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Complexity is a hallmark of intelligent behavior consisting both of regular patterns and
random variation. To quantitatively assess the complexity and randomness of human
motion, we designed a motor task in which we translated subjects’ motion trajectories
into strings of symbol sequences. In the first part of the experiment participants were
asked to perform self-paced movements to create repetitive patterns, copy pre-specified
letter sequences, and generate random movements. To investigate whether the degree
of randomness can be manipulated, in the second part of the experiment participants
were asked to perform unpredictable movements in the context of a pursuit game,
where they received feedback from an online Bayesian predictor guessing their next
move. We analyzed symbol sequences representing subjects’ motion trajectories with
five common complexity measures: predictability, compressibility, approximate entropy,
Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects’
self-created patterns were the most complex, followed by drawing movements of
letters and self-paced random motion. We also found that participants could change the
randomness of their behavior depending on context and feedback. Our results suggest
that humans can adjust both complexity and regularity in different movement types
and contexts and that this can be assessed with information-theoretic measures of the
symbolic sequences generated from movement trajectories.
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INTRODUCTION
Imagine you were abandoned on an uninhabited planet and you
could move around on the surface, thereby generating motion
trajectories that can be observed by some non-human intelli-
gence. How would you move in a way to show that you are an
intelligent being? Or as an observer, what trajectories of moving
bacteria would convince you that you are observing an intelli-
gent organism? Similar questions that are not necessarily confined
to motion trajectories are considered by space programs such as
SETI (search for extraterrestrial intelligence), with the idea that
intelligence should be related to behavioral complexity.

Previous studies have used the concept of Kolmogorov com-
plexity, for example, to evaluate the complexity of animal
behavioral patterns, such as ants’ hunting behavior (Panteleeva
et al., 2010; Reznikova et al., 2012). In these studies the
authors assessed the regularity of behavioral sequences and
found that successful hunting behavior was associated with
higher stereotypy. The regularity of single joint movements
has also been studied in humans (Newell et al., 2000). In
this study the authors found that humans can generate only
very limited randomness and that they cannot substantially
increase the degree of motion randomness through training.
In contrast, behavioral studies in psychology have indicated
that the randomness of human-generated random number
sequences might be dependent on the feedback provided to

human subjects (Neuringer, 1986; Persaud, 2005; Figurska et al.,
2008).

Measures, such as Kolmogorov complexity, might seem to
suggest that complexity can be measured by the degree of irregu-
larity or randomness. Kolmogorov complexity is the length of the
shortest program that can generate a certain symbolic sequence
(Kolmogorov, 1963). Therefore, sequences that can be described
by a short program have low complexity, because their informa-
tion can be compressed into a shorter description. In contrast,
complex sequences are incompressible. For example, a binary
sequence generated by a fair coin would be the most complex
sequence, as its shortest description is simply a copy of the ran-
dom sequence itself. Yet, intuitively, we feel that such a sequence
is not very complex and in fact rather simple to generate. An
intuitive example with high complexity is human language, where
one typically finds that sequences of letters or words are neither
completely random nor totally determinate. This is often assessed
quantitatively by studying the conditional entropy of sequences
(Rao et al., 2009). The conditional entropy quantifies the degree
of uncertainty about the next word or symbol conditioned on a
history of symbols. If this uncertainty shrinks over long histories,
this implies that there are long range correlations that reflect an
underlying complex structure.

In our study we address two questions. First: How can we
measure human motion complexity? To this end, we quantify
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both regularity and organizational complexity by determining
predictability, compressibility, approximate entropy, Lempel-Ziv
complexity and effective measure complexity of different move-
ment types. Second: Can humans change the degree of motion
randomness depending on feedback and context? To answer this
question, we designed a pursuit game in which we could compare
subjects evasive random motion under feedback to their previous
self-paced random motion in the absence of feedback.

RESULTS
Participants controlled a cursor in a three-dimensional virtual
environment consisting of 10 × 10 grid cells. In the first part
of the experiment participants were asked to generate repetitive
patterns (P) freely, write pre-specified letters (L), and perform
self-paced random movements (R1). Figure 1 shows recorded
example trajectories drawn by subjects in the experiment. The
first row of panels shows subjects’ self-created patterns that could
contain both relatively complicated repetitive structures—for
example, a repetitive drawing of the “@”-symbol—and simpler
structures like circles or squares. The second row shows exam-
ples of drawn letter sequences, where different letters are drawn
on top of each other and the different colors illustrate individual
letter segments. The bottom row of panels shows examples of self-
paced random movements. Upon inspection these trajectories
contained no obvious global structure.

All movements were converted into symbol sequences of up,
down, left, and right cell transitions. This discretization is a stan-
dard procedure in the mathematical field of symbolic dynamics

FIGURE 1 | Example trajectories. The top row shows three examples of
patterns freely generated by subjects (P), the middle row shows three
examples of letter sequences (L), and the bottom row shows three
self-paced random trajectories (R1). The different colors in the middle row
segment the individual letters superimposed on each other and are for
illustrative purposes only.

to model a smooth dynamical system through a finite cover,
thus allowing to represent the history and future of the system
by strings of symbols. Estimating the entropy of such symbol
strings with arbitrarily chosen discretization always provides a
lower bound on the entropy of the underlying smooth system
(Badii and Politi, 1999). In order to have a baseline comparison,
we also generated artificial data from three synthetic processes.
One process generated simple artificial rhythmic movements (AS)
consisting of a completely regular repetition of up-down tran-
sitions, another process generated artificial random movements
(AR) following a random walk in a 10 × 10 grid, and the
last process generated artificial random movements having the
same first order frequencies as the subjects’ pattern generation
sequences (AF).

