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The entorhinal-hippocampal system plays a crucial role in spatial cognition and navigation.
Since the discovery of grid cells in layer II of medial entorhinal cortex (MEC), several
types of models have been proposed to explain their development and operation; namely,
continuous attractor network models, oscillatory interference models, and self-organizing
map (SOM) models. Recent experiments revealing the in vivo intracellular signatures
of grid cells (Domnisoru et al., 2013; Schmidt-Heiber and Hausser, 2013), the primarily
inhibitory recurrent connectivity of grid cells (Couey et al., 2013; Pastoll et al., 2013),
and the topographic organization of grid cells within anatomically overlapping modules
of multiple spatial scales along the dorsoventral axis of MEC (Stensola et al., 2012) provide
strong constraints and challenges to existing grid cell models. This article provides a
computational explanation for how MEC cells can emerge through learning with grid cell
properties in modular structures. Within this SOM model, grid cells with different rates of
temporal integration learn modular properties with different spatial scales. Model grid cells
learn in response to inputs from multiple scales of directionally-selective stripe cells (Krupic
et al., 2012; Mhatre et al., 2012) that perform path integration of the linear velocities that
are experienced during navigation. Slower rates of grid cell temporal integration support
learned associations with stripe cells of larger scales. The explanatory and predictive
capabilities of the three types of grid cell models are comparatively analyzed in light of
recent data to illustrate how the SOM model overcomes problems that other types of
models have not yet handled.
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INTRODUCTION
During navigation in the external world, the brains of many ani-
mals are able to update representations of their current position,
or place. While the underlying neural computations involved still
remain to be fully elucidated, place cells in the hippocampus
(O’Keefe and Dostrovsky, 1971) and grid cells in parahippocam-
pal areas, including the medial entorhinal cortex (MEC) (Hafting
et al., 2005; Sargolini et al., 2006), presubiculum (PrS), and para-
subiculum (PaS) (Boccara et al., 2010), are understood to play
critical roles. These space-encoding cells respond both to dis-
placements from a reference position as well as to environmental
sensory stimuli.

Stensola et al. (2012) recently performed a comprehensive
study of the anatomical organization of two-dimensional grid
scales in layers II and III of MEC, both within and across animals.
Their experiments showed that grid cells along the dorsoventral
axis of MEC have a modular organization; namely, that grid cells
along the dorsoventral axis “cluster into a small number of layer-
spanning anatomically overlapping modules with distinct scale,
orientation, asymmetry, and theta-frequency modulation” (p.
72). In other words, these grid cell modules are distributed along
the dorsoventral extent with the different modules overlapping

significantly. This article describes a neural model that proposes
how such a modular organization may arise through learn-
ing as an animal navigates in its environment during postnatal
development.

It had earlier been shown that average grid cell properties vary
in a systematic way along the dorsoventral axis. In particular,
the rate of temporal integration along the dorsoventral axis of
MEC layer II decreases (Garden et al., 2008) while the grid cell
spatial scale increases from the dorsal to the ventral end (Brun
et al., 2008). There is also a systematic decrement in the fre-
quency of subthreshold membrane potential oscillations (MPOs)
along the dorsoventral extent of MEC layer II (Giocomo et al.,
2007; Yoshida et al., 2011). Grossberg and Pilly (2012) and Pilly
and Grossberg (2013b) described a neural model in which a suit-
ably designed self-organizing map (SOM) develops the observed
properties during navigation of realistic rat trajectories; see below.

The GRIDSmap model (Mhatre et al., 2012) and its refine-
ments and extensions in the GridPlaceMap model (Pilly and
Grossberg, 2012, 2013a) and the Spectral Spacing model
(Grossberg and Pilly, 2012; Pilly and Grossberg, 2013b) predicted
how inputs to MEC are provided by ensembles of stripe cells
that perform path integration of the linear velocities that are
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experienced during navigation. Stripe cells are predicted to be
computational homologs of head direction cells (Ranck, 1984;
Blair and Sharp, 1995; Taube, 1995; Redish et al., 1996; Stackman
and Taube, 1997) that perform path integration of the angular
velocities that are experienced during navigation, notably during
head turns.

