionally, the Home Literacy Inventory (Marvin and Ogden,
2002) was used to investigate the differences in the exposure and
practice of reading activities at home.

HANDWRITING QUALITY
In order ensure participants were unaware that their handwrit-
ing was under investigation, handwriting samples were drawn
from the WJ-III Spelling subtest were used as a basis for assessing
and defining handwriting skills. Two blinded investigators, who
were trained to score handwriting quality holistically based on
letterform, slant, spacing and general appearance irrespective of
spelling errors and speed, each rank-ordered (1 = poor handwrit-
ing, 51 = best handwriting) participants’ writing sample from
best to worst three times. Since spelling inaccuracies can inad-
vertently bias rankings, writing samples included both letters and
small words. Intraclass correlation coefficients were calculated
to examine intra-rater reliability (Cronbach’s alpha = 0.994 for
rater 1; 0.989 for rater 2), and inter-rater reliability (Cronbach’s
alpha = 0.980) was calculated after the three sets of scores were
averaged across raters. The final ranking used was based on the
mean of each investigator’s scores.

VISUOMOTOR (COPYING) SKILLS
A subset of test items (items 17–19) from the BMVI task was
selected by the investigators to evaluate visuomotor skills; these
items were developmentally appropriate, yet were also suffi-
ciently difficult. Specifically, these were the most difficult items
(non-letter objects) that all participants were able to complete.
According to the manual, the validity and reliability of the task are
sufficient for the age of our participants (Beery, 1997). Following
the same rank-ordering procedures as for handwriting quality,
two blind investigators rated participants’ reproductions, which
were based on copying geometric shapes (1 = poor reproduction,
51 = best reproduction). Intraclass correlation coefficients were
calculated to examine intra-rater reliability (Cronbach’s alpha =
0.993 for rater 1; 0.974 for rater 2) and inter-rater reliability
(Cronbach’s alpha = 0.969) was calculated after the three sets
of scores were averaged across raters. The final ranking used was
based on the mean of each investigator’s scores.

FUNCTIONAL MRI TASKS
Three tasks measuring a range of cognitive abilities were used
to investigate neurological associations to handwriting. The first
was a phonological processing task in which participants were
asked to determine if the first sound of the names of two pic-
tures of common objects matched (Figure 1A). This task was
adapted from a sound-matching subtask of the Comprehensive
Test of Phonological Processing (Wagner et al., 1999) and is well
established as reliable in phonological processing investigation
(e.g., Katzir et al., 2005). The second task was a non-verbalizable
visual-symbol matching task in which participants were presented
with unfamiliar Japanese hiragana (no participants knew that
they were letters from another language). Visually similar hira-

ganas (e.g., vs. ) were presented to try to maximize difficulty
(Figure 1B). This task was used to at least partially account for
visual input and motor response often associated with fMRI tasks
that requires processing of letters and explicit motor responses
(Henson et al., 2000). Finally, the third task was a color-matching
task in which participants were asked to determine whether two
colors matched (Figure 1C). The pair of stimuli were of the same
hue but of different lightness with close value optimized in a pilot
study to avoid using names of the colors to perform the task
and to maximize difficulty. Although there is no assumed rela-
tionship between color-matching and handwriting, this task was
included as another task to help account for some of the con-
founds, such as the color dissimilarities in the stimuli used in
the phonological task and the decision making nature of all three
tasks. These latter two tasks were only obtained in a portion of
the children (N = 18). We therefore performed a secondary anal-
ysis of the phonological fMRI task matched to include only those
participants that also completed the visual-symbol matching and
color matching control tasks when comparing between tasks. The
results of the phonological fMRI task were unchanged regardless
of the sample-size and were specific to the phonological task.

All three tasks utilized the same procedure. Each required par-
ticipants to determine whether two visually presented stimuli
matched for either the first syllables of the names of pictures,
visual symbols or color. Stimuli were presented simultaneously
in one condition (without enabling working memory, WM−)
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FIGURE 1 | Schematic diagram of the functional magnetic resonance

imaging (fMRI) tasks. (A) Phonological processing fMRI task. In this block
design fMRI task, participants were asked to determine whether the name of
the pictured stimuli begin with matching sounds. Condition A: required
working memory (WM+), stimulus presented one after another for 2 s each
with 1 s intervals (must be retained across a delay). Condition B: no working
memory required (WM−), stimuli presented side-by-side for 5 s. Conditioned
collapsed for the purposes of this study. (B) A visual-symbol matching block
design fMRI task. Design was the same as phonological task except that
Japanese hiragana symbols were presented instead of pictured objects, and