MEASURES OF MOTION REGULARITY
To quantify the degree of regularity in symbol sequences gener-
ated by different movement types, we used four different mea-
sures. First, we determined the predictability of movements with
the idea that the more regular a movement is, the easier it is to
predict. We used a Bayesian predictor that could track histories of
up to 8 cell transitions to make predictions about the next move—
see Context-tree weighting algorithm in the Methods. Second, we
determined the compressibility of movements, again with the idea
that the more regular a movement is, the easier it is to exploit
patterns for compression. Since any probabilistic predictor can
always be used for compression, we used our Bayesian predic-
tor also as a compressor. Additionally, we also used standard
Lempel-Ziv compression to assess regularity in the movement
data. As a third measure of regularity, we determined the approx-
imate entropy (ApEn) of movements. The greater the value of
ApEn, the higher the irregularity of the time series, thus the more
complex the system under study (Pincus, 1991, 1995). Fourth,
we computed the Lempel-Ziv complexity, that is the number of
words in a dictionary required to express a symbol string with-
out losing information (Doğanaksoy and Göloğlu, 2006). The
size of the dictionary depends of course on the regularity in the
string, such that the more regular the sequence, the smaller the
dictionary.

The results of these analyses can be seen in Figure 2 and
Table 1. All panels show the average value over 10 subjects, and
error bars indicate standard errors. Figure 2A shows the pre-
dictability of each movement type given by the proportion of
moves that could be correctly predicted by our Bayesian model.
It can be seen that the extremes are spanned by the three syn-
thetic processes. The artificial random movements (AR and AF)
are most difficult to predict, whereas the artificial rhythmic move-
ment (AS) is completely predictable. Subjects’ movements are
in between these extremes, where the self-generated patterns (P)
were the most predictable, followed by drawn letters (L). Subjects’
random movements (R1) were most difficult to predict within the
set of self-paced motions, but significantly easier to predict than
artificial random motions (AR and AF).

Figures 2B,C show the results of the compression analysis. It
can be seen that both compression methods reveal the same rank-
ing with respect to regularity of the various movement types.
The fact that the Bayesian compressor achieves generally better
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FIGURE 2 | Measures of regularity of different motion types.

(A) Shows predictability of the next cell transition given a Bayesian
context-tree weighting predictor. (B,C) Show compressibility of cell
transition sequences based on Lempel-Ziv compression and arithmetic
coding of context-tree weighting probabilities. (D,E) Show approximate
entropies for two different parameter settings. (F) Shows Lempel Ziv

complexity of the different motion types. All bars show means and
standard error over subjects. The yellow bars show values of self-paced
movements from the drawing session, including self-generated patterns
(P), letter drawings (L), and random motion (R1). The green bars show
values of random motion during the pursuit game (R2). The blue bars
show artificially generated data (AS, AR, and AF).

Table 1 | Effect of the different movement types on the proposed measures of motion regularity and complexity.

Measures Effect across P–L P–R1 P–R2 L–R1 L–R2 R1–R2

conditions

Predictability *** * ** ** ** ** **

LZ compression *** ** ** ** − ** **

CTW compression *** * ** ** − ** **

ApEn (m = 1) *** − * ** * ** **

ApEn (m = 2) *** − * ** * ** **

LZ complexity *** * ** ** * ** **

EMC *** ** ** ** * ** −

We ran a permutation ANOVA with 2000 simulations (Anderson and Ter Braak, 2003). We found the main effect that all measures differed significantly for the

different movement types. We then applied Bonferroni-Holm correction methods (Holm, 1979) for multiple post-hoc pairwise comparisons. Three asterisks indicate

a significance level of p < 0.001, two asterisks indicate p < 0.01, and one asterisk indicates p < 0.05.

compression is not important, since only the relative differences
between different movement types matter. Again the extremes
are spanned by the three synthetic processes. The artificial ran-
dom processes (AR and AF) are most difficult to compress, while
the artificial rhythmic process (AS) is easiest to compress. In the
set of subjects’ movements, self-generated patterns (P) have the

highest compressibility, suggesting the presence of structure and
regularity. Subjects’ random movements (R1) have the lowest
compressibility, but are clearly more compressible than artifi-
cial random motions (AR and AF). The compressibility of letter
drawings (L) is very similar to the compressibility of subject’s
self-paced random motion (R1).
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Figures 2D,E show the approximate entropy (ApEn) for the
different movement types, again with the highest irregularity in
artificial random data (AR and AF), followed by subjects’ ran-
dom movements (R1), the letter drawings (L) and subjects’ self-
generated patterns (P). The artificial rhythmic movement (AS)
had an approximate entropy of zero. We found the value of the
approximate entropies to be robust with respect to the parameter
range used by previous studies—see Methods for details.

Figure 2F shows the Lempel-Ziv complexity for the different
movement types, again with the highest irregularity in artifi-
cial random data (AR and AF), followed by subjects’ random
movements (R1), the letter drawings (L), and subjects’ self-
generated patterns (P). Importantly, all four measures indicate
the same order of regularity in our movement data, which sug-
gests that they provide a robust measure to assess regularity and
randomness in motion trajectories.

ADAPTATION OF MOTION REGULARITY DURING PURSUIT
To investigate whether the degree of irregularity that subjects can
generate during self-paced random motion can be modified, we
designed a second part of the experiment where participants were
asked to perform unpredictable movements in the context of a
pursuit game. The aim of the game was to avoid being caught by
a pursuer that predicted subjects’ next move.

The pursuer was simulated by an adaptive Bayesian model that
predicted subjects’ next cell transition and that could learn sub-
jects’ idiosyncrasies over trials. Subjects received feedback about
the pursuer’s success either in an online fashion during the trial
or in an offline fashion after each trial. In online feedback tri-
als, cells were colored red and a beep sound occurred whenever
subjects’ cell transition was predicted by the Bayesian model.
In offline feedback trials, the proportion of correctly predicted
moves was displayed to subjects after trial completion. Both trial
types were intermixed randomly. We found no significant dif-
ference in irregularity or structural complexity between online
and offline feedback trials—see Figure 3 and Table 2 for detailed
results. The rationale for the two trial types was that the online
feedback condition (RF) served mainly as a learning condition,
whereas the task setup for the offline feedback condition (R2)
was comparable to the self-paced random motion condition (R1),
since in either case there was no performance feedback during
the trial. Therefore, we only show results for the offline feedback
condition in Figure 2.