Both stripe cells and head direction cells are predicted to occur
in ring attractor circuits. Different stripe cells in a given ring
attractor respond at different spatial phases, and multiple stripe
cell ring attractors are proposed to exist, each corresponding to
stripe cells with preference for a given direction and spatial scale.
In particular, a ring attractor that responds to linear velocity
along an allocentric direction results in stripe cells that have spa-
tial firing fields resembling regularly spaced parallel stripes that
are perpendicular to the corresponding direction, hence the term
“stripe cells.”

The coding of spatial position based on path integration is
implicit in the ensemble responses of stripe cells. Why then
does the brain need grid cells and place cells? Previous model-
ing work has suggested that grid and place cells occur because
they arise naturally in a hierarchy of self-organizing maps (SOMs)
through the MEC and hippocampal cortex (HC), responding to
stripe cell inputs (Grossberg and Pilly, 2012; Pilly and Grossberg,
2012). The place cells that are learned have large enough scales
to represent behaviorally relevant spaces (Gorchetchnikov and
Grossberg, 2007), and output explicit spatial (position) infor-
mation to frontal and motor circuits involved in planning and
executing navigational movements through space. Both grid cells
and place cells in the SOM models learn to adapt the strengths
of their inputs to gradually become selective for a subset of
input patterns that are the most frequent and energetic (Pilly and
Grossberg, 2012). Grossberg and Pilly (2012) showed in addi-
tion that the gradient, from fast to slow, in the rate of temporal
integration along the dorsoventral axis of MEC layer II (Garden
et al., 2008) can drive the development of grid cells whose spa-
tial scales increase from the dorsal to the ventral end (Brun et al.,
2008) in response to inputs from stripe cells of multiple scales.
Specifically, map cells with faster response rates preferentially
learn from stripe cell input subsets with smaller scales, whereas
those with slower response rates choose larger scales. The tempo-
ral integration rate gradient also accounts for, as epiphenomena,
the observed variations in the frequency of subthreshold mem-
brane potential oscillations (MPOs) along the dorsoventral extent
of MEC layer II (Giocomo et al., 2007; Yoshida et al., 2011);
also see Dodson et al. (2011). Grossberg and Pilly (2012) thus
showed the presence of these MPOs need not imply a causal
role for them in grid cell firing, as some authors have assumed
(e.g., Burgess et al., 2007; Giocomo et al., 2007; Hasselmo et al.,
2007).

As noted above, Stensola et al. (2012) provided a comprehen-
sive analysis of the anatomical organization of grid cells. They
reported that grid cell scales are grouped into finitely many mod-
ules such that the cells in each module share some defining
characteristics. In particular, grid cells that share similar scales
also share similar grid orientations, and are modulated at simi-
lar theta band frequencies in their interspike interval histograms.
Moreover, grid cells belonging to the same module, rather than

different modules, show similarity in their rescaling responses to
environmental compression along a dimension. Finally, grid cells
grouped by similar attributes are not locally clustered, but are dis-
tributed with significant anatomical overlap among the modules
along the dorsoventral axis (see Figure 4A).

If indeed grid cells develop from path integration inputs that
are mediated by stripe cells, then the data of Stensola et al. (2012)
implies that the problem of selecting from multiple scales of stripe
cells during early development is a real one, if only because a
simple topographic mapping from stripe cells to grid cells with
no interference across scales is not consistent with these data.
These modular constraints significantly challenge existing grid
cell models. For example, how are recurrent connections in the
MEC pruned so that nearby grid cells belonging to different
modules do not interact functionally? This article shows that a
refinement of the SOM model in Grossberg and Pilly (2012)
can account for anatomically overlapping grid modules. In par-
ticular, the SOM model assumes that the map cells at a given
dorsoventral location exhibit a range of temporal integration
rates, and that these rates at more ventral locations are sampled
from a relatively broader tuning function that prefers slower val-
ues. In contrast, the response rates of map cells in Grossberg
and Pilly (2012) are the same at each dorsoventral location. The
Discussion section provides a detailed comparative analysis of
various grid cell models in light of recent data, including the data
about modular organization (e.g., Stensola et al., 2012; Couey
et al., 2013; Domnisoru et al., 2013; Pastoll et al., 2013; Schmidt-
Heiber and Hausser, 2013; Yoon et al., 2013). The new simulation
results presented in this article are primarily aimed at providing
elaborations for the Figure 6 presented in Grossberg and Pilly
(2014).

