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Introduction: Prostheses for upper-limb amputees are currently controlled by either
myoelectric or peripheral neural signals. Performance and dexterity of these devices is still
limited, particularly when it comes to controlling hand function. Movement-related brain
activity might serve as a complementary bio-signal for motor control of hand prosthesis.

Methods: We introduced a methodology to implant a cortical interface without direct
exposure of the brain surface in an upper-limb amputee.This bi-directional interface enabled
us to explore the cortical physiology following long-term transhumeral amputation. In
addition, we investigated neurofeedback of electrocorticographic brain activity related to
the patient’s motor imagery to open his missing hand, i.e., phantom hand movement, for
real-time control of a virtual hand prosthesis.

Results: Both event-related brain activity and cortical stimulation revealed mutually
overlapping cortical representations of the phantom hand. Phantom hand movements could
be robustly classified and the patient required only three training sessions to gain reliable
control of the virtual hand prosthesis in an online closed-loop paradigm that discriminated
between hand opening and rest.

Conclusion: Epidural implants may constitute a powerful and safe alternative communi-
cation pathway between the brain and external devices for upper-limb amputees, thereby
facilitating the integrated use of different signal sources for more intuitive and specific
control of multi-functional devices in clinical use.

Keywords: electrocorticography, epidural implant, neural prosthesis, brain–computer interface, brain–machine

interface, closed-loop control, amputee, neurofeedback

INTRODUCTION
Multi-functional prostheses for upper-limb amputees are usually
controlled by electromyogram (EMG) signals of the remaining
muscles. However, since present approaches afford the user only
limited dexterity and intuitive control of these devices, particularly
when patients are affected by higher levels of limb amputation
(e.g., transhumeral amputation), they often meet with rather
low acceptance in clinical practice (Davidson, 2002). In research
settings, pattern-recognition approaches to myoelectric control
and shared control strategies have been evaluated to overcome
some of the current limitations (Cipriani et al., 2008; Scheme and
Englehart, 2011). In addition to advanced decoding algorithms
and control paradigms, several different surgical approaches have
been explored to physiologically establish more appropriate con-
trol sites for upper-limb prostheses: implanted EMG sensors were
evaluated to improve recording robustness and to provide simul-
taneous control of multiple degrees of freedom (Baker et al.,

2010). Also, the surgical transfer of brachial nerves to new mus-
cle sites was performed in patients with proximal amputations
to gain access to appropriate neural information in the absence
of physiologically meaningful EMG signals (Kuiken et al., 2009).
In a further approach, implantable electrodes connected with
peripheral nerves were explored as interfaces for bi-directional
information flow to provide sensory feedback together with motor
control signals (Rossini et al., 2010).

The common denominator between these different approaches
is that they all acquired control signals from the peripheral neu-
ral system close to the amputation site, thereby being potentially
affected by the act of wearing the prosthesis and by possible vari-
ability with regard to electrode position, force, limb position, and
transient EMG changes (Scheme and Englehart, 2011).

Control signals from the central neural system recorded directly
from the brain may overcome some of the present limitations of
peripheral control sites. Movement-related brain activity might
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serve as a complementary bio-signal for intuitive motor control of
hand prosthesis. Such brain–computer or brain–machine inter-
faces (BCI/BMI) for prosthetic control have been investigated
in able-bodied individuals using both non-invasive approaches
with surface electroencephalography (EEG) recordings (Lauer
et al., 1999; McFarland and Wolpaw, 2008a; Muller-Putz and
Pfurtscheller, 2008) and invasive approaches with implanted elec-
trocorticographic (ECoG) recordings in epilepsy patients under-
going diagnostic recordings for seizure localization (Chestek et al.,
2013). Moreover, ECoG recordings in able-bodied individuals
were used for decoding natural grasp types and individual fin-
ger movements (Kubanek et al., 2009; Miller et al., 2009; Pistohl
et al., 2011).

Experience with brain interfaces and prosthetic control in
patients with severe motor deficits such as tetraplegia, stroke or
amputation is, on the other hand, fairly limited (Pfurtscheller
et al., 2000; Yanagisawa et al., 2011, 2012; Hochberg et al., 2012;
Collinger et al., 2013; Wang et al., 2013).