participants were asked to determine whether these unrecognized symbols
matched. Note: working memory was pertinent to the parent study, but it
was not crucial to this study, and for the purposes of this study WM+ and
WM− conditions were collapsed into one condition. (C) A color
discrimination block design fMRI task. Design was the same as the other
tasks except that colors were presented instead of pictured objects or
symbols, and participants were asked to determine whether these colors
were the same. Note: working memory was pertinent to the parent study,
but it was not crucial to this study, and for the purposes of this study WM+
and WM− conditions were collapsed into one condition.
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and after a small delay (enabling working memory, WM+)
(Figures 1A–C). In this study, we report results collapsing the
two conditions. The exploration of the role of working mem-
ory in reading and writing may answer important theoretical
questions and should be examined in future studies. This is not
however, explored further in the current study because of the
non-significant difference between conditions, which may have
been due to a number of factors such as the short interstim-
ulus interval. Rest was used as the control condition because
our preliminary study showed difficulty of children performing
a phonological task (sound matching of first syllable) alternat-
ing with a control condition (such as visual shape matching). We
therefore opted to use the two other visual fMRI tasks to show
specificity of the effects to the sound-matching task. Participants
completed two runs of each task. Each of the two runs began with
a 6 s countdown and a 2 s rest period. In the WM− condition,
stimuli were presented side-by-side continuously for 3.5 s (fol-
lowed by a 2.5–3.5 s jitter with a mean average of 3 s), whereas
the WM+ condition displayed stimuli at the center one at a time
for 2 s each with a jitter of 2.5–3.5 s (mean average 3 s) between
stimuli (paired stimuli were also followed by a 2.5–3.5 s jitter with
an mean average of 3 s). There were 5 trials per block. The 4 task
blocks in each run were 32 s in duration and the order of the con-
dition was varied from Run1 (WM−→WM+→WM+→WM−)
and Run2 (WM+→ WM−→ WM−→WM+), with a 5, 15, and
5 s intervals between blocks. Participants (N = 41) completed 2
runs, with each run being 170 s in length (174 s total with the first
4 s of the scans in each run being discarded to establish equilib-
rium in MR signal). All stimuli were presented against a plain,
white background and participants responded with their right
finger if the stimuli matched and with their left finger if they
did not match. Since participants may think of different words
than intended for the pictured stimuli used in the phonological
task, post-hoc testing asking names of each picture was performed
for each child to verify whether there were discrepancies between
potentially ambiguous images that may have alternative, yet still
correct, pronunciations. This was necessary to ensure accurate
task performance calculation tailored for each subject. Due to the
young age of participants, data were used if their task accuracy
total was greater than chance. Overall accuracy as well as reaction
times for all correctly answered trials are shown in Table 1.

STRUCTURAL AND FUNCTIONAL MRI DATA ACQUISITION
Imaging was conducted at the Lucas Center for Imaging at
the Stanford University School of Medicine. Imaging data was
acquired using GE Healthcare 3.0 Tesla 750 scanner and an
8-channel phased array head coil (GE Healthcare, Waukesha,
WI). Images acquired included an axial-oblique 3D T1-weighted
sequence (fast spoiled gradient recalled echo [FSPGR] pulse
sequence, inversion recovery preparation pulse [TI] = 400 ms;
repetition time [TR] = 8.5 ms; echo-time [TE] = 3.4 ms; flip
angle = 15◦; Receiver bandwidth ± 32 kHz; slice thickness =
1.2 mm; 0.86 × 0.86 mm in-plane resolution; 128 slices; num-
ber of excitations = 1; field-of-view [FOV] = 22 cm; acquisition
matrix = 256×192). The total scan time was 4:54.

Functional MRI (fMRI) data were acquired using an axial
2D GRE Spiral In/Out (SPRLIO; Glover and Law, 2001) pulse

sequence (TR = 2000 ms; TE = 30 ms; flip angle = 80◦; Receiver
bandwidth +125 kHz; slice thickness = 4.0 mm; number of
slices = 31, descending; 3.44 × 3.44 mm in-plane resolution;
number of temporal frames = 85; FOV = 22 cm). The total
duration of each task was 5:12.

REGIONS OF INTERESTS (ROIs)
Bilateral regions-of-interest (ROIs) used in this study were: (a)
pars triangularis and pars opercularis of the IFG (IFGtri and
IFGop, respectively) based on previous studies of language devel-
opment, literacy, and handwriting in IFG (Longcamp et al.,
2003, 2008), (b) Exner’s region based on its role in generating
graphemic-motor commands (Exner, 1881; Ritaccio et al., 1992;
Roux et al., 2010; Planton et al., 2013), (c) SPL based on its
involvement with complex motor sequences that contribute to the
accuracy of written expression (Alexander et al., 1992; Sakurai
et al., 2007), and (d) fusiform gyrus based on its role in letter
(James and Gauthier, 2006) and word processing (Cohen et al.,
2000). Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer
et al., 2002) in the WFU PickAtlas toolbox (Maldjian et al., 2003)
was used to generate ROIs (a), (c), and (d). Exner’s area ROI
(b) was selected based on a neuroimaging study (Matsuo et al.,
2003) as a region of the left precentral gyrus (PreCG, BA 6), adja-
cent to BA 9 and BA 44 (Talairach coordinates [TAL]: −46, 3,
27). A sphere with a diameter of 10 mm centered around these
coordinates was used as the Exner’s area ROI.