METHODS
The first simulation study tested how the temporal integration
rate gradient of MEC cells (Garden et al., 2008) influences grid
cell development when there is no “scale selection” problem, i.e.,
when only one scale of stripe cells generates inputs during the
initial phase of spatial experience. The development of a SOM
comprising 25 map cells across 20 learning trials was simulated
in response to stripe cells of a particular scale (either s = 20, 35,
or 50 cm) and for various cell response rates (μ = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1). Note that μ is a dimensionless
parameter that scales the rate of temporal integration. In each
trial the model animal ran in a 100 cm wide circular box start-
ing at the midpoint and along a novel realistic rat trajectory for
about 20 min. The instantaneous linear velocity and head direc-
tion extracted from the trajectory were used to algorithmically
compute the activities of the input stripe cells (see Equations
1–4). Thirty SOM simulations were performed to systematically
assess the importance of the temporal response rate of map cells
emerging into grid cells of a given spatial scale, in terms of mean
gridness score, mean grid spacing, mean inter-trial stability, and
the proportion of map cells that are classifiable as grid cells (i.e.,
with gridness score > 0.3).

The second study investigated how multiple grid scales are
learned by map cells within a single SOM (i.e., a local cell
population), when they have distributed cell response rates μ.
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The development of three SOMs was simulated: one compris-
ing 50 map cells, all with response rate μ = 1, in response to
inputs from stripe cells of two spacings (s1 = 20, s2 = 35 cm);
one comprising 50 cells, half with μ = 1 and the remaining with
μ = 0.6, in response to inputs from stripe cells of two spacings
(s1 = 20, s2 = 35 cm); and another comprising 90 cells, one-third
with μ = 1, one-third with μ = 0.6, and the remaining with
μ = 0.3, in response to inputs from stripe cells of three spac-
ings (s1 = 20, s2 = 35, s3 = 50 cm). The SOM equations and
parameters that were used are provided in the Appendix. In
particular, Equation 6 describes the competitive instar learning
rule (Grossberg, 1976; Carpenter and Grossberg, 1987; Grossberg
and Seitz, 2003), which accounts for activity-dependent pruning
of input weights to each map cell (e.g., Tsanov and Manahan-
Vaughan, 2007), while automatically conserving the total adap-
tive weight to each map cell (e.g., Royer and Pare, 2003), that
underlies the gradual development of tuning of different map
cells to the different sets of input features that are experienced
through time.

RESULTS
Simulation results presented in Figures 1–3 reveal that the opti-
mal temporal response rate μ for grid cell learning depends on the
spatial scale, even when the input stripe cells have the same scale.
In particular, the smaller the grid spacing, the larger is the optimal
response rate. For example, for the input stripe spacing s = 20 cm
the mean gridness score of the learned map cells peaks at μ = 0.9
(Figure 1A), whereas for the input stripe spacing s = 50 cm the
corresponding peak occurs at μ = 0.4 (Figure 3A). Similarly,
the mean inter-trial stability and the proportion of learned grid
cells exhibit similar trends in their tuning to response rate μ.
Moreover, the tuning widths also increase with the spatial scale.
These results provide further support to our previously described
hypothesis that the rate of temporal integration of entorhinal map
cells determines the subset of input stripe scales to which they can
get tuned, and thereby the development of their regular hexago-
nal grid fields (Grossberg and Pilly, 2012). Also, whereas the mean
gridness score at the optimal response rate is relatively smaller for
bigger spatial scales, the mean spatial stability is larger, consistent
with experimental observations (Giocomo et al., 2011).

When a map cell fires intensely at a given spatial position, it
undergoes activity-dependent adaptation. The cell response rate
controls not only the dynamics of adaptation but also the tem-
poral duration during which the cell recovers from adaptation to
be able to fire intensely again. In particular, the recovery period
is inversely proportional to the response rate (see Figure 3 in
Grossberg and Pilly, 2012). Given that learning is turned on at all
times, it would be ideal for grid cell learning if the map cell were
to become excitable again just when the model animal arrives at
one of the nearest vertices of the corresponding grid as it navigates
in the environment. The emerging strong input weights from the
appropriate stripe cell combination (i.e., three stripe cells of the
corresponding scale whose preferred directions differ from each
other by 60◦ that are consistently coactive during map cell activa-
tion) could be lost, or recoded, if the cell becomes excitable too
early or too late. The mean linear and rotational velocities, even
though they change in a non-stationary way, seem to determine

