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The field of error monitoring is one of the
richest and fastest growing research areas
within human neuroscience. In particular,
applied researchers in clinical psychol-
ogy and psychiatry are excited about
the potential for this research to inform
models and treatments of psychopathol-
ogy. Neuroimaging techniques including
event-related brain potential (ERP) and
functional magnetic resonance imaging
(fMRI) have highlighted the fascinating
ways in which the brain detects and
responds to errors and how these processes
go awry in clinical populations. However,
an increased focus on the brain activity
itself has resulted in a neglect of behav-
ioral performance, including the important
adjustments that follow mistakes. Here,
we suggest that the consideration of task
performance and, in particular, post-error
behavioral adjustments (PEBAs), substan-
tially improves our understanding of the
function of error-related brain activity.
Critically, this entails controlling for behav-
ioral differences and reporting multiple
PEBAs, especially post-error accuracy. We
urge researchers to consider the full range of
behavior in order to foster a richer under-
standing of how individuals detect and
bounce back from their mistakes.

OVERALL PERFORMANCE
Most studies of error monitoring use sim-
ple reaction-time (RT) tasks, such as the
Eriksen flanker task (Eriksen and Eriksen,
1974), to elicit errors while brain activity
is recorded via EEG or fMRI. Although
the focus of this neuroimaging research
is naturally on the brain, accumulating
evidence indicates that differences in how
individuals respond in the task (e.g., RT or

accuracy) influence brain activity tremen-
dously (Hajcak et al., 2004; Yarkoni et al.,
2009; Grinband et al., 2011; Carp et al.,
2012). This is particularly pertinent for
activity within the anterior cingulate cor-
tex (ACC), a region of the medial frontal
cortex (MFC) and the primary focus of
error-monitoring research (Carter et al.,
1998; Shackman et al., 2011; Ullsperger
et al., 2014). Activation within the ACC,
especially when time-locked to errors,
is often inversely related to the actual
number of errors committed (Gehring
et al., 1993; Holroyd and Coles, 2002;
Yeung et al., 2004), such that reduced
ACC activity often coincides with increas-
ing errors. This finding has been incor-
porated into theories relating the ACC
to conflict monitoring (Botvinick et al.,
2001), reinforcement learning (Holroyd
and Coles, 2002), and action-outcome
violations more broadly (Alexander and
Brown, 2011), among many others.

However, the fact that ACC inversely
scales with errors is important in all stud-
ies of error monitoring, for example, in
clinical studies comparing brain responses
to errors between a psychiatric sample and
a healthy control sample. This point is
relevant for two recent studies of the error-
related negativity (ERN), an ERP index
of early error monitoring processes local-
ized to the ACC (Falkenstein et al., 1991;
Gehring et al., 1993, 2012). One study
found that individuals diagnosed with
major depressive disorder (MDD) showed
enlarged ERN compared to healthy con-
trols (Tang et al., 2013), but also found that
the MDD group responded significantly
more slowly and committed fewer errors
(p = 0.06). The authors acknowledged

they could not disentangle the ERN find-
ings from the likely influence of psy-
chomotor retardation, a common symp-
tom of depression in which responses
are slower (and perhaps more careful).
Another study found that individuals diag-
nosed with internet addiction disorder
(IAD) showed reduced ERN compared to
healthy controls (Zhou et al., 2013), but
also found that the IAD group responded
significantly faster and committed more
errors. Neither of these studies ruled out
the influence of behavior on the ERN find-
ings. We believe that the true incremental
value of utilizing neuroimaging technol-
ogy is to reveal differences that cannot be
observed with or explained by behavior
alone. It is therefore important for stud-
ies that find overall behavioral differences
to control for these differences in brain
activity analyses through covariate analy-
ses or by selecting subsamples of partic-
ipants matched on behavior (e.g., Riesel
et al., 2011; Bartholow et al., 2012).