PREPROCESSING OF fMRI IMAGES
Processing of fMRI data was performed with statistical para-
metric mapping software (SPM8; Wellcome Department of
Cognitive Neurology, London, UK) in the MATLAB comput-
ing environment (The MathWorks, Natick, MA). After image
reconstruction, each participant’s data were slice time cor-
rected, realigned to a reference volume and corrected for
motion and artifacts using both SPM and in-house tools
(http://www.nitrc.org/projects/art_repair/). Data were spatially
normalized to Montreal Neurological Institute (MNI) space
using normalization parameters obtained from the children’s
segmented gray matter images of high resolution T1 MRI nor-
malized to standard template and applied to the mean functional
image. Resultant images were resampled to 2 × 2× 2 mm vox-
els in MNI stereotaxic space. Spatial smoothing was done with
an 8-mm isotropic Gaussian kernel. Each participant’s data were
high pass filtered at 128 s, and analyzed using a fixed effects
model examining task; rest was not modeled and was included
as implicit baseline. Five of the 46 participant’s data were not
included (final N = 41) because of excessive motion (criteria: rel-
ative motion <1.0 mm), at or below chance task performance
(criteria: accuracy ≤50%), and/or scanner artifact (N = 5).

STATISTICAL ANALYSES OF fMRI DATA: MAIN ANALYSES OF INTEREST
Statistical analysis was performed first using a fixed effects anal-
ysis for each participant modeling each condition. Task vs. rest
contrasts were used for further group analysis for the purposes of
this study as stated in the Functional MRI Tasks section above.
Using random effects analysis, a one sample t-test was performed
to examine brain regions that were active during the phonological
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Table 1 | Demographics and correlations.

Measure Association with handwriting quality

Mean (SD) t, r, or p p-value

Age 5.59 (0.42) r = 0.27 0.075

Gender 26 boys / 20 girls t = 2.64 0.012*

Handedness (all right) 82.27(19.81) r = 0.17 0.26

Mother’s education (years) 17.02 (2.07) P = −0.12 0.42

Raw scores Standard/scaled scores

Mean (SD) r p−value Mean (SD) r p−value

Handwriting qualitya 0 (1) 1 0.00** NA NA NA

Phonological fMRI (accuracy) 72.01% (12.66) −0.137 0.447 NA NA NA

Phonological fMRI (reaction time) 2601.78 ms (511.56) −0.115 0.462 NA NA NA

FSIQb WJIII BIAc NA NA NA 119.24 (2.07) −0.17 0.27

PPVTd 119.57 (14.11) 0.016 0.92 122.00 (9.21) 0.20 0.18

WRMTe letter identification 31.48 (7.96) 0.13 0.39 111.87 (10.95) 0.20 0.18

WRMT word identification 15.26 (19.38) 0.11 0.46 119.41 (31.84) 0.090 0.55

CTOPPf phonological awareness NA NA NA 112.54 (14.78) 0.040 0.79

CTOPP elision 6.59 (4.44) −0.099 0.51 12.00 (2.87) −0.099 0.51

CTOPP blending 8.45 (3.43) −0.13 0.38 12.48 (2.04) −0.154 0.31

CTOPP phonological memory NA NA NA 106.28 (11,75) 0.090 0.21

RANg object 1.76 (1.40) 0.097 0.52 101.93 (15.41) 0.030 0.84

RAN color 0.39 (1.02) 0.079 0.60 99.43 (15.53) −0.050 0.75

Visuomotor (BVMIh rank) 0 (1) 0.45 0.0020** NA NA NA

WJIII spelling 14.48 (3.55) 0.36 0.013* 112.04 (12.13) 0.18 0.24

BVMI right 16.43 (2.75) 0.38 0.010** 108.39 (14.53) 0.25 0.092

NEPSYi oromotor 38.5 (10.40) −0.0050 0.96 3.00 (0.84) 0.090 0.56

Home literacy inventory 8.62 (3.47) 0.036 0.815 NA NA NA

TGMVj 710.95 (63.24) −0.14 0.36 NA NA NA

TWMVk 455.7 (43.97) −0.17 0.27 NA NA NA

*p < 0.05 level (2-tailed).
**p < 0.01 level (2-tailed).
aWriting samples derived from Woodcock-Johnson III Spelling (subtest from Test of Cognitive Abilities).
bFull Scale Intelligence Quotient.
cBrief Intellectual Ability.
d Peabody Picture Vocabulary Test.
eWoodcock Reading Mastery Tests.
f Comprehensive Test of Phonological Processing (Phonological Awareness = Elison + Blending).
gRapid Automatized Naming.
hBeery-Buktenica Developmental Test of Visual-Motor integration.
i Developmental Neuropsychological Assessment.
j Total Gray Matter Volume.
k Total While Matter Volume.

fMRI task [p = 0.05 family-wise error (FWE) corrected, at the
whole brain level].

Next, simple correlation analysis was performed between brain
activation during the fMRI tasks and handwriting skills in the
ROIs using a statistical threshold of p = 0.05 family-wise error
(FWE) corrected for height using small volume correction. We
also examined voxel-by-voxel associations in the whole brain at
a more lenient threshold of p = 0.001 uncorrected for height to
examine whether there are any clusters outside the ROIs that
showed significant effects at this more lenient threshold.