Non-invasive BCI approaches using EEG are characterized by
low spatial resolution, a low signal-to-noise-ratio due to signal
attenuation caused by the skull, possible contamination by muscle
artifacts and external electrical activity, and a comparatively long
period of training to gain real-time control of devices (Leuthardt
et al., 2009). However, by virtue of their proximity to the neu-
ral signal source, implantable BCI approaches may be able to
overcome these limitations. Remarkably, all current implantable
BCIs in patients with motor deficits are in direct contact with the
brain via subdural grids (Yanagisawa et al., 2011, 2012; Wang et al.,
2013) or even penetrate the tissue with intracortical microelec-
trodes (Hochberg et al., 2012; Collinger et al., 2013), thus bearing
additional risks with regard to safety and stability in long-term
application.

Implantable but less invasive approaches harnessing the epidu-
ral space might therefore help to improve the risk-benefit ratio
and provide novel tools in this patient group. Additionally,
implantable approaches have not yet been explored following
long-term upper-limb amputation and cortical reorganization
may limit the detection of natural movement-related brain signals.

Thus, we introduced a methodology to implant a cortical
interface without direct exposure of the brain surface in an upper-
limb amputee. This involved using a closed-loop set-up based on
an epidural implant that provided real-time feedback of motor-
related electrocorticographic brain activity to operate a virtual
hand prosthesis following long-term high-level limb deficiency.

METHODS
PATIENT
The 63-year-old, male patient had suffered a motor-cycle acci-
dent with complete right-sided cervical nerve root avulsion and
transhumeral amputation of his right upper-limb 26 years before
admission to our institution. Since the accident, the patient has
suffered from intractable pain despite multiple medical and sur-
gical interventions such as deep brain stimulation of the left
thalamus and the dorsal root entry zone (DREZ) procedure to
treat the pain.

As a candidate for long-term cortical stimulation to reduce his
chronic pain, the patient underwent implantation of an electrode

array covering the left sensorimotor cortex to determine treat-
ment response and optimal stimulation sites for maximum pain
reduction. Indication for implantation, array location and dura-
tion of implantation were determined solely by clinical criteria.
The patient also gave informed consent to a study (including pub-
lication of data and photographs) investigating a BCI approach
for virtual hand prosthesis control during this time, which was
conducted in accordance with the declaration of Helsinki and
the guidelines of the local ethics committee. The results of
the pain evaluation study do not constitute part of the present
report.

IMPLANTATION
The electrode grid was implanted during awake surgery with-
out direct exposure of the brain surface. Craniotomy and initial
epidural grid placement were performed with an image-guidance
approach described earlier (Gharabaghi et al., 2005). For refine-
ment of grid positioning, we implemented a novel mapping
methodology of localizing the cortical representation of phan-
tom hand movements intraoperatively during awake surgery
(Figure 1).

We applied a procedure known as signal modeling for real-
time identification and event detection (SIGFRIED) within the
BCI2000 framework (Schalk et al., 2004) which has recently been
explored for online motor and speech mapping of epilepsy and
tumor patients (Brunner et al., 2009; Roland et al., 2010). Intra-
operative rest ECoG activity of the awake patient was acquired
before the mapping session, re-referenced to the common average
and transformed into the frequency domain using an autoregres-
sive model for each electrode contact. The software then created
a statistical model of baseline brain activity fitting a gaussian
mixture model to the distribution of spectral estimates (Schalk
et al., 2008a,b). During the mapping session, the patient received
a visual and auditory cue in each trial to extend his phantom
hand for 4 s, 2 s of finger or wrist extension, 2 s of holding fin-
ger or wrist extension, followed by a 4-s relaxation period. The
patient was instructed to parallel this cycle by imagining moving
his missing hand (phantom hand movement). The task-related
ECoG activity was again re-referenced to the common average
and transformed into the frequency domain using an autore-
gressive model for each electrode contact. The software detected
significant task-related deviations from baseline by determining
the negative log likelihood that the spectra at a specific loca-
tion differed from the spectral distribution during the baseline
period. The z-scores between the distributions of negative log
likelihood values for the task and the interleaved rest periods were
calculated during the trial to provide one continuously updated
z-score for each electrode location and task. These values were
shown on a topographical display for each task as a circle at each
electrode location whose diameter was proportional to the abso-
lute z-score at that location, thus enabling real-time assessment
of cortical changes (Schalk et al., 2008a,b). Following five trials
of each condition, the electrode grid position was refined under
neuronavigational control. This entailed using preoperative mag-
netic resonance images to adjust the location of the strongest
task-related ECoG activity to the center of the electrode grid (see
Figure 2). This procedure was repeated several times to obtain
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FIGURE 1 | Electrode grid implantation during awake surgery without

direct exposure of the brain surface: craniotomy and initial epidural
grid placement were performed with a neuronavigational approach based
on preoperative magnetic resonance images (A) and intraoperative
optical image-guidance (B). Grid positioning was refined applying online
ECoG mapping (C) during cued phantom hand movements with auditory

and visual cues presented via a monitor placed at patient’s eye level
(D). Optimal orientation of the implant in the epidural space was
achieved by tracking electrode positions with strongest task-related
ECoG activity with a navigated pointer (E) in relation to a reference
frame (F) and adjusting the center of the electrode grid
accordingly.