When groups are matched for behav-
ior, interpretations of error-related brain
activity are more straightforward. Studies
of anxiety and its disorders consistently
demonstrate enhanced error-related ACC
activity, despite unaffected performance
(e.g., Ursu et al., 2003; Hajcak, 2012;
Moser et al., 2013). We have suggested
this “neurobehavioral signature” reflects
compensatory effort by which anxious
individuals require more resources to
achieve comparable performance as non-
anxious individuals (Moser et al., 2013,
2014). Note that increased ACC activity
and superior performance might confer
optimal functioning, whereas increased
ACC and poorer performance would
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confer ineffective performance (e.g.,
Eysenck et al., 2007). Importantly, we
believe error-monitoring brain activity
and behavior (e.g., RT, accuracy) are
linked; we are not suggesting that they
are disconnected when brain differences
emerge in the absence of behavioral differ-
ences or vice versa. Our main point here is
that integrating both brain and behavioral
data allows for more informative interpre-
tations that consider multiple sources of
available evidence.

POST-ERROR BEHAVIORAL
ADJUSTMENTS
Understanding how individuals adjust
to their mistakes on subsequent trials
is crucial for a comprehensive study
of adaptive error monitoring. There
are three types of PEBAs (reviewed by
Danielmeier and Ullsperger, 2011). Post-
error slowing (PES)—by far the most
commonly reported PEBA—refers to
the slowing of RT on trials that fol-
low errors, relative to trials that follow
correct responses (Rabbitt, 1966). The
function of PES is a matter of debate
(Danielmeier and Ullsperger, 2011; Dutilh
et al., 2012); generally speaking, some sug-
gest it reflects increased response caution
to improve performance on subsequent
trials (Botvinick et al., 2001), while oth-
ers suggest it simply reflects an off-task
orienting process to novel or infrequent
events that is somewhat irrelevant to the
task (Notebaert et al., 2009). Regardless of
interpretation, it is clear that task-specific
parameters (e.g., cognitive demand, length
of intertrial interval, presence of error
awareness ratings) greatly influence PES
and its functional significance (Jentzsch
and Dudschig, 2009; Grutzmann et al.,
2014). Post-error accuracy (PEA) refers to
the accuracy on trials following errors rel-
ative to trials following correct responses.
Unlike the nearly ubiquitous slowing
of RTs following errors (PES), accuracy
is not always higher on trials follow-
ing errors (Danielmeier and Ullsperger,
2011; Schroder et al., 2012). We con-
tend that PEA is a more straightforward
metric of post-error adaptation than PES
(Moser and Schroder, 2012; Schroder and
Infantolino, 2013), because accuracy is
almost always desired (as opposed to
merely slower responses, as in PES) in
seemingly any task context. The final and

least studied PEBA is post-error reduc-
tion of interference (PERI), which refers
to the reduction in interference-related
RT effects following errors. PERI has only
been examined in a handful of studies and
is not yet well understood (Danielmeier
and Ullsperger, 2011).

Although PES is commonly assumed
to be adaptive in all contexts, it is clear
from accumulating evidence that this is
not always the case (e.g., Gehring et al.,
2012). For instance, PES is typically not or
negatively correlated with PEA, and these
two adjustments are likely mediated by
dissociable neural mechanisms (Carp and
Compton, 2009; Danielmeier et al., 2011).
Although we acknowledge the functional
significance of PES depends on many
factors, we argue that it is difficult to deter-
mine whether or not it is “adaptive” with-
out examining other behavioral markers of
adaptation such as PEA. In a recent rodent
study, Narayanan et al. (2013) investi-
gated the effects of MFC inactivation on
“adaptive control” in terms of both neural
activity and behavioral adjustments fol-
lowing errors in a time-estimation task.
They found reduced low-theta oscillations
and reduced PES among rodents in the
inactivation condition, suggesting MFC is
necessary for adaptive control. They also
suggested their rodent model and task was
appropriate for understanding the effects
of brain stimulation and psychopharma-
cological agents. However, PEA was not
examined in the rodent or the comparison
human sample, raising questions about the
utility of PES in that study.