the average interval between visits of the navigating animal to any
vertex of an arbitrary grid. Note that the mean running speed
of juvenile rats is not significantly different from that of adult
rats (Langston et al., 2010). These factors combine to determine
scale-dependent optimal response rates for better, more stable,
and greater number of grid cells. Along the same lines, the tuning
widths of learned grid cells as a function of response rate μ can
be understood as consequences of how slowly the cell excitabil-
ity recovers from habituation, and the average temporal extent of
map cell activation during passage through a grid vertex.

Simulation results presented in Figure 4B replicate the main
finding of Grossberg and Pilly (2012) that the response rate μ

shared by all map cells within an entorhinal SOM can bias the
selection among input stripe cell scales. In particular, the faster
response rate of μ = 1 causes most of the learned grid cells to
choose the smaller of the two input scales (s1 = 20, s2 = 35 cm).
Simulation results in Figures 4C,D demonstrate for the first time
the learning of multiple grid scales (up to three) within the same
local network of map cells that recurrently inhibit each other
and vary in their response rates μ. Figure 4C shows grid cells
with two scales emerging from competing map cells that have
faster (μ = 1) and slower (μ = 0.6) response rates, respectively,
in response to input stripe cells of two spacings (s1 = 20, s2 =
35 cm). And Figure 4D shows that in response to three input
stripe scales (s1 = 20, s2 = 35, s3 = 50 cm) a subset of cells in the
local network with the faster response rate (μ = 1) develop into
grid cells with the smaller two of the three scales, while a subset
of those with the medium response rate (μ = 0.6) develop into
grid cells with the larger two of the three scales. This shows that
cells with the same temporal rate can learn multiple spatial scales,
which is consistent with Stensola et al. (2012)’s observation that
the “temporal organization does not exhibit any strong linear or
monotonic relationship to grid spacing” (p. 76). Figures 4E–G
show spatial rate maps and autocorrelograms of illustrative grid
cells with different learned spacings from the simulation summa-
rized in Figure 4D. Note that the peak activities As of stripe cells
in Equation 4 decrease with spatial scale (see Simulation Settings)
to balance the competitive advantage of associative learning dur-
ing longer temporal intervals for weights from stripe cells of
larger scales [cf., Figure 13C in (Grossberg and Pilly, 2012)]. The
new model results about distributed response rates within local
ensembles are consistent with experiments showing spreads in
different intrinsic properties of MEC layer II stellate cells at given
dorsoventral locations (e.g., Giocomo et al., 2007; Garden et al.,
2008; Boehlen et al., 2010; Navratilova et al., 2012).

DISCUSSION
MECHANISMS OF GRID CELL MODULE FORMATION
Sensory cortical circuits develop both in utero and during the
postnatal critical period in response to statistical regularities in
the stream of signals from the sensory organs. For example, the
development of ocular dominance columns and selectivity to dif-
ferent features (such as location, spatial frequency, orientation,
and direction) in the primary visual cortex of several species
has been well documented (e.g., Hubel and Wiesel, 1962, 1977;
Payne et al., 1981; Weliky et al., 1996). The current modeling
results are consistent with a similar idea in the development of
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FIGURE 1 | Properties of learned grid cells in the SOM model as a

function of response rate µ, responding to single-scale stripe cell

inputs with a spacing s = 20 cm. Panels (A–D) show gridness score,
grid spacing, inter-trial stability, and the proportion of learned grid cells
(with gridness score > 0.3), respectively. Peak activity As of stripe cells
was 1. Each error bar in (A–C) corresponds to standard error of mean
(s.e.m.). The dashed lines parallel to the x-axis in (A), (C), and (D)

signify corresponding experimentally measured values for adult dorsal
grid cells (Langston et al., 2010; Wills et al., 2010). Panel (E) shows
the spatial rate map and autocorrelogram of the learned grid cell with
the highest gridness score in the last trial (#20) in the map
corresponding to the optimal response rate μ = 0.9. Color coding from
blue (min.) to red (max.) is used for the rate map, and from blue (−1)
to red (1) for the autocorrelogram.