an optimal orientation of the implant in the epidural space. It
is worth mentioning that the whole mapping procedure took less
than 15 min. Once implantation had been completed, the electrode
grid was secured on the dura and externalized with percuta-
neous extensions connecting to the external component of the BCI
set-up.

IMPLANTED NEURAL INTERFACE
The epidurally implanted 8 × 8 electrode array consisted of plat-
inum contacts with 4 mm contact diameter (2.3 mm exposed),
and 5 mm center-to-center distance (Ad-Tech Medical Instrument
Corp., Racine, WI, USA), covering parts of the left somatosensory,
primary motor, and premotor cortex (see Figure 4B). This inter-
face allowed for bi-directional exploration of cortical physiology in
this patient by virtue of its ability to record brain activity related
to phantom hand movements and to map cortical stimulation-
induced sensations in the phantom hand. These physiological
measures were then related to the patient’s cortical anatomy after
co-registration of the electrode contacts to the three-dimensional
reconstruction of the patient’s brain magnetic resonance
image.

Following a 2 week evaluation period, the array was removed
and replaced by permanent electrode leads for chronic application
(Resume II, Medtronic, Minneapolis, MN, USA) at the sites where
stimulation provided optimal pain control. As the described study

was finished after the evaluation period, the pain treatment is not
part of the present report.

BRAIN–COMPUTER INTERFACE
The integrated system consisted of an internal component, the
implanted epidural neural interface for ECoG recordings, exter-
nalized with percutaneous extensions connecting to the external
components. These external components consisted of a record-
ing and processing unit and a feedback unit. Recording of ECoG
signals was performed with a monopolar amplifier (BrainProd-
ucts, Munich, Germany) with a high-pass filter at 0.15 Hz and
a sampling rate of 1000 Hz. Online processing of brain signals
was performed with a BCI2000 framework (Schalk et al., 2004)
equipped with custom-built features to control a video player via
a unified development platform (UDP). Feedback was provided
according to phantom movement-related brain activity and was
relayed by a video player that showed the virtual hand prosthe-
sis (see Figure 3) from the patient’s perspective (Minimal Video
Player, Phonon API).

The patient performed seven sessions, each of them on a sep-
arate day, with a total of more than 700 trials. In each session,
classification of phantom hand movement versus rest was explored
offline. From the third session onward, brain signals were also clas-
sified online and feedback of electrocorticographic activity was
provided for real-time control of the virtual hand prosthesis. In
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FIGURE 2 | Online detection of cortical areas related to phantom hand

movement using the SIGFRIED module within the BCI2000 framework

(Schalk et al., 2008a,b). This procedure creates a statistical model of
baseline brain activity and detects significant deviations from this baseline
in real-time during the task. During each trial, z-scores between the
distributions of negative log likelihood values for the task and interleaved
rest periods are calculated, resulting in one continuously updated z-score
for each electrode location and task. These z-scores are shown on a
topographical display for each task (A: finger extension; C: holding finger
extension) as a circle at each electrode location whose diameter is
proportional to the z-scores at that location, thus enabling real-time
assessment of cortical changes (Schalk et al., 2008a,b). An image-guidance
approach with a navigated pointer (green) allows for relating the electrodes
with the strongest activity to the underlying cortical anatomy (B:
somatosensory cortex; D: primary motor cortex) without exposing the brain
surface.

each trial, the patient received a visual and an auditory cue to
extend his phantom hand for 4 s (2 s of extension of all fingers
or of wrist extension, 2 s of holding finger or wrist extension)
followed by a 4-s relaxation period. The patient was instructed
to parallel this cycle with his phantom hand. During the online
sessions, feedback was provided in accordance with phantom
movement-related brain activity by the virtual hand prosthesis
which performed a hand opening motion according to the given
instructions from the patient’s perspective while he was observ-
ing his hand. During the relaxation period the virtual hand was
closing again. A short break was taken after every run (i.e., 10
trials).