As can be seen in Figure 2, the irregularity of random move-
ments in the pursuit game was increased compared to self-paced
random motion. This increase was statistically significant for all
considered randomness measures—compare Table 1. However,
the generated random trajectories even after training in a pursuit
game were still not as random as Brownian motion (p < 0.001,
Mann–Whitney–Wilcoxon test with Bonferroni-Holm correc-
tion) or a first-order Markov process based on subjects’ empirical
frequencies (p < 0.05).

COMPLEXITY vs. RANDOMNESS
When applying the previous measures of predictability, com-
pressibility, approximate entropy, and Lempel-Ziv complexity as
shown in Figure 2, we see that the highest degree of irregularity is

FIGURE 3 | Comparison between online (RF) and offline feedback (R2)

in the pursuit game. The plot shows the results of all the measures
considered in this paper: predictability, compressibility using a Lempel-Ziv
compressor, compressibility using a Context-Tree Weighting compressor,
Approximate Entropy with two different parameter settings (m = 1 and
m = 2), Lempel-Ziv Complexity and Effective Measure Complexity. All
values are normalized with respect to the offline condition (R2). We found
no significant difference in irregularity or structural complexity between
online and offline feedback trials (see Table 2 for detailed results).

Table 2 | Comparision between online (RF) and offline feedback (R2)

in the pursuit game.

Measures p-value Sign. level

Predictability 0.146 −
LZ compression 0.238 −
CTW compression 0.163 −
ApEn (m = 1) 0.218 −
ApEn (m = 2) 0.174 −
LZ complexity 0.101 −

EMC 0.377 −

We ran a permutation ANOVA with 2000 simulations on the proposed mea-

sures of motion regularity and complexity. We found no signifficant difference in

irregularity or structural complexity between online and offline feedback trials.

always achieved by artificial random trajectories. However, irreg-
ularity itself is not necessarily a measure of complexity, but rather
of randomness, and randomness in turn might be generated by
quite simple processes—e.g., by flipping a fair coin. In contrast,
one would feel intuitively that a complex motion should lie some-
where in between the two extremes of completely predictable
regularity and structureless randomness.

A good starting point to assess the degree of organizational
complexity is to analyze conditional entropies of a process. The
conditional entropy quantifies the degree of uncertainty about
the next state of the process conditioned on a history of states.
In particular, if conditional entropies are sensitive to long his-
tories, this suggests that there are long-range correlations and
structure typical for complex processes. To assess the complex-
ity of subjects’ motion trajectories quantitatively we therefore
investigated the dependence of conditional entropy on history
length. Figure 4 compares the conditional entropy estimated
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FIGURE 4 | Conditional entropy for different movement types

estimated from empirical frequencies depending on the length of the

history. The different movement types included self-generated patterns
(P), letter drawings (L), self-paced random motion (R1), random motion
during pursuit (R2) and artificial rhythmic (AS) and random motions (AR

with uniform distribution and AF with empirical first order frequency). The
lines show means over subjects and the gray bands show standard errors.

from empirical frequencies up to length 4 for the different move-
ments types.

The conditional entropy for the completely predictable artifi-
cial rhythmic movement (AS) immediately decays to zero once
the history is long enough to include the repetitive pattern. In
contrast, the conditional entropy of the artificial random move-
ments (AR and AF) shows almost no decay—there is only a tiny
decay due to boundary effects of the 10 × 10 grid—, because the
entropy in each time step conditioned on any history remains
(almost) the same. When comparing the different human move-
ments to each other, one can see that the conditional entropy of
self-generated motion patterns (P) decays the fastest, followed
by the conditional entropy of the letter drawings (L), indicat-
ing the fast increase in predictability when including longer
motion histories. When comparing the two random motions, one
can see that the conditional entropy in the pursuit game (R2)
decays slower than the self-paced random motion (R1), suggest-
ing that subjects were able to reduce temporal correlations in their
movements.

It is notoriously difficult to obtain reliable estimates of higher
order conditional entropies from finite data, since the number
of potential histories grows exponentially. However, it is possi-
ble to estimate the asymptotic value of the conditional entropy,
which is called the entropy rate. The entropy rate quantifies the
irreducible part of the uncertainty of a stochastic process that
cannot be further reduced by taking into account longer histories
(Prokopenko et al., 2009). We can estimate this entropy rate from
finite data by computing the normalized Lempel-Ziv complexity.
The resulting estimates of the entropy rates for the different
movement conditions are drawn as asymptotes in Figure 5.

Importantly, we can think about the conditional entropies as
approximations to the entropy rate when we condition on finite
histories rather than infinitely long histories. These finite his-
tory approximations systematically overestimate the entropy rate,
because taking into account more information in the history can
only improve prediction. Therefore, the systematic overestima-
tion quantifies the part of the randomness that vanishes when
considering longer histories for prediction, and is therefore not
really randomness at all, but an indication of structure. The total
complexity of the structure can then be obtained by the effective
measure complexity that integrates the differences between finite
history conditional entropies and entropy rate for all possible
history lengths—see Methods for details.

To obtain an estimate of the effective measure complexity, we
assumed a parametric form (Ebeling and Nicolis, 1991, 1992) for
the decay of conditional entropies for histories longer than order
4 that interpolated between the empirical conditional entropies
up to order 4 and the asymptotic estimates given by the normal-
ized Lempel-Ziv complexity (Lempel and Ziv, 1976; Cover and
Thomas, 1991; Badii and Politi, 1999). The gray areas in Figure 5
show the integral of the differences between the finite history
conditional entropies and entropy rates. This integral defines our
estimate of the effective measure complexity.

In contrast with the previous measures of regularity, the arti-
ficial rhythmic (AS) and both artificial random movements (AR
and AF) have lower complexity than any movements generated
by humans. The highest complexity is obtained by subjects’ self-
generated patterns (P), followed by subjects’ drawing of letter
sequences (L). The lowest complexity among subjects’ move-
ments is seen for subjects’ random movements (R1 and R2).