spatial representation, notably that genetic and morphogenetic
laws are complemented by developmental and learning pro-
cesses that are sensitive to correlations among afferent signals
generated during early navigational experiences to shape space-
encoding neural circuits in the brain. This view contrasts with
that stated in Stensola et al. (2012, p. 72): “These [hippocampal
and MEC] maps are different from sensory maps in that spa-
tial firing fields are not derived by extraction of features from a
particular sensory input, but probably originate from pattern-
formation processes in the circuit itself. The mechanisms for
topographical organization may thus be very dissimilar from

those of the columnar sensory cortices.” Although SOM models
also include “pattern-formation processes” whereby their recur-
rent competitive interactions respond to the statistics of input
patterns through time, there is a real conceptual difference among
the models that are under discussion. In particular, among the
envisaged pattern-formation processes are models that are called
continuous attractor network (CAN) models that have been used
to propose an explanation of how grid cell responses change
after focal hippocampal inactivation (Bonnevie et al., 2013).
Grossberg and Pilly (2014) have summarized conceptual and
data-explanatory problems with the CAN account of these data,
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FIGURE 2 | Properties of learned grid cells in the SOM model as a

function of response rate µ, responding to single-scale stripe cell

inputs with a spacing s = 35 cm. Panels (A–D) show gridness score,
grid spacing, inter-trial stability, and the proportion of learned grid cells
(with gridness score > 0.3), respectively. Peak activity As of stripe cells
was 1. Each error bar in (A–C) corresponds to standard error of mean
(s.e.m.). The dashed lines parallel to the x-axis in (A), (C), and (D)

signify corresponding experimentally measured values for adult dorsal
grid cells (Langston et al., 2010; Wills et al., 2010). Panel (E) shows
the spatial rate map and autocorrelogram of the learned grid cell with
the highest gridness score in the last trial (#20) in the map
corresponding to the optimal response rate μ = 0.6. Color coding from
blue (min.) to red (max.) is used for the rate map, and from blue (−1)
to red (1) for the autocorrelogram.

and have provided an alternative explanation that is compati-
ble with SOM dynamics. See below for a Comparative model
analysis.

The main contribution of this article is to provide an expla-
nation for how nearby grid cells that are mutually interacting
within the same local network can develop to exhibit differ-
ent spatial scales. The SOM model predicts that the temporal
integration rates of MEC layer II stellate cells exhibit signifi-
cant local variation, which biases them to become selective for
preferred sets of stripe cell inputs of different spacings. Indeed,
the optimal temporal integration rate of model grid cells, with

respect to hexagonal gridness quality, spatial stability, and pro-
portion of learned grid cells, is inversely proportional to their
spatial scale, even though running speed and head direction
are widely distributed and change in a non-stationary manner
through time. Future research needs to investigate the robust-
ness of grid cell learning to noisy stripe cells and noisy linear
and angular velocity estimates, and a possible role for adaptive
inhibitory connections (Couey et al., 2013) in the development of
functionally independent grid cell modules that overlap spatially
(Stensola et al., 2012). In this regard, it should be noted that the
contrast-enhancing properties of the SOM model’s competitive
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FIGURE 3 | Properties of learned grid cells in the SOM model as a

function of response rate µ, responding to single-scale stripe cell

inputs with a spacing s = 50 cm. Panels (A–D) show gridness score,
grid spacing, inter-trial stability, and the proportion of learned grid cells
(with gridness score > 0.3), respectively. Peak activity As of stripe
cells was 1. Each error bar in (A–C) corresponds to standard error of
mean (s.e.m.). The dashed lines parallel to the x-axis in (A), (C), and

(D) signify corresponding experimentally measured values for adult
dorsal grid cells (Langston et al., 2010; Wills et al., 2010). Panel (E)

shows the spatial rate map and autocorrelogram of the learned grid
cell with the highest gridness score in the last trial (#20) in the map
corresponding to the optimal response rate μ = 0.4. Color coding from
blue (min.) to red (max.) is used for the rate map, and from blue
(−1) to red (1) for the autocorrelogram.

interactions are, among other things, designed to suppress noise
(Grossberg, 1980).