A closer look at the clinical literature
reveals a highly inconsistent relation-
ship between PES and various types
of psychopathology including attention
deficit hyperactivity disorder (ADHD),
obsessive-compulsive disorder (OCD),
and schizophrenia. For instance, in some
studies, PES was modulated among indi-
viduals with symptoms of ADHD (Krusch
et al., 1996; Sergeant and van der Meere,
1988; Schachar et al., 2004; Wiersema
et al., 2005; Yordanova et al., 2011; Shiels
et al., 2013), but in other studies, ADHD
symptoms were not associated with PES
(Jonkman et al., 2007; Van Meel et al.,
2007; Herrmann et al., 2009; Van De
Voorde et al., 2010). A great variety of tasks
were used across these studies (in fact, no
two studies used the same exact task and

parameters), which likely contributes to
the mixed findings (cf. Schroder et al.,
2013). For tasks in which the subjects
are aware of the trial sequence following
errors (e.g., knowing that errors on lure
trials will be followed by a subsequent lure
stimulus in the next few trials, Hester et al.,
2007), PES may be a necessary strategy to
slow down and recover performance in
anticipation. On the other hand, tasks in
which trial sequences are presented ran-
domly (e.g., the flanker task; which likely
make up the majority of error-monitoring
studies), the utility of PES becomes much
less clear. Nonetheless, very few error-
monitoring studies seriously consider the
task-specific contexts in which PES does
or does not occur, and whether or not
it is objectively adaptive in a given con-
text (e.g., if it coincides with or is related
to PEA). At the very least, the lack of
consistency across the above-mentioned
studies speaks against the “universally”
adaptive nature of PES. We therefore urge
researchers not to assume PES is adaptive
unless they have examined and reported
data that support its utility.

BRAIN-BEHAVIOR CORRELATIONS
Finally, brain-behavior correlations pro-
vide information about the functional sig-
nificance of error-related brain activity.
Predominant theories suggest that error-
related ACC activity signals for adap-
tive adjustments in performance such
as PES or PEA (e.g., Botvinick et al.,
2001; Holroyd and Coles, 2002; Yeung
et al., 2004). The extent to which error-
related brain activity is associated with
PEBAs, however, is not well understood
(Danielmeier and Ullsperger, 2011), and
we contend that this is largely due to
a lack of reporting correlations between
brain activity and PEBAs. Reporting of
such relationships will allow for a clearer
understanding in this regard.

Studies of clinical disorders may
especially benefit from examining brain-
behavior correlations. Cavanagh et al.
(2011) found that individuals with depres-
sion showed hyperactive error signals,
but also that these hyperactive error
signals were tightly coupled with accu-
rate avoidance learning behavior; this
coupling was not present in the non-
depressed group. Other brain-behavior
correlation differences between depressed
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and non-depressed groups (Compton
et al., 2008; Holmes and Pizzagalli, 2008;
Schroder et al., 2013) suggest depression
may be associated with a failure to recruit
adaptive resources in order to recover from
mistakes. Similar analyses have revealed
that diminished ACC responses to errors
are associated with poorer error awareness
among chronic cannabis-using individuals
(Hester et al., 2009). Correlations between
error-related brain activity and behavior
outside the task context provide further
insight into the real-world functional sig-
nificance of these neural phenomena (e.g.,
Foti et al., 2012, Marhe et al., 2013; Moeller
et al., 2014).

CONCLUSION
Here, we sought to point out the value
and utility of considering behavior and
neural activity together in an integrated
framework of error monitoring. Our over-
all message is that incorporating behav-
ioral performance measures (RT and
accuracy)—especially following errors—is
necessary for optimally informative inter-
pretations regarding the “adaptive” nature
of brain activity elicited by errors. When
interpreting between-group comparisons
of brain activity, it is necessary to con-
sider any behavioral differences between
the groups. Researchers can substan-
tially expand our comprehension of post-
error adjustments by reporting all three
PEBAs (PES, PEA, and PERI), the corre-
lations between them, and brain-behavior
relationships between brain activity and
these adjustments. Although here we have
focused on immediate adjustments on the
very next post-error trial, future research
could also explore how adjustments on
immediate post-error (n + 1) trials influ-
ence brain activity and performance sev-
eral trials after the initial error (cf. Hester
et al., 2007). Overall, delineating the inter-
play between brain and behavior will con-
siderably improve our understanding of
how individuals detect and learn from
their mistakes. Moreover, this fuller pic-
ture will more accurately inform what it
means when these processes go awry in
psychopathology and, ultimately, how to
correct them (e.g., Sylvester et al., 2012).
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