INFLUENCE OF SHOWING TRAJECTORIES
In the previous experiment, we showed subjects the entire history
of their movement trajectories during each trial. However, this
may add some external memory and auto-information structure
in the joint system of human and virtual environment. In order to
study the impact of displaying trajectories, we conducted a con-
trol experiment with another 10 subjects. The control experiment
followed exactly the same procedure as the previous experiment,
with the only difference that the history of movement trajec-
tories were not shown to subjects, but only the current hand
position.

Figure 6 compares the results obtained from the control exper-
iment with the results obtained from the original experiment. We
found that neither irregularity nor structural complexity mea-
surements changed significantly for all movement types—see
Table 3 for detailed results. This suggests that our results are not
an artifact of displaying the trajectory history, but hold more gen-
erally. In particular, we found that the relative order of regularity
and complexity of different movement types remained the same
as in the original experiment.

EFFECT OF GRID SIZE
In order to investigate the impact of the grid size on our results,
we performed an additional analysis, where we changed the grid
size of our work space post-hoc. To compute subjects’ motion
trajectories for different grid sizes, we discretized the full motion
trajectories recorded with a sampling rate of 1 kHz into symbolic
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FIGURE 5 | Estimated conditional entropy and effective measure

complexity. The left six panels (A–G) shows the estimated conditional
entropy for different movement types. Up to order 4 the conditional entropy
is estimated from empirical frequencies (blue dots). The asymptote (black
line) is estimated from LZ complexity. The red dots show a parametric
interpolation of conditional entropies according to Equation 9. The gray areas

indicate the integrated excess entropies that yield the effective measure
complexity shown in the right panel (H). The different movement types
included self-generated patterns (P), letter drawings (L), self-paced random
motion (R1), random motion during pursuit (R2), and artificial rhythmic (AS)

and random motions (AR with uniform distribution and AF with empirical first
order frequency).

sequences with grid sizes 5.0, 2.0, 0.5, and 0.1 cm. The effect of
grid size is shown in Figure 7. As expected for smooth trajecto-
ries, we found that the finer the grid, the higher the regularity
(and predictability) of the different motion types–see Figure 7A.
However, if the grid size is chosen extremely coarse (e.g., 5.0 cm),
then regularity can increase due to artifacts (e.g., in the case
of 5.0 cm there are only two possible transitions from each cell
to the next). As the total number of cell transitions increases
for smaller cells, the (unnormalized) Lempel-Ziv complexity
increases accordingly–see Figure 7B. While the absolute measures
of regularity changes across the different grid sizes, importantly,
the relative order of regularity between the different motion types
remains the same.

The change in Effective Measure Complexity depending on
grid size is determined by two factors: one factor is the lowering of
the entropy rate for smaller grid sizes due to increased regularity,
and the second factor is a faster decay of the conditional entropy
for smaller grid size. Depending on the strength of these two fac-
tors, Effective Measure Complexity can both increase or decrease.
In the case of copying letters, self-paced random movements and
random movements in the pursuit game the Effective Measure
Complexity increases slightly for smaller grid sizes, mainly due
to the effect of the lower entropy rate. In contrast, the Effective
Measure Complexity of subjects’ self-generated patterns are more
sensitive to the change of grid size, and it seems that the struc-
tural complexity is highest for a grid size of 2.0 cm –see Figure 7C.
Importantly, however, the relative order of the Effective Measure

Complexity for the different movement types is robust to changes
in grid size.

DISCUSSION
In our study we designed a motor task to assess complexity
and randomness of human hand motion. We analyzed symbol
sequences representing subjects’ motion trajectories in a dis-
cretized workspace. Subjects performed different kinds of move-
ments, including pattern generation, drawing of letters, self-paced
random motion, and random movements in the context of a pur-
suit game. We tested several measures to assess regularity of these
movements, including predictability, compressibility, approxi-
mate entropy and Lempel-Ziv complexity. We found that all these
measures reveal the same order in regularity in these movements,
with pattern generation showing the highest degree of regular-
ity, followed by letter drawings, followed by random movements
with the lowest degree of regularity. To test whether subjects can
adapt their motion randomness, we exposed them to a pursuit
game and found that they could increase their randomness in the
presence of an on-line Bayesian predictor. However, both subjects’
random trajectories before and after training were not fully ran-
dom compared with synthetic pseudo-random sequences. Finally,
we assessed the effective measure complexity of subjects’ trajecto-
ries as a measure of structural complexity rather than regularity
or randomness. We found that self-generated patterns were most
complex, followed by letters, followed by random movements that
showed the lowest level of complexity.
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FIGURE 6 | Effect of showing participants the entire history of their

movement trajectories. We compare four different types of movement:
self-generated patterns (P), letter drawings (L), self-paced random motion
(R1), and random motion during pursuit (R2) using three different
measures: predictability in (A), Lempel Ziv complexity in (B), and Effective
Measure Complexity in (C). We found no significant difference for any of
these measures when comparing both conditions (see Table 3 for detailed
results).

Previously, Newell et al. (2000) have investigated random
motion in single joint finger movements. They instructed sub-
jects to generate random trajectories by varying speed and joint
angle of their index finger. The regularity of subjects’ move-
ment trajectories was measured by the approximate entropy. The
authors found that subjects produced a relatively low level of
motion randomness and that subjects were not able to increase

the motion randomness significantly through training, even when
they provided subjects with additional feedback. In contrast, in
our study we found that subjects were able to significantly change
the randomness of their movements in the context of a pursuit
game compared to self-paced random motion. However, in our
study movements were not simple single joint movements, but
rather complex multi-joint arm and hand movements required
for drawing. Thus, the control process in our experiment has
many more degrees of freedom that could be influenced. Similar
to Newell et al., we also found that subjects’ motion was not
fully random and could be easily distinguished from synthetically
generated random motion.

In another study, Hornero et al. (2006) asked healthy and
schizophrenic subjects to press a space bar on a computer key-
board as irregularly as possible. They assessed the randomness
of the resulting time series by approximate entropy, Lempel
Ziv complexity and a central tendency measure they specifically
developed for this task. The authors found that schizophrenic
subjects’ time series were characterized by more regularity, that
is they were less capable of generating random behavior. Similar
to Hornero et al. we found that both approximate entropy and
Lempel Ziv complexity provided reliable measures of motion
regularity.