STATISTICAL ANALYSES OF fMRI DATA: CONTROL ANALYSES
Control analyses were performed in several ways. First, analyses
examining associations between handwriting quality and brain
activation during the phonological task regressing out the non-
handwriting motor and writing abilities such as visuomotor skills
(rank order of BVMI), oromotor skills (NEPSY-II oromotor sub-
test), and spelling (WJ-III spelling subtest), as well as correlated
demographic variables [age (there was a trend for significant
effects of older age correlating with better handwriting), gender
(males had significantly poorer handwriting than females)] were
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performed. Second, ROI based regression analyses between brain
activation during the phonological task and these aforementioned
non-handwriting motor and writing abilities were performed.
Statistical threshold was set similarly to the main analysis at p =
0.05 FWE corrected for the ROIs (and p = 0.001 uncorrected
for the whole brain to examine whether there are any clusters
outside the ROIs that showed significant effects at this more
lenient threshold). Third, whole-brain and ROI analyses were
performed correlating brain activation during the supplemental
visual-symbol matching and color matching tasks and handwrit-
ing skills (rank order of WJ-III spelling writing samples). Since we
only had data from these tasks in half of the participants, in order
to show that the significant effect in the meta-phonological task
and not the supplementary tasks was not due to power issues, we
went back and repeated the main correlation analysis (between
brain activation during the meta-phonological processing task
and handwriting skills) using a smaller sample with data from
both the meta-phonological and supplementary tasks.

PREPROCESSING AND STATISTICAL ANALYSIS OF T1 STRUCTURAL MR
IMAGES
Voxel-based morphometry (VBM) analysis of T1-weighted
MRIs was performed using Statistical Parametric Mapping,
version 8, (SPM8) (http://www.fil.ion.ucl.ac.uk/spm). After
alignment to AC-PC axis, T1-weighted images were bias-
corrected and segmented to gray matter, white matter, and
cerebrospinal fluid, using SPM8 default tissue probability
maps and “New Segment” tool, which also included an affine
regularization to warp images to the included International
Consortium for Brain Mapping (ICBM) template, producing
rigidly aligned tissue class images. Inter-subject registration
was achieved with Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL), using default
settings. Jacobian-scaled (“modulated”), warped tissue class
images were created with DARTEL’s “Normalize to MNI
Space” tool, which spatially normalized images to MNI space,
converted voxel sizes to 1.5 × 1.5 × 1.5 mm3 to match the
DARTEL template, and smoothed images with a standard
Gaussian filter of full-width at half-maximum (FWHM) equal
to 8 mm. For each participant, segmentation and normaliza-
tion accuracy were manually inspected. 41 of 46 participants
were included in this analysis due to usability issues caused
either by artifacts or excessive motion. Statistical analyses
were performed similarly to fMRI analyses using the same
statistical thresholds but additionally controlling for total gray
matter volume. Finally, associations between regional gray
matter volume and brain activation were performed where
the spatial location at least partially overlapped. The reported
Talairach coordinates were converted from MNI space using
the mni2tal function (http://www.mrc-cbu.cam.ac.uk/Imaging/
Common/mnispace.shtml). Talairach Daemon (Research
Imaging Center, University of Texas Health Science Center;
Lancaster et al., 1997, 2000) and the atlas by Talairach and
Tournoux (1988) were initially used to identify Brodmann Areas.
The final anatomic locations are reported according to their
anatomic location overlaid on the custom template.

RESULTS
BEHAVIORAL RESULTS
Table 1 shows demographic and behavioral characteristics as well
as associations between these measures and handwriting qual-
ity. Age, handedness, and maternal education, often used as a
proxy for environment, did not yield any significant associations
with handwriting performance (all p’s > 0.05). However, as one
might expect based on the fact that the handwriting measure was
ranked-ordered and not standardized, even though the range of
ages in these children were narrow (5–6 years of age), age showed
a trend for significant positive association with handwriting
[r(44) = 0.27; p = 0.075], and gender effects were found [t(44) =
2.64, p = 0.012] with boys demonstrating significantly weaker
handwriting performance as compared to girls. Further, while
handwriting performance was not significantly correlated with
spelling standard scores [Table 1, r(44) = 0.18, p = 0.24], spelling
raw scores were significantly related [r(44) = 0.36, p = 0.013].
(Since the ranking of handwriting quality was not a standardized
measure, this was expected). Visuomotor skill ratings (see above
for definition) were also significantly correlated with BVMI stan-
dard scores, which is expected since visuomotor integration skill
was the construct being evaluated [r(44) = 0.658, p < 0.001]. We
also found, as anticipated, that rater’s ranking of handwriting and
visuomotor skills were associated with one another [r(44) = 0.45,
p = 0.002].

fMRI RESULTS
First we examined brain regions that showed significant activa-
tion during the reading-related phonological processing task in
all participants. We found that these emerging readers elicited sig-
nificant activation at p = 0.05 corrected in bilateral (left > right)
IFG, left superior, middle frontal gyrus and PreCG, left inferior
parietal lobule and bilateral occipito-temporal region (Figure 2,
Table 2). It is important to note that the behavioral profiles of
participants included in this study are not representative of a nor-
mal population (see Table 1), so the results presented here are not
yet generalizable.