TWO OUTSTANDING QUESTIONS
The current results raise at least two questions that need further
research to answer:

(1) Are there computational advantages, with respect to learning
better hippocampal place codes, of the topographic organi-
zation of grid cell scales revealed by Stensola et al. (2012)?
In particular, if multiple grid scales are available at a given
location along the dorsoventral axis of MEC, then why do

convergent perforant path projections to the hippocampus
from several locations exist (Dolorfo and Amaral, 1998)?
Or are modules just an unavoidable emergent property of a
coarsely defined temporal integration rate gradient along the
MEC dorsoventral axis?

(2) What are the mechanisms by which stripe cells develop to
support the path integration of linear velocity along differ-
ent allocentric directions? Knowing this will place additional
constraints on the self-organization of grid cells and place
cells, and will enable a comprehensive study of top-down
interactions to be made. The proposal that there is a ring
attractor organization both of stripe cells, for linear velocity
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FIGURE 4 | Anatomically overlapping grid cell modules. (A) Anatomical
distribution of sampled grid cells belonging to different modules in one
animal (Stensola et al., 2012). Simulation results of the SOM model: (B)

Distribution of learned grid spacings in a SOM comprising 50 map cells, all
with response rate μ = 1, that are receiving adaptive inputs from stripe
cells of two spacings (s1 = 20 cm, s2 = 35 cm). Only cells with gridness
score > 0.3 are considered. (C) Distribution of learned grid spacings in a
SOM comprising 50 cells, half with μ = 1 and the remaining with μ = 0.6,
that are receiving adaptive inputs from stripe cells of two spacings
(s1 = 20 cm, s2 = 35 cm). (D) Distribution of learned grid spacings in a SOM
comprising 90 cells, one-third with μ = 1, one-third with μ = 0.6, and the

remaining with μ = 0.3, that are receiving adaptive inputs from stripe cells of
three spacings (s1 = 20 cm, s2 = 35 cm, s3 = 50 cm). Panels (E–G) show
spatial rate maps and autocorrelograms of illustrative grid cells with different
learned spacings from the simulation summarized in (D). Note response rate
(μ) and gridness score at the top of each rate map, and grid spacing at the
top of each autocorrelogram. Peak activities As of stripe cells were 1, 0.8, 0.6
for spacings of 20, 35, 50 cm, respectively (see Equation 4). Color coding
from blue (min.) to red (max.) is used in each rate map, and from blue (−1) to
red (1) in each autocorrelogram. [Data in (A) is reprinted with permission
from Stensola et al. (2012), and the other panels with permission from
Grossberg and Pilly (2014)].
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integration, and of head direction cells, for angular velocity
integration, is parsimonious, but how do these ring attrac-
tors develop? Fortenberry et al. (2012) have modeled how the
calibration of visual, vestibular, and motor inputs develops
within the head direction ring attractor, but not how the ring
attractor itself develops.

COMPARATIVE MODEL ANALYSIS
CAN models simulate the two-dimensional spatial periodicity of
grid cell responses using a recurrent neural network. While several
variations have been proposed (see Zilli, 2012), they all gener-
ate a stable attractor state of cell activations when the animal
is stationary and a shift in the attractor’s response pattern as a
result of movements in external space. While some variants use
short-range recurrent excitation and long-range recurrent inhi-
bition to support a localized bump of persistent activity in the
neural plane (2D: Guanella et al., 2007; Pastoll et al., 2013; 1D:
Navratilova et al., 2012), others use a non-specific tonic excita-
tory drive combined with recurrent inhibition for the encoding
of stationary spatial position (Burak and Fiete, 2009; Bonnevie
et al., 2013; Couey et al., 2013). The former subclass of CAN
models assume periodic boundaries (i.e., ring/toroidal topol-
ogy) and employ either asymmetric inhibition by differential
activation of various conjunctive (grid × head direction) cells
during movement (Conklin and Eliasmith, 2005; Navratilova
et al., 2012), or velocity-controlled asymmetry in recurrent con-
nectivity (Guanella et al., 2007) to explain the spatially periodic
activations of grid cells through time. The hexagonal grid struc-
ture, instead of a rectangular one, in their spatial responses
emerges by appropriately twisting the toroidal arrangement of the
network cells (Guanella et al., 2007).