CLOSED-LOOP SET-UP
Prior to the five feedback sessions, two screening sessions were
performed to select channels and features for online control, esti-
mating the spectral power of all electrode channels up to 200 Hz

FIGURE 3 | Closed-loop brain–computer interface set-up. The implanted
epidural neural interface for electrocorticographic (ECoG) recordings is
externalized with percutaneous extensions connecting to the external
components (see small inserted picture). The external components consist
of a recording and processing unit and a feedback unit. Recording of ECoG
signals is performed with a monopolar amplifier (BrainProducts, Munich,
Germany) with a high-pass filter at 0.15 Hz and a sampling rate of 1000 Hz.
Online processing of brain signals is performed with a BCI 2000 framework
(Schalk et al., 2004) extended with custom-built features to control a video
player via UDP. Feedback is provided according to phantom
movement-related brain activity by a video player displaying a virtual hand
prosthesis from the patient’s perspective (Minimal Video Player, Phonon
API).

and computing r2 scores for the discrimination between phantom
hand movements and rest for each frequency bin and each chan-
nel. The three channels with the highest r2values for the frequency
band of 130–145 Hz were chosen for feedback, because this
was the topographically most circumscribed band for discrimi-
nation between phantom movement and rest. We considered the
decoding of phantom hand movement from a small cortical area
beneficial, as we intended to provide feedback of very specific cor-
tical activations. Permutation tests with 105repetitions confirmed
that the r2values were significantly greater than 0. The selected
channels and frequency band were kept constant throughout the
training period.

During the feedback sessions, the spectral power of these three
channels in the frequency band of 130–145 Hz was computed every
40 ms from a data buffer of length 500 ms. This was performed
using an autoregressive model (Burg algorithm) with a model of
the order of 16 (McFarland and Wolpaw, 2008b). These power val-
ues were used as input for an adaptive linear classifier, resulting in
25 classifier outputs per second. Five consecutive classifier outputs
(200 ms) of the same feature were necessary to switch from one
feedback condition to the other (e.g., to initiate or to terminate
the opening of the virtual hand prosthesis).

PERFORMANCE EVALUATION
To assess the patient’s ability to modulate his brain activity in
accordance with the feedback task, i.e., his performance in gaining
control of the virtual hand prosthesis, we calculated the average
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prosthesis movement time divided by the total feedback duration
phase. We also measured a baseline condition to monitor natural
perturbations of brain activity, which, while not related to the task,
could have distorted the online control performance during the
feedback task. This baseline condition consisted of several ECoG
recordings throughout the 2-week study period; during record-
ing the patient was at rest with his eyes open. All in all, about
30 min of this spontaneous baseline ECoG activity were recorded
for offline analysis, segmented into trials of the same structure
and processed in the same manner as the feedback sessions. For
statistical analysis, the distribution of performance values per run
in each feedback session was compared with the distribution of
performance values for the baseline data (Wilcoxon rank-sum
test).

RESULTS
The approach implemented here allowed for sufficient positioning
of the epidural implant on the area of the sensorimotor cortex
related to phantom hand movements and proved feasible and safe
for recording ECoG signals without direct contact to brain tissue
in an upper-limb amputee (Figure 4B).

The high-gamma frequency power (Figure 4A) and the cor-
tical stimulation (Figure 4C) both revealed mutually overlapping
representations and indicated preserved somatotopic organization
of the sensorimotor cortex despite long-term amputation with-
out prosthesis use and despite accompanying intractable phantom
limb pain. Sensations of the phantom hand could be elicited
with high spatial resolution by epidural stimulation, revealing pre-
served sensory connectivity to the somatosensory hand knob area
(Figure 4C). Interestingly enough, electrodes showing the highest
r2 values in the high gamma band for phantom hand movement
projected to the very same area, indicating preserved but pos-
teriorly shifted cortical hand representation for motor control
(Figure 4A).

The patient was able to participate in all five feedback ses-
sions independently without requiring any assistance, while
self-monitoring the translation of his phantom hand move-
ment into the action of a virtual hand prosthesis. The epidural

implant reliably detected electrocorticographic brain activity from
the epidural space for providing real-time feedback of phantom
movement-related brain activity. The ECoG signals, detected by
the same three adjacent contacts with a center-to-center distance
of only 5 mm projecting onto the somatosensory hand knob,
were sufficient for consistent neurofeedback throughout the whole
training period.