While irregularity has been used as a measure of complexity,
this is often not the case. In the literature there is a multitude
of different complexity measures that can be roughly categorized
into three classes (Lloyd, 2001): (i) difficulty of description, (ii)
difficulty of creation, and (iii) the degree of organization. The first
class typically contains randomness measures such as entropy,
Kolmogorov complexity, and Lempel Ziv complexity, with the
idea that a symbol sequence that is random is also more difficult
to describe. The second class of complexity measures concerns
the computational complexity of running an algorithm that can
generate a particular sequence and typical measures include time-
space computational complexity, logical depth, and others. The
third category of complexity aims to quantify the degree of orga-
nizational structure and includes effective measure complexity
(excess entropy), fractal dimension, hierarchical complexity, and
others.

Effective measure complexity is mathematically equivalent to
predictive information, that is the mutual information between
past and future in a stochastic process (Bialek et al., 2001). It
estimates how much information an agent needs to store in its
memory so it can predict the future as well as possible after hav-
ing observed a semi-infinite history (Prokopenko et al., 2009).
Intriguingly, predictive information has also previously been sug-
gested as an organizational principle for sensorimotor behavior
(Ay et al., 2012; Martius et al., 2013). Rather than maximizing
a particular utility function for a particular task, such agents
build up efficient representations while exploring their body and
environment trying to maximize predictive information.

The estimation of effective measure complexity from finite
data is notoriously difficult, because it requires the estimation
of higher order block entropies. Estimating entropies of higher
order from frequencies in the data introduces a well-known bias
that systematically underestimates rare events. There are a num-
ber of approaches to correct for this bias (Efron and Stein, 1981;
Strong et al., 1998; Antos and Ioannis Kontoyiannis, 2001), but
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Table 3 | Effect of displaying trajectory trace.

Measures P–P L–L R1–R1 R2–R2

p-value Sign. level p-value Sign. level p-value Sign. level p-value Sign. level

Predictability 0.396 − 0.121 − 0.312 − 0.367 −
LZ compression 0.425 − 0.106 − 0.312 − 0.425 −
CTW compression 0.367 − 0.061 − 0.339 − 0.192 −
ApEn (m = 1) 0.425 − 0.093 − 0.396 − 0.367 −
ApEn (m = 2) 0.312 − 0.093 − 0.367 − 0.214 −
LZ complexity 0.396 − 0.070 − 0.339 − 0.214 −

EMC 0.440 − 0.325 − 0.396 − 0.339 −

We ran Mann–Whitney–Wilcoxon text to study the effect of showing or not showing the entire history of their movement trajectories. We found no significant

difference for any of the proposed measures of motion regularity and complexity when comparing both conditions.

in certain data regimes also “bias-corrected” estimators are likely
to be contaminated by bias (Paninski, 2003). Another possibil-
ity is to calculate entropy by assuming an underlying Hidden
Markov Model (Ekroot and Cover, 1993). However, in our case no
such model is available. Another possibility is to estimate entropy
from Zipf-ordered frequencies fitted with parametric decay func-
tions (Pöschel et al., 1995). This approach failed in our case,
because the parametric families suggested by Pöschel et al. (1995)
did not fit the distribution of the motion data very well. In
our study we estimated the effective measure complexity based
on a decay parameter that we used to interpolate between the
empirical conditional entropies and the estimated entropy rates
obtained from the normalized Lempel-Ziv complexity. Previous
studies showed that the normalized Lempel-Ziv (LZ-76) com-
plexity provides reliable estimates of the entropy rate (Amigó
et al., 2004; Speidel et al., 2006). We also found LZ complexity
to be robust, when comparing the mean normalized LZ com-
plexity across individuals to the normalized LZ complexity of the
concatenated movement sequence of all subjects. The latter sym-
bol sequence had length 100, 000 and was comparable to tested
sequence lengths in previous studies (Amigó et al., 2004; Speidel
et al., 2006).

Based on our estimate of the effective measure complexity
we rank-ordered subjects’ motion from most complex to least
complex from generating patterns, drawing letters, to moving
randomly. Drawing letters was characterized both by more ran-
domness and less complexity than subjects’ self-generated pat-
terns. One of the reasons for higher irregularity in the letter
sequences is certainly that the list of letters subjects were asked
to copy was generated randomly from a uniform distribution.
Therefore, there was much less repetition than in the case of pat-
tern generation. Moreover, since letters were drawn on top of each
other, our recordings include the required connecting movements
between different letters. The stereotypy of letters in human per-
ception ignores a lot of the variability and recognition is strongly
facilitated by context information and refined feature detection.
Both context and perceptual feature spaces are, however, not
considered by effective measure complexity, which is a model-free
approach to quantify structural complexity.

An important restriction in our analysis is that we only con-
sidered spatial patterns by encoding transitions between grid cells

independent of the point in time when the transitions occurred.
Assessing general spatio-temporal patterns imposes additional
challenges: if the temporal resolution is high then changes in
the symbol sequence are rare, if the temporal resolution is low
then a simple local transition table might not be enough anymore
to capture the dynamics, because large spatial jumps can occur.
Moreover, the temporal resolution might be different for different
subjects, and therefore difficult to assess across subjects. Assessing
full spatio-temporal patterns of human movements by symbolic
sequences therefore remains an important challenge.

An intriguing question for future research is whether such
complexity measures for self-generated motion patterns of differ-
ent individuals can be associated with personality traits or disease.
In particular, it would be interesting to study whether creativ-
ity as measured by psychometric approaches can be related to
complexity measures of generated motion trajectories. Previous
studies have even tried to relate complexity measures of patterns
to the degree such patterns are judged to be esthetically pleas-
ing (Ebeling et al., 1998). In the context of motor learning, an
interesting question is how structural learning is affected by the
structural complexity of different movement types required in
different environments (Braun et al., 2009, 2010; Turnham et al.,
2012) and how this complexity might affect continuous decision-
making processes (Ortega and Braun, 2011; Wolpert and Landy,
2012; Ortega and Braun, 2013). In conclusion, while our study
certainly does not provide the final answer to the introductory
problem, it suggests that drawing patterns–like for example the
Nazca lines in the Peruvian desert or the pictorial engravings in
the Voyager Golden Record–might seem not such a bad idea to
signal intelligence to an outside observer.