In the latter subclass of CAN models each cell receives an
excitatory input proportional to the component of body velocity
along its preferred direction, and asymmetric recurrent inhibition
that is offset in its preferred direction. The strength and extent
of recurrent inhibitory connections determine the grid field size
and spacing. Burak and Fiete (2009) investigated periodic and
aperiodic instantiations of this two-dimensional network, which
are related to whether or not the outbound recurrent connec-
tions near each edge wrap around to the opposite edge. While
periodic CANs are more robust path integrators, aperiodic CANs
can be designed to exhibit comparable performance by taper-
ing the strength of feedforward inputs at locations closer to the
boundaries, and increasing the size of the network (i.e., num-
ber of cells). Fundamental predictions of these models are the
presence of ensembles of distinct grid cells that code the same
spatial position (corresponding to multiple bumps), and the pres-
ence of preferred direction-specific offsets in recurrent inhibitory
connectivity.

Despite lack of direct evidence for these critical assumptions,
this subclass of CAN models has been promoted as the “best”
among the existing ones in several recent experimental articles
(Bonnevie et al., 2013; Couey et al., 2013; Domnisoru et al.,
2013; Schmidt-Heiber and Hausser, 2013) based on their reports
of experimental properties that are also shared with the SOM
model. For example, stellate cells in layer II of MEC interact with
each other not via recurrent excitatory connections but primarily

through recurrent inhibition (Beed et al., 2013; Couey et al., 2013;
Pastoll et al., 2013). Pastoll et al. (2013) proposed a variation of
the Guanella et al. (2007) model in which recurrent connections
among grid cells are exclusively inhibitory. In SOM models of grid
cell and place cell firing (Pilly and Grossberg, 2012, 2013a), map
cells at both the entorhinal and hippocampal levels also inter-
act in a purely recurrent inhibitory network (see Equation 5).
In addition, Beed et al. (2013) found that average spatial spread
and the number of inhibitory interneurons (mainly parvalbu-
min positive) for a given stellate cell decreases from the dorsal
to the ventral end. It is likely this dorsoventral gradient in recur-
rent inhibition further facilitates the learning of grid cell modules
(Stensola et al., 2012), which needs to be studied in future work.

Further, Bonnevie et al. (2013) interpreted the disruption of
the characteristic firing patterns of grid cells by hippocampal
inactivation as evidence for a primary role in grid cell gen-
eration of spatially uniform and tonically active hippocampal
excitatory inputs to them, in conflict with experimental evidence
that hippocampal-to-entorhinal feedback signals are neither spa-
tially uniform nor tonically active (see Grossberg and Pilly, 2014
for further discussion). Unlike the CAN models, neighboring
place and grid cells in SOM models (Pilly and Grossberg, 2012,
2013a) can have spatial firing fields that are uncorrelated to their
anatomical arrangement (Redish et al., 1996; Hafting et al., 2005).
Moreover, the data of Stensola et al. (2012) that anatomically
nearby grid cells can belong to different scale-specific modules,
whose simulation and explanation by the SOM model are pre-
sented in this article, is especially challenging for CAN models
because it raises the unavoidable issue of how such cells may be
developmentally segregated into different attractor networks.

In this regard, while a recent study provided evidence for
attractor dynamics underlying grid cell firing using simultaneous
recordings to reveal stable relative spatial phases for grid cell pairs
with similar spacings under environmental novelty and resizing
(Yoon et al., 2013), it also clarified that more work is in order
to differentiate a potential 2D CAN mechanism from one that
receives inputs with 1D attractor dynamics (p. 1084). For the
SOM model to directly simulate the coherent relative responses of
grid cells (Yoon et al., 2013), it will need to incorporate external
inputs that are sensitive to environmental features.

Domnisoru et al. (2013) and Schmidt-Heiber and Hausser
(2013) used in vivo whole-cell recordings during virtual real-
ity navigation to conclude that the firing of grid cells is better
explained by membrane potential ramps caused by integration
of synaptic inputs on a slower, sub-theta time scale, and not
by constructive interference among intrinsic theta-band mem-
brane potential oscillations (MPOs). Whereas these data may
argue against oscillatory interference models (Burgess et al., 2007;
Hasselmo et al., 2007), they are consistent with the SOM model.
Further, as mentioned in the Introduction, Grossberg and Pilly
(2012) showed that the frequency gradient of subthreshold MPOs
of stellate cells along the dorsoventral extent of MEC layer II
(Giocomo et al., 2007; Yoshida et al., 2011), which is regularly
cited in support of oscillatory interference models (e.g., Burgess
et al., 2007; Giocomo et al., 2007; Hasselmo et al., 2007), can also
be accounted in the SOM model by the gradient in average cell
response rates (Garden et al., 2008).