Phonological activity was negatively associated with better
handwriting quality in the right IFG within Broca’s Area/
Brodmann Area 45 / pars triangularis [TAL: X = 44, Y = 24,
Z = 15; peak T = 3.74; p = 0.033 corrected; mean cluster
r(39) = −0.43; Figure 3A]. Even when performing whole-brain
analysis at a lenient threshold of p = 0.001 uncorrected, a
cluster in the right IFGtri was the only region that showed
a significant effect (TAL: X = 40, Y = 27, Z = 17; peak
T = 3.77; p < 0.001 uncorrected). Exner’s area (TAL: X = 48,
Y = 7, Z = 22), although non-significant, also showed a dis-
tinctive trend in the same direction (p = 0.054 corrected).
Given Exner’s well-documented involvement in handwriting,
this trend was included in Figure 3). No significant positive
correlations were observed either at p = 0.05 corrected or
p = 0.001 uncorrected. Activity in the right IFGtri cluster
during the phonological task was also negatively correlated with
CTOPP phonological memory composite scores (r = − 0.31,
p = 0.049) and memory for digits subtest (r = −0.37,
p = 0.017).
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FIGURE 2 | Brain activation during the phonological processing fMRI

task. Clusters in warm colors indicate those significant at p < 0.05
family wise error (FWE) corrected. Those significant at p < 0.001

uncorrected, cluster extent = 10 are also included to show the extent
of these clusters at a more lenient threshold. Note: Left Hemisphere
is shown on left side.

Table 2 | Regional brain coordinates.

Brain region Brodmann area (BA) TAL coordinates T values (peak) P value (FWE) Cluster size (voxels)

x y z

Right fusiform, inferior, middle occipital
gyri

18, 19 42 −78 −3 15.35 <0.001 11557
38 −66 −8 15.31 <0.001
26 −93 10 13.6 <0.001

Left medial frontal, right cingulate gyri 9, 6, 32 −8 27 30 7.92 <0.001 2125
−8 1 59 7.74 <0.001

6 21 39 7.44 <0.001
Left inferior frontal, superior temporal
gyri, lentiform nucleus (Putamen)

47, 22 −28 21 −3 7.71 <0.001 798
−46 11 −4 7.53 <0.001
−18 10 1 5.43 0.020

Left parahippocampal gyrus 27 −20 −29 −2 6.77 0.001 88
Left superior parietal lobule 7 −30 −58 47 6.34 0.002 60
Left middle frontal gyrus 6, 9, 46 −46 6 42 6.21 0.002 424

−50 19 27 5.96 0.005
−48 36 24 5.94 0.005

Left thalamus −10 −17 5 6.15 0.003 114
Right inferior frontal gyrus 47 32 27 −3 6.13 0.003 163
Right thalamus (ventral posterior lateral
nucleus)

16 −17 6 5.67 0.011 39

Right thalamus 22 −27 0 5.4 0.022 7
Right middle frontal gyrus 10 40 40 18 5.24 0.033 8
Right culmen 4 −65 −10 5.24 0.034 8
Left precentral gyrus 6 −63 3 20 5.2 0.037 3
Right declive 6 −55 −14 5.19 0.039 6
Left inferior frontal gyrus 10 −44 47 −2 5.16 0.041 2
Left declive −10 −59 −16 5.13 0.044 1
Right middle frontal gyrus 10 44 48 20 5.12 0.046 2
Left precentral gyrus 6 −46 −2 30 5.09 0.049 1

Control analyses were performed in three ways. First, the
negative correlation in the right IFGtri remained significant
using whole-brain regression analysis of the phonological fMRI
task even after regressing out variables that correlated with

handwriting quality as well as other motor and writing skills such
as age, gender, visuomotor skill (rank ordered BVMI responses),
oromotor skills, BVMI (dominant/right hand) raw scores, and
WJ-III Spelling raw scores (r = −0.369, p = 0.029).
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FIGURE 3 | Brain regions associated with handwriting quality.

(A) Clusters that show negative association with brain activation during a
phonological processing fMRI task are shown. Pink circles indicate a cluster
that is significant at p = 0.05 corrected (right inferior frontal gyrus pars
triangularis, IFGtri), and cyan circles indicate a cluster that shows a trend
p = 0.054 corrected (right Exner’s area). Clusters indicate voxels significant at
a lenient threshold of p = 0.05 uncorrected to show greater extent of
activation. XYZ coordinates are in Talairach coordinates. Panel on the right
shows a scatter plot representation of the cluster that shows significant
negative association at p = 0.05 corrected (pink cluster). Brain activation is

defined as contrast estimates, which are based on combined beta estimates
of the phonological condition vs. rest. (B) Clusters that show positive
association with regional gray matter volume are shown. Pink circles indicate
clusters that are significant at p = 0.05 corrected in the right IFGtri. Clusters
indicate all voxels significant at p = 0.001 uncorrected, cluster extent = 10 as
reference to show the extent of these clusters at a more lenient threshold. A
small cluster in the left IFGtri is observed at this threshold. XYZ coordinates
are in Talairach coordinates. (C) Voxels that show overlap in fMRI activation
from (A) and VBM gray matter volume from (B) in the right inferior frontal
region. Note: Left Hemisphere is shown on left side.

Second, control analyses were then performed using ROI-
based (IFGtri and IFGop from AAL) and whole-brain regression
between activation during phonological processing and motor
and writing skills other than handwriting skills. Correlations
between right IFG activation and unstandardized visuomo-
tor skills (see Methods for definition) (peak T = 2.51; p =
0.19 corrected; p = 0.008 uncorrected; Figure 4), oromotor
skills (peak T = 3.03; p = 0.071 corrected; p = 0.002 uncor-
rected) and spelling (peak T = 0.42; p = 0.85 corrected;
p = 0.29 uncorrected) were not significant, controlling for
age (either by regressing age out or by using normed
scores).