MATERIALS AND METHODS
PARTICIPANTS AND APPARATUS
Twenty participants (7 females and 13 males) took part in
the study. Participants were assigned into two groups of 10.
All participants were naive and gave informed consent before
starting the experiment. The study was approved by the ethics
committee of the Max Planck Society. We used a virtual real-
ity setup consisting of a Sensable® Phantom® Premium 1.5 High
Force manipulandum for tracking participants’ hand movements
in three dimensions and an NVIS® nVisor ST50 head-mounted
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FIGURE 7 | Impact of the grid size on the regularity and complexity

measures. We compare five different grid sizes: 5.0, 2.0, 1.0 (the original
grid size), 0.5, and 0.1 cm by applying different post-hoc discretizations of
subjects’ trajectories—in particular: self-generated patterns (P), letter
drawings (L), self-paced random motion (R1), and random motion during
pursuit (R2). (A) Shows the predictability, (B) shows the Lempel Ziv
complexity and (C) shows the Effective Measure Complexity for all types of
subjects’ movements and grid sizes.

display (HMD) for creating stereoscopic 3D virtual reality—see
(Genewein and Braun, 2012) for details.

GENERAL EXPERIMENTAL PROCEDURE
Subjects controlled a cursor (blue, radius 4 mm) representing
their hand position in a 3D virtual space. In each trial, their task

was to generate a trajectory in the vertical plane in a 10 × 10 cm
workspace that was displayed in 3D showing a 10 × 10 grid of
unit squares. To initiate the trial they had to move to a start sphere
(blue, radius 6 mm) at the center of the square. During the trial,
subjects in the first group could see their advancing movement
trajectory, as both the current cursor position and all past cur-
sor positions of the trial were displayed. Subjects in the second
group (control group) only saw their current cursor position dur-
ing the trial. This was the only difference between the two groups.
Subjects could not move outside the grid as they were constrained
to the vertical plane by a spring force (spring constant 8 N/cm)
and the boundaries of the grid were delimited by spring-force
walls (spring constant 8 N/cm) generated by the manipulandum.
Additionally to their three-dimensional hand position, subjects’
movements were recorded as transitions in grid space—that is, a
state transition was only recorded if the cursor moved to a new
grid cell. The trial ended after 200 state transitions. In total, there
were five different conditions, each of which consisted of 50 tri-
als. The conditions were organized in two sessions. Session I was a
drawing session with the three conditions pattern, letter, and ran-
dom. Session II was a pursuit game with two conditions: online
feedback and offline feedback. The first session was a baseline
session in which we could compare randomness and complex-
ity measures of different self-paced movement types, whereas in
the second session we could investigate the effect of learning on
motion randomness.

Drawing session
In the drawing session participants were asked to perform three
different types of movement indicated by a written instruction
displayed on the screen and condition-specific background col-
ors: pattern (gray background), letter (black background), and
random (dark blue background). The first 15 trials were test runs
in the order 5 pattern, 5 letter, 5 random. The remaining 150
trials for the three conditions were interleaved randomly. Thus,
in total there were 165 trials. For the pattern condition, subjects
were instructed to “draw something with a repeating pattern.”
In each trial, they performed only one such pattern, and they
could change the pattern from one trial to the next. The shape
of the pattern was not otherwise prescribed, so subjects could
pick arbitrary patterns. In the letter condition, ten letters were
drawn uniformly from the English alphabet and displayed on the
screen in a row at beginning of each trial. Subjects were asked to
copy them one after another and to write them on top of each
other. Subjects were not required to finished all ten letters. In the
random condition, subjects were asked to “draw trajectories they
considered to be random.” A trial ended after 200 cell transitions.
Figure 1 shows three examples for the different conditions.

Pursuit game
In the pursuit game, an artificial intelligence based on the
Context-Tree Weighting (CTW) algorithm (Willems, 1995; Volf,
1997) learnt to predict subjects’ next move. Context-Trees were
learnt on-line across trials through the entire session. Subjects
were told that there was an AI predicting their behavior and
they “should be as unpredictable as possible.” A test run con-
sisted of the first five trials in the online feedback condition,
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the remaining 100 trials of the two conditions were interleaved
randomly. In the online feedback condition subjects could see
whether their movement position in the last four cells (or
respectively the last cell in the control experiment) was pre-
dicted by the artificial intelligence or not. If the prediction
matched the subject’s real move, the cell the subject moved
into was marked in red and subjects heard a high pitch beep.
If the prediction did not match the subject’s real move, the
cell the subject moved into was marked blue and no sound
was played. Additionally, the fraction of successfully predicted
moves in the trial was shown numerically on the screen. A trial
ended after 200 cell transitions. In the offline feedback condi-
tion, subjects did not receive any information about the pre-
dictability of their trajectory during the trial, but they could see
the fraction of successfully predicted moves at the end of each
trial.

DATA ANALYSIS
The workspace was divided into 10 × 10 grid cells. Transitions
between the grid cells were recorded as symbol sequences
s1s2s3. . . sn, with si ∈ {l, r, u, d} corresponding to “left,” “right”
“up,” and “down.” For each subject, we merged the symbol
sequences from all trials of each condition into one big sequence
with length n = 10, 000 (50 trials × 200 transitions per trial).

Additionally, three artificial data sets with the same sequence
length (n = 10, 000) were generated to compare them to the
recorded sequences. The first artificial sequence was a repetitive
up-down sequence consisting of “ududududu . . .”. The second
artificial sequence was a random sequence simulating a particle
doing a random walk inside a 10 × 10 grid with uniform transi-
tion probabilities. The third artificial sequence was generated by a
random process having the same first order frequencies (p(l), p(r),
p(u), p(d)) as subjects’ pattern generation sequences. To quantify
randomness and complexity of the symbol sequences we used the
following measures.