From the third feedback session onward, the patient was able to
initiate prosthesis movement in more than 95% of the trials, indi-
cating preserved task-contingent brain activity during phantom
movement (Figure 5A). His performance in closed-loop control
of the virtual prosthesis, i.e., online movement control during
the feedback task, was significantly higher than in the baseline
condition (49.1 ± 10.6%) from the third feedback session on
(Figure 5B).

DISCUSSION
While BCI/BMI for prosthetic control have been explored in
able-bodied individuals, similar experience in amputees is still
somewhat limited.

The Berlin BCI group used EEG recordings to investigate the
readiness potential and event-related desynchronization (ERD) of
eight upper-limb amputees during real finger movement of the
intact side and during phantom finger movements (Kunzmann
et al., 2004; Blankertz et al., 2006). They observed less distinct
ERD during phantom movement, a decrease of detection accu-
racy proportional to the time elapsed since the limb was lost, and
offline classifications for “right vs. left” of between 60 and 78%.
This limited accuracy is very probably related to the low signal-to-
noise-ratio due to signal attenuation caused by the skull inherent
to non-invasive BCI approaches using EEG (Leuthardt et al., 2009).

The Osaka ECoG group were the first to apply an implantable
BCI approach to an amputee (Yanagisawa et al., 2012). Within the
framework of a pain treatment protocol similar to the one con-
ducted in this study, the Osaka group implanted a subdural grid on
the sensorimotor cortex of a patient 3.3 years after transhumeral
amputation, gaining offline classification accuracies of 66.3% for
grasp vs. elbow and 89.2% for move vs. rest.

FIGURE 4 | Bidirectional epidural interface. Projection of the implanted 64
contact electrode grid on a three-dimensional reconstruction of the patient’s
MRI cortical anatomy revealing the correct intraoperative positioning of the
epidural implant without direct visualization of the cortical surface during
surgery (B). Physiological mapping confirms the implantation on the area of
the sensorimotor cortex related to phantom hand movements and

sensations and proves the feasibility of recording electrocorticography
signals and mapping the cortical surface without direct contact with brain
tissue. Both the high-gamma frequency power (A) and the cortical
stimulation (C) revealed mutually overlapping representations and indicated
preserved somatotopic organization of the sensorimotor cortex despite
long-term amputation.
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FIGURE 5 | Percentage of trials with virtual prosthesis movement (A) and

percentage of average movement time of the virtual prosthesis divided

by the total feedback duration phase (B). The mean ± SD of the
performance measure per session is indicated by solid lines. Dashed lines
show the trend line determined by linear least square regression. The mean

of the baseline data is given as a dotted line. An asterisk (*) marks sessions
where the median of the performance measure differs significantly (p < 0.05)
from the median of the baseline value [modified from Walter et al. (2012),
presented at the 12th International Conference on BioInformatics and
BioEngineering, Larnaca, Cyprus].

However, some essential questions concerning the clinical via-
bility of implantable BCI approaches for amputees remained
unanswered. For instance, is a high-level upper-limb amputee
capable of generating contingent cortical activity with intuitive
motor commands for gaining online-control of a hand pros-
thesis? Are these signals robustly detectable over several days
without the necessity of re-calibration or periodical updating of
the neural decoding? Are less invasive approaches for BCI control,
such as epidural implants and a few decoding channels, feasible
in this group of patients? Does cortical reorganization follow-
ing long-term amputation compromise the detection of natural
movement-related brain signals?

We therefore introduced a methodology to implant a cortical
interface without direct exposure of the brain surface in an upper-
limb amputee, and implemented a closed-loop set-up based on
an epidural implant that provided real-time feedback of motor-
related electrocorticographic brain activity to operate a virtual
hand prosthesis following long-term high-level limb deficiency.

In accordance with earlier reports on able-bodied individu-
als (Leuthardt et al., 2006), we could show now for the first time
in an amputee that epidurally recorded signals were appropriate
for reliable BCI feedback, thereby further increasing the safety
of such applications with intracranial recordings. Moreover, the
same three adjacent electrode contacts were sufficient for pros-
thetic control throughout the evaluation period, indicating that
smaller electrode grids with fewer contacts might suffice for future
applications of this technique. These results tally with recent obser-
vations in epilepsy patients who had been subjected to a BCI visual
speller with a single subdural contact (Zhang et al., 2013). Thus,
our findings emphasize the feasibility of less invasive and more
straightforward approaches, with only a small number electrode
contacts in the epidural space for applications of assistive ECoG
BCI.