Third, no significant positive or negative correlation was
observed with handwriting quality and brain activation dur-
ing either the visual-symbol matching or color matching tasks,
demonstrating that the association is likely to be specific to the
phonological processing task. Since we only had data from half
the sample for both the visual-symbol and color matching tasks
(in what we called Cohort 1), we repeated the main correlation
analysis between brain activation during phonological processing
and handwriting skills using the participants included in this con-
trol analysis and still found significant results in the right IFGtri
(r = −0.49, p = 0.024).

VBM RESULTS
We specifically examined whether there were structural correlates
of the functional finding by evaluating whether there were signif-
icant associations with the right IFG regional gray matter volume
and handwriting quality controlling for total gray matter volume.
We found a significant positive correlation between handwriting
quality and regional gray matter volume in the right IFGtri, spa-
tially overlapping with the fMRI results (TAL: X = 40, Y = 27,
Z = 17; peak T = 3.66; p = 0.027 corrected; Figures 3B,C). The
association was however, positive and in the opposite direction
to the fMRI findings. Even when the whole-brain was exam-
ined rather than the a priori hypothesized ROIs, four clusters
in right IFGtri—middle frontal gyrus, left IFGtri, right middle
temporal gyrus, and right postcentral gyrus—intraparietal sul-
cus (inferior/superior parietal lobule) were the only regions that
showed a significant effect at a lenient threshold of p = 0.001.
There were no brain regions that showed significant negative
association with gray matter volumes or significant positive or
negative association with white matter. The positive correlation
in the right IFGtri remained significant using even after regress-
ing out variables that correlated with handwriting skills such as
age, gender, visuomotor skill (rank ordered BVMI responses),
BVMI (dominant/right hand) raw scores, and WJ-III Spelling raw
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FIGURE 4 | Brain regions associated with visuomotor (copying) skill.

(A) Clusters that show a negative association (p = 0.01 uncorrected)
between visuomotor (copying) skill and brain activation during a phonological

processing fMRI task are shown. (B) Non-significant correlation between
visuomotor (copying) skill and activation in the right IFG during phonological
processing.

scores (r = 0.536, p = 0.001). Further, regional gray matter vol-
ume significantly correlated with functional activation from the
main analysis (r = −0.323, p = 0.043).

DISCUSSION
We have presented results examining beginning writers/readers’
association between handwriting quality and brain activation.
Our preliminary results showed that poorer handwriting qual-
ity was associated with stronger activation of the right IFGtri
when children judged whether a pair of pictures starts with the
same sound. Furthermore, these results overlapped spatially with
reduced regional gray matter volume in the right IFGtri in chil-
dren with less proficient handwriting. Brain activation during
supplementary fMRI tasks, where children judged visual simi-
larities between pairs of unfamiliar symbols and discriminated
between colors, were not associated with handwriting quality.
Regional gray matter volume associations were also significantly
correlated with the functional associations specific to the right
IFG during the phonological task. These findings show the sig-
nificance of IFG in handwriting quality in beginning writers,
demonstrating that increased activation in the right IFGtri dur-
ing a task likely related to the phonological processes involved in
reading is associated with reduced handwriting quality, which in
turn showed structural brain correlates. While our control con-
dition was rest in our phonological fMRI task because of the
young age of our participants (see Methods—Functional MRI
Tasks above), we believe the task taps at least partially into phono-
logical processing. This is because other studies using comparable
tasks as well as our own study have successfully shown phonolog-
ical processing related reading networks to be active during the
task (see Methods). Additionally, we have included two supple-
mentary tasks to show that the findings were at least not due to
more non-specific aspects of the task such as visual perception,

judgment and motoric responses. The results of this study show
that the neuroanatomical properties and phonologically related
neurofunctional properties of the IFG may be essential in the
development of complex motor skills required in handwriting.

The IFG is a heterogeneous region with many functions.
Existing literature on the IFG suggests its involvement in an
exhaustive list of language abilities, including: syntactic pro-
cessing (Embick et al., 2000), accessing orthographic long-term
memories in the form of stored motor plans (Hillis et al., 2002;
Rapp and Dufor, 2011), coordinating orthographic lexical selec-
tion and retrieval (Purcell et al., 2011), verbal working memory
(Paulesu et al., 1993), letter perception and letter transcription
(James and Gauthier, 2006), activation during speech generation
(Liotti et al., 1994), grasping and manipulating objects (Rizzolatti
et al., 1988), silent naming of manipulable objects (Grafton et al.,
1997), observation of manipulable objects (Grafton et al., 1997),
and when handwriting novel letterforms (Longcamp et al., 2008).
Regarding its purported function in relation to writing, a recent
meta-analysis of handwriting studies (Planton et al., 2013) found
evidence for IFG involvement in writing, and in particular when
contrasted against a control motor task (e.g., vocalization), but
not for contrasts that controlled for linguistic input process-
ing. This supports the role of the IFG in processing linguistic
input during writing rather than motoric output (Planton et al.,
2013). In our study, we additionally show that handwriting qual-
ity correlated not only with IFG volume, but also with activation
during a task that was at least partially related to phonological
processing. This suggests that at the beginning stage of read-
ing and writing, there is a tight coupling between IFG—albeit
right lateralized—and handwriting, possibly via phonological
processing. It is interesting to note that handwriting quality also
correlated with a behavioral measure of phonological encoding
(spelling). We interpret our predominant results on the right
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hemisphere (left hemisphere involvement was present but only at
subthreshold) in terms of neuronal efficiency, which we discuss
below.