Predictability
We quantified the predictability of subjects’ motion by count-
ing the number of correctly predicted cell transitions one step
into the future given subjects’ current position and history. As a
predictor we used the Context-Tree Weighting (CWT) algorithm
(Willems, 1995; Volf, 1997). CWT is an efficient and theoreti-
cally well-studied binary sequence prediction algorithm based on
online Bayesian model averaging that works well for very gen-
eral prediction problems (Begleiter et al., 2004; Veness et al.,
2011). To apply CWT to ASCII symbol sequences, eight binary
sequences are obtained from the ASCII sequence corresponding
to the sequences of the first, second, third, etc. up to the eighth
bit of each ASCII byte. Therefore, eight context trees for the eight
binary sequences are used in parallel. Each tree has a fixed depth
D that limits the length of the binary patterns the tree can detect.
Context trees are binary suffix trees where each pattern (up to
length D) corresponds to a particular node in the tree. Given a
particular node n, a prediction tree counts the number of zeros
and ones immediately following the pattern (Rissanen, 1983; Ron
et al., 1996). At each time point t, the probability for the next
binary symbol of node n in the tree is computed given the full his-
tory S1:t = S1S2 · · · St of the binary sequence with an zeros and bn

ones using the Krichevsky-Trofimov (KT) estimator (Krichevsky
and Trofimov, 1981)

Pn
KT(St+1 = 0|S1:t) = an + 1/2

an + bn + 1

Pn
KT(St+1 = 1|S1:t) = 1 − Pn

KT(St+1 = 0|S1:t).
(1)

The KT estimator assumes a Bernoulli model, equivalent to
observing tosses of heads (zeros) and tails (ones) of a coin with
unknown bias and then predicting the most likely next outcome
(head or tail corresponding to zero or one). To predict the next
symbol of the binary sequence based on this context tree, the
weighted probability Pε

w of the root node ε has to be determined,
according to the following recursion

Pn
w =

{
Pn

KT(S1:t) if n is a leaf node
1
2 Pn

KT(S1:t) + 1
2 (Pn0

w × Pn1
w ) otherwise

(2)

where Pn0
w and Pn1

w represent the weighted probabilities of the left
and right child of node n. By computing the weighted probability
from bottom to top we get the output prediction probability Pε

w
of the next bit in the sequence.

We used the CTW algorithm in two ways. First, we used CTW
for on-line prediction in the pursuit game during the experiment.
Second, we used CTW as an offline analysis to measure the pre-
dictability γ of the symbol sequences obtained from the recorded
motion trajectories, where

γ = nm/N (3)

with nm counting the number of correctly predicted cell transi-
tions and N the total length of the sequence.

Compressibility
Random sequences are more difficult to compress than regular
sequences, because it is difficult to find repeating patterns that
could be encoded with short codewords. Therefore, compressibil-
ity can also be used to quantify the regularity of sequences and to
distinguish between random and non-random sequences. Here
we used two compression algorithms for analysis: Lempel-Ziv
compression and Context-Tree Weighting compression.

• Lempel-Ziv algorithms compress data by searching for repeti-
tive words, that have appeared before in the sequence. These
words are saved in a dictionary such that the sequence can
be encoded by the index of the words (Ziv and Lempel, 1978;
Welch, 1984). Lempel-Ziv compression is a universal data com-
pression algorithm that does not require prior knowledge of
the source statistics and is therefore widely used in practice
(Farach and Thorup, 1998).

• Context-Tree Weighting cannot only be used for prediction, but
also for compression—in fact, it was originally proposed as a
lossless compression technique (Willems, 1995). The compres-
sor can be simply obtained by using the CTW predictive distri-
bution as a coding distribution in an arithmetic coding scheme
(MacKay, 2003). Computational and storage complexity of this
algorithm are linear in the source sequence length.
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We define η as a measure of compressibility with

η = (N − Ncomp)/N, (4)

where N is the length of the original symbol sequence before com-
pression, and Ncomp the length of the compressed sequence. η can
also be expressed as a percentage.

Approximate entropy
Approximate entropy (ApEn) can quantify the regularity in data
without any a priori knowledge about the system generating
it (Pincus, 1991). It has been used for analyzing regularity in
time-series data in neurobiological and other physiological sys-
tems (Radhakrishnan and Gangadhar, 1998; Bruhn et al., 2000;
Richman and Moorman, 2000; Pincus, 2001; Hornero et al.,
2006). ApEn assigns a non-negative value to a time series, with
larger values corresponding to more irregularity in the data. It
has two user-specified parameters: a run length m and a toler-
ance threshold r. For a sequence s1s2..sN , ApEn is computed by
the following steps (Pincus, 1991; Hornero et al., 2006):

• Form a sequence of vectors X1, X2, . . . , XN − m + 1 defined by
Xi = [si, si + 1, . . . , si + m − 1].

• Define the distance between Xi and Xj as the maximum
absolute difference between their respective scalar com-
ponents: d[Xi, Xj] = maxk = 1:m |Xi(k) − Xj(k)| = maxk = 1:m
|si + k − 1 − sj + k − 1|.

• For each Xi construct a quantity Cm
r (i) = Nm

r (i)
N − m + 1 where

Nm
r (i) counts the number of Xj such that d[Xi, Xj] < r.

• Compute φm
r by taking the natural logarithm of

each Cm
i and averaging it over i such that φm

r =
1

N − m + 1

∑N − m + 1
i = 1 ln Cm

r (i).

• Repeat the same calculation for m + 1 to obtain φm + 1
r .

• Finally ApEn is given by ApEn(m, r) = φm
r − φm + 1

r .

Comparisons between time series can only be made given the
same values of parameters r and m (Pincus, 2001). As suggested by
previous studies (Pincus, 2001; Hornero et al., 2006), we used the
parameter settings m ∈ {1, 2} and r ∈ {0.1, 0.15, 0.2, 0.25} × σ ,
where σ is the standard deviation (SD) of the symbol sequence
in numerical representation. In our case of integer sequences,
the estimate of the approximate entropy was not affected by the
different parameter settings of r ∈ {0.1, 0.15, 0.2, 0.25} × σ .