In addition, throughout the feedback sessions, no adjustments
of the parameterization between the recorded brain signals and

the BCI control algorithms were necessary. These findings are
in accordance with a report of multiple-day ECoG BCI control
with fixed parameters in an able-bodied patient for seizure local-
ization (Blakely et al., 2009). Similarly, we performed an initial
screening and feature selection followed by a robust and stable-
state control of the interface from the third online session onward.
This is an important requirement for future real-life applications
of such tools for daily use, without the necessity of periodical
software adaptations by specialists at respective institutions. Inter-
estingly enough, the patient who achieved this performance had
no experience of prosthetic use beforehand.

Despite long-term amputation (26 years ago) and despite
intractable phantom limb pain throughout this period, chan-
nels projecting onto the somatosensory hand knob of the affected
hemisphere provided sufficient information about the phantom
hand movement to allow robust and stable prosthesis control,
indicating that the somatotopic organization of the correspond-
ing brain has been at least partially preserved. This demonstrated
that even patients with long-term deficiencies may be suitable
recipients of implantable BCI devices that address prosthetic
control.

Electrocorticography studies in patients without motor deficits
have shown specific movement-related spectral changes, i.e.,
decreases in the low-frequency band (8–32 Hz) with a larger
cortical distribution and increases in the high-frequency band
(76–100 Hz) with a more focused projection onto the sensori-
motor cortex (Miller et al., 2007). In addition, ECoG recordings
in these patients allowed for both temporally and spatially precise
and robust online detection of movement imagery/intention in
the absence of real movement (Miller et al., 2010).

We consequently detected a circumscribed increase of cortical
activity in the high gamma band during phantom hand move-
ment. Interestingly enough, these electrodes projected to the
somatosensory hand knob area, the very same area in which
cortical stimulation elicited sensations of the phantom hand.
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This observation indicated that the same cortical area with sen-
sory connectivity to the missing hand presented the posteriorly
shifted cortical hand representation for motor control. These
findings are in accordance with previous observations in epilep-
tic patients who underwent implantation of subdural electrode
grids in the sensorimotor region (Nii et al., 1996; Haseeb et al.,
2007). These studies revealed hand motor responses follow-
ing electrical stimulation not only in the precentral gyrus but
also in the postcentral gyrus indicating a marked variability in
the location of the human cortical hand area (Nii et al., 1996;
Haseeb et al., 2007). This may well have implications for future
designs and configurations of bi-directional cortical interfaces for
amputees.

The BCI set-up enabled us to make an update of the control
signal as often as every 40 ms. However, our algorithm did not pro-
vide visual feedback until five consecutive 40 ms epochs had been
classified consistently, thus avoiding a noisy control signal or false
positive feedback. This trade-off between immediacy and contin-
gency was sufficient both for robust BCI control and for the patient
to comprehend that there is a direct link between his phantom
movement and the virtual prosthesis movement. This is in agree-
ment with earlier psychophysical studies in which participants who
were repeatedly exposed to an artificially introduced 250 ms delay
between voluntary actions and sensory consequences perceptually
combined their voluntary actions with the sensory consequences
and perceived that the delay was shortened by approximately
100 ms (Haggard et al., 2002).

Due to the lack of cortical implants allowing for wireless BCI
control, we designed an interface by connecting the intracranial
implant to an external online processing framework for recording
and BCI control. To this end, extension leads were externalized
through the skin and thus limited the possible duration of this
set-up. Wireless devices capable of fast and reliable information
transfer will be required for future clinical applications of this
novel approach (Borton et al., 2013). This would make it pos-
sible to conduct long-term training periods of this paradigm in
home-based environments, and hopefully result in better online
control and higher dexterity to improve the patients’ quality of
life.

The present findings indicate that cortical neural prosthesis
might serve as a natural source of information to facilitate new
control strategies by combining brain and peripheral nerve signals
(Tombini et al., 2012) and to support more intuitive shared control
strategies, e.g., arranged in a hierarchical manner with myoelectric
signals, necessitating less attention, and consecutive fatigue (Cipri-
ani et al., 2008). Additionally, this cortical interface methodology
allows for closing the loop by providing sensory feedback via direct
stimulation of the central neural system.

In conclusion, epidural implants may constitute a powerful
and safe alternative communication pathway between the brain
and external devices for upper-limb amputees. Such implanted
brain interfaces can support decoding movement intention of the
missing hand in an intuitive way. This might provide additional
information on the standard myoelectric and neural biosignals
applied in upper-limb prosthesis, thereby facilitating the inte-
grated use of different signal sources for more specific control
of multi-functional devices in clinical use.
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