Although there is evidence for IFG involvement in a vari-
ety of tasks, its robust associations with phonological processing
and lexical retrieval are likely the most relevant with respect
to reading. Many aspects of language processing show leftward
functional asymmetry in the IFG in most adults (Price, 2010).
Although children show some indication of frontal left hemi-
sphere asymmetry, the degree of asymmetry increases into adult-
hood (Holland et al., 2001; Szaflarski et al., 2006). Increased left
functional asymmetry for language production has been linked
to increased vocabulary and non-word reading scores in chil-
dren (Groen et al., 2012) and more bilateral or right hemisphere
IFG activations found in disabled populations, such as reading
impaired dyslexics (Calvert et al., 2000; Pugh et al., 2001; Hoeft
et al., 2011). Larger activation extents in the IFG have also been
reported in children during linguistic tasks (Gaillard et al., 2000;
Hoeft et al., 2011). This suggests a developmental reorganization
and refinement of frontal language circuits through young adult-
hood. Our finding of a negative correlation between children’s
handwriting performance and right IFG activation is consistent
with a common maturational process affecting handwriting and
phonological processing. Children with high activation in the
right IFG during phonological processing may be developmen-
tally delayed with respect to adult-like patterns of functional
asymmetry for language processing and consequently be delayed
in the development of handwriting performance, either via a
direct link between phonological skills and handwriting or a more
general, domain independent delay. However, the specificity of
our findings argues against a general delay.

An alternative account, which does not assume functional
homology between the left and right IFG, is that improved hand-
writing is associated with increased computational efficiency or
neural coding—and hence reduced BOLD signal increase—in
the right IFG for reading-related functions. This phenomenon,
known as neural efficiency, posits that brighter individuals use
their brains more efficiently and is often used to explain the
inverse relationship between brain activation and task perfor-
mance (Haier et al., 1988). A recent study by Holland et al.
(2011) has shown that greater recruitment of the IFG is associ-
ated with slower naming (reduced proficiency) during a picture-
naming task. Further, decrease in right IFG activation during an
orthographic processing task has been shown with orthographic
training, a process known to contribute uniquely to handwriting,
spelling, and composition (Richards et al., 2006a). Training-
induced reduction in right IFG activation has also been shown to
correlate with improved phonological decoding (Richards et al.,
2006b). The positive association between handwriting perfor-
mance and gray matter volume may be compatible with this
interpretation. Morphometric studies have found that increased
regional gray matter volume may result in less energy consump-
tion when that area is employed (Haier et al., 2004), and it is
generally accepted that increased volume denotes increased cog-
nitive capacity. This interpretation is further supported by the
negative correlation between behavioral measures of phonolog-
ical memory and right IFG activation during the phonological

task. In our study, while both age and gender showed associa-
tions to handwriting quality (see Table 1), our findings persisted
even when these factors were regressed out. Moreover, there were
no significant correlations with environmental measures (e.g.,
Home Literacy Inventory) used as proxies to control for differ-
ential exposure to reading/writing materials. Thus, there is some
indication that observed differences are not related to age or envi-
ronmental differences, but instead to differences in maturational
development of language related processes or neural efficiency.

Recent studies of handwriting in children have found differ-
ences in activation within the fusiform gyrus (Longcamp et al.,
2008; Richards et al., 2009a,b), an area known as critical for
orthographic processing and implicated both in letter and word
perception, critical components for both reading development
and handwriting acquisition (James and Engelhardt, 2012). Other
studies note the importance of Exner’s area and the SPL. Exner’s
area has been implicated for its role in bridging the gap between
orthography and the motor programs necessary for handwriting
(Roux et al., 2010; Planton et al., 2013), and the emerging con-
sensus regarding the SPL posits that this region is involved in the
abstract representation, sequential selection, and production of
letter shapes (Rapp and Dufor, 2011; Planton et al., 2013; Rothlein
and Rapp, 2014). We did not demonstrate a significant associa-
tion between handwriting quality and neuroanatomical structure
or activation in ROIs other than the IFG, such as Exner’s area,
fusiform gyrus and the SPL. The absence of significant results in
Exner’s area (though there was a trend for significance also on
the right hemisphere) and the SPL may be explained by the fact
that most studies that have reported these regions have used adult
participants. Research has shown that in adults specific neural
substrates respectively correspond to differing letter representa-
tions (Rothlein and Rapp, 2014), but this cerebral organization
is likely very different in early development. It may be that the
phonological processing subserved by the IFG becomes less nec-
essary for writing as language skills become more automatic.
Once this occurs, regions such as Exner’s and SPL, important in
the motoric and visuo-spatial component become more involved
(regions thought to be specialized for fluent, automatic handwrit-
ing). It may also be the case that significant effects may have been
observed in these regions if a different fMRI task was used that
emphasize more motoric and visuo-spatial components, though
this will not explain the lack of associations neuroanatomically.
Another probable explanation is that the inverse correlation with
activation in the IFG may correspond with the emergence of
neural circuits in posterior writing areas in better readers. It is
possible that this was not detected in our study due to the small,
age-limited sample. In which case, the IFG activation may relate
not to letter formation, but rather to its well-established role in
motor planning and executive function. Further, while the acti-
vation observed in our study is assumed to be essential for the
phonological task, some studies have shown that activation does
not necessarily correspond to what is necessary for the particu-
lar tasks being administered (Rothlein and Rapp, 2014). Future
studies will need to dissociate these possibilities.