Lempel-Ziv complexity
Lempel-Ziv complexity is a non-parametric entropic measure of
regularity of symbol sequences (Doğanaksoy and Göloğlu, 2006).
It has been widely applied in neuroscience, for instance, to detect
epileptic seizure from EEG data (Radhakrishnan and Gangadhar,
1998; Hu et al., 2006), to analyze neural spike trains (Amigó
et al., 2004; Blanc et al., 2008), and to quantify the complexity
of states of consciousness (Casali et al., 2013). Roughly, it counts
the minimal number of distinct substrings to segment an entire
symbol sequence. For instance, the decomposition of the binary
sequence x = 01001101010111001001 into minimal blocks of the
segmentation is 0|1|00|11|0101|0111|0010|01, hence the (LZ-76)
complexity of x is 8.

Effective measure complexity
Effective measure complexity has been proposed as a measure of
complexity or structure of a system (Grassberger, 1986; Eriksson
and Lindgren, 1987; Lindgren and Nordahl, 1988). It is also
referred to as Predictive Information (Prokopenko et al., 2009),
Excess Entropy (Crutchfield and Feldman, 2003; Ay et al., 2006),
or simply Complexity (Li, 1991). One way to determine effective
measure complexity, is to first compute the block-entropy HL of
length-L patterns in the sequence

HL = −
∑

s1...sL

p(s1 . . . sL) logk p(s1 . . . sL) (5)

where k is the size of the alphabet. For example, in a binary
sequence k = 2 and the block-entropy HL is measured in bits.
In our sequences the alphabet is quaternary consisting of the
symbols “l,” “r,” “u,” and “d,” and thus k = 4. HL is a non-
decreasing function of L, which allows defining positive condi-
tional entropies hL through the difference

hL = HL+1 − HL (6)

sometimes also called entropy gains (Crutchfield and Feldman,
2003). The conditional entropy hL quantifies the average uncer-
tainty about the symbol sL+1 given the previous symbol sequence
s1..sL. The longer the given sequence, the lower the conditional
entropy, as adding more prior information can only lead to a bet-
ter prediction of a symbol, such that hL+1 ≤ hL. The limit L → ∞
of the conditional entropy gives the entropy rate

h = lim
L→∞ hL, (7)

which is also known as per-symbol entropy, the thermodynamic
entropy density, Kolmogorov-Sinai entropy (Kolmogorov, 1959),
or metric entropy. The entropy rate of a sequence quantifies
the average amount of information per symbol s and is a lower
bound for all conditional entropies such that h ≤ hL with L ∈ N.
Therefore, the entropy rate quantifies the amount of irreducible
randomness or uncertainty in the system, that is no knowledge
of an arbitrarily long sequence preceding a symbol can improve
prediction of that symbol beyond this bound.

The decay rate of the conditional entropy with increasing
sequence length L is an important indicator of complexity. In par-
ticular, slowly decaying conditional entropies imply long range
order typical for complex systems, because in that case symbols
that are far apart in the sequence still share information. These
long range correlations allow improving predictability of a sym-
bol when increasing the length of the preceding sequence from L
to L + 1. In contrast, fast decaying conditional entropies are typ-
ical for simple systems with no memory. In either case we can
think about the conditional entropies as finite approximations to
the entropy rate. These finite approximations systematically over-
estimate the entropy in the system, because part of the entropy
vanishes when taking into account longer preceding sequences
with larger L. Thus, the difference hL − h measures the amount
of apparent randomness, that is not really random, but can be
explained away by considering correlations over longer distances.
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Therefore, this local excess entropy hL − h is an indicator of the
memory or structure of the source generating the symbol string
(Ebeling, 1997; Ebeling et al., 1998).

The total excess entropy is given by the sum over all local excess
entropies and corresponds to the Effective Measure Complexity
(EMC) of the system

EMC =
∞∑

L = 0

(hL − h). (8)

This quantity converges to a finite value as long as the conditional
entropy hL decays faster than 1/L. Simple systems are often char-
acterized by an exponential decay, that is hL ∼ exp(−γ L) with
some relaxation rate γ > 0. Complex sequences created from
music or text have been found to lie between these two extremes
and can often be well approximated polynomially (Ebeling and
Nicolis, 1991, 1992; Debowski, 2011), such that

hL ≈ h + 1

Lα
, (9)

with α ∈ (0; 1). The value of α has been found to be usually
around 0.5 for text sequences and between 0.5 and 1 for music
(Ebeling et al., 1998).

Determining the effective measure complexity from finite data
is difficult, especially when estimating the entropies from empir-
ical data frequencies. This requires L � logk N, such that the
sequence length N is significantly longer than the block lengths
L to ensure that each symbol combination s1s2..sL occurs suffi-
ciently often. When L ≥ logk N, many strings s1s2..sL will occur
only once or not at all, and hence the empirical frequency cannot
reflect the underlying distribution anymore. In order to overcome
this undersampling problem, we used Equation 9 to approxi-
mate the effective measure complexity. Then the problem reduces
to estimating the decay parameter α and the entropy rate h.
The entropy rate can be approximately determined from finite
sequences by the normalized Lempel-Ziv complexity, presum-
ing that the source sequence is stationary and ergodic (Lempel
and Ziv, 1976; Cover and Thomas, 1991; Badii and Politi, 1999).
It provides a straightforward way to estimate the entropy rate
for symbolic sequences, requiring no free parameters. Therefore,
normalized Lempel-Ziv complexity is a widely used entropy rate
estimator in practice (Amigó et al., 2004; Zozor et al., 2005;
Amigó and Kennel, 2006). In our study we used the normaliza-
tion procedure suggested by Badii and Politi in Chapter 8 (Badii
and Politi, 1999). Supplementary Figure S1 demonstrates the con-
vergence of the normalized LZ complexity to the true entropy rate
(computation details see Ekroot and Cover, 1993) for a random
walk in a 10 × 10 grid. The decay parameter α can be fitted when
applying Equation 9 to conditional entropies that can still be reli-
ably computed from frequency data, where the condition L �
log4 N holds. Finally the estimated Effective Measure Complexity
is established by using the approximate conditional entropies for
higher order L in Equation 8.
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