The lack of association between handwriting quality and
activation and neuroanatomical patterns in fusiform gyrus is
more difficult to explain, especially as significant association
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with handwriting and reading (letter perception) was found in
beginning writers / readers. While again, this requires further
investigation (as described in limitations), it is possible that the
lack of significant findings in the fusiform gyrus is related to
the nature of the phonological task we used, as our task requires
no orthographic processing, and hence no interaction was found
with handwriting quality in the fusiform gyrus. Thus, it is very
likely that if we included another fMRI task related to letter per-
ception or orthographic processing as in James and Engelhardt
(2012), we would have seen associations with handwriting in the
fusiform gyrus (and SPL) also even though this will not account
for the lack of neuroanatomical findings in this region.

Our study provides insights into why some children with
dyslexia have been found to have poorer handwriting as well
(Berninger et al., 2008). Previous literature has indicated chil-
dren with dyslexia taught both word decoding and handwriting
showed improvement in reading as well as orthographic decod-
ing (Berninger et al., 2008; Berninger and Richards, 2011). It has
also been shown in adults with pure alexia that reading perfor-
mance can be improved through handwriting practice (Seki et al.,
1995; Bartolomeo et al., 2002). Recently, a related study on the
relationship between handwriting experience and neurological
development in beginning readers showed that those with more
experience printing and tracing activated the IFG during letter
perception more than children with experience typing or copying
(James and Engelhardt, 2012). Accepting past literature showing
the IFG as important for linking features together to construct
an organized whole, these researchers proposed that the IFG may
be important for motor planning, control and execution. At a
minimum, our study is distinguished from James and Engelhardt
in that rather than investigating letter perception, our tasks did
not include stimuli related to written languages (e.g., letters and
words) and still found significant associations. Further, we find
neuroanatomical evidence of associations between IFG and writ-
ing. Our findings hence provide novel findings adding to the
important role of the process of writing in reading development.

FUTURE DIRECTIONS AND LIMITATIONS
Future studies investigating handwriting quality and develop-
ment may assess the role of maturation, lateralization and neural
efficiency related to handwriting by following children longitudi-
nally, and by examining lower level visual and motor processing,
spelling and writing compositions. Attention also plays a role
in successful handwriting (McCutchen, 1996) and while we did
incentivize and encourage attention, future studies may examine
better ways to control or account for attention.

There are several limitations to our study that will need to
be addressed in future research. First, our phonological process-
ing task where children judged whether the initial sounds of the
names of pictures matched did not have a well-matched con-
trol condition such as a picture matching condition. Although we
included supplementary fMRI tasks we had available (e.g., visual
matching and color matching tasks), these may have been inad-
equate to serve as control tasks. This determination was based
on our preliminary study in young children (see Methods—
Functional MRI Tasks for details). Second, while unrealistic to
keep children in kindergarten in the scanner for long periods of

time, future studies may include fMRI tasks specifically related to
writing, orthographic, visual and motor processing in addition
to phonological processing to examine task induced differences
in activation patterns as it relates to handwriting. Third, while
qualitative/holistic approaches remain the most common way to
assess handwriting quality (Wagner et al., 2011), there is need to
find more quantitative methods, such as using computer algo-
rithms to interpret handwriting quality and errors. Fourth, the
working memory condition during fMRI was not significantly
different from the non-working memory condition, and hence
we were unable to address the issue of working memory in writ-
ing. Fifth, the participants included in this study were gifted
compared to normative populations with standardized behavioral
profiles well above average (see Table 1), potentially reducing the
extent to which our results are generalizable. Finally, we com-
pared a copying task (BVMI) to a spelling task (WJ-III), and
there were differences in task requirements, such as encoding
differences, and letters vs. symbols, as well as other potential dif-
ferences such as verbal short-term memory and visual long-term
memory (remembering shapes of letters); these should be disso-
ciated in future studies. Despite these limitations, our study is an
important step in identifying the neural substrates of handwriting
quality in beginning writers.

CONCLUSIONS
In the current study, we provide evidence of direct neural links
between handwriting quality, a skill that has been strongly asso-
ciated with higher level writing skills and reading, and neural
processing underlying phonological processing, which is thought
to be causally related to reading acquisition. In contrast to stud-
ies focused on neurologically impaired individuals (e.g., Benson,
1979; Exner, 1881; Kaplan and Goodglass, 1981), we took a
dimensional approach to investigate handwriting and have pro-
vided preliminary but novel evidence that the IFG may be a key
link between phonological processing and handwriting quality
during early phases of language development. The findings in
the current study indicate that during early development of read-
ing and writing skills, successful handwriting quality, measured
by one’s ability to shape and form letters coherently, relies on
the right IFG, and that this efficiency corresponds to successful
phonological processing.
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