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 337 | 8

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Pilly and Grossberg Learning of grid cell modules

REFERENCES
Beed, P., Gundlfinger, A., Schneiderbauer, S., Song, J., Böhm, C., Burgalossi, A.,

et al. (2013). Inhibitory gradient along the dorsoventral axis in the medial
entorhinal cortex. Neuron 79, 1197–1207. doi: 10.1016/j.neuron.2013.06.038

Blair, H., and Sharp, P. (1995). Anticipatory head direction signals in anterior thala-
mus: evidence for a thalamocortical circuit that integrates angular head motion
to compute head direction. J. Neurosci. 15, 6260–6270.

Boccara, C. N., Sargolini, F., Thoresen, V. H., Solstad, T., Witter, M. P., Moser, E. I.,
et al. (2010). Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987–994.
doi: 10.1038/nn.2602

Boehlen, A., Heinemann, U., and Erchova, I. (2010). The range of intrinsic fre-
quencies represented by medial entorhinal cortex stellate cells extends with age.
J. Neurosci. 30, 4585–4589. doi: 10.1523/JNEUROSCI.4939-09.2010

Bonnevie, T., Dunn, B., Fyhn, M., Hafting, T., Derdikman, D., Kubie, J. L., et al.
(2013). Grid cells require excitatory drive from the hippocampus. Nat. Neurosci.
16, 309–317. doi: 10.1038/nn.3311

Brun, V. H., Solstad, T., Kjelstrup, K. B., Fyhn, M., Witter, M. P., Moser, E. I.,
et al. (2008). Progressive increase in grid scale from dorsal to ventral medial
entorhinal cortex. Hippocampus 18, 1200–1212. doi: 10.1002/hipo.20504

Burak, Y., and Fiete, I. R. (2009). Accurate path integration in continuous attractor
network models of grid cells. PLoS Comput. Biol. 5:e1000291. doi: 10.1371/jour-
nal.pcbi.1000291

Burgess, N., Barry, C., and O’Keefe, J. (2007). An oscillatory interference model of
grid cell firing. Hippocampus 17, 801–812. doi: 10.1002/hipo.20327

Carpenter, G. A., and Grossberg, S. (1987). A massively parallel architecture for a
self-organizing neural pattern recognition machine. Comput. Vis. Graph. Image
Process 37, 54–115. doi: 10.1016/S0734-189X(87)80014-2

Conklin, J., and Eliasmith, C. (2005). A controlled attractor network model of path
integration in the rat. J. Comput. Neurosci. 18, 183–203. doi: 10.1007/s10827-
005-6558-z

Couey, J. J., Witoelar, A., Zhang, S. J., Zheng, K., Ye, J., Dunn, B., et al. (2013).
Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci.
16, 318–324. doi: 10.1038/nn.3310

Dodson, P. D., Pastoll, H., and Nolan, M. F. (2011). Dorsal-ventral organization
of theta−like activity intrinsic to entorhinal stellate neurons is mediated by
differences in stochastic current fluctuations. J.Physiol. 589, 2993–3008. doi:
10.1113/jphysiol.2011.205021

Dolorfo, C. L., and Amaral, D. G. (1998). Entorhinal cortex of the rat: topo-
graphic organization of the cells of origin of the perforant path projection
to the dentate gyrus. J. Comp. Neurol. 398, 25–48. doi: 10.1002/(SICI)1096-
9861(19980817)398:1%3C25::AID-CNE3%3E3.3.CO;2-D

Domnisoru, C., Kinkhabwala, A. A., and Tank, D. W. (2013). Membrane potential
dynamics of grid cells. Nature 495, 199–204. doi: 10.1038/nature11973

Fortenberry, B., Gorchetchnikov, A., and Grossberg, S. (2012). Learned integration
of visual, vestibular, and motor cues in multiple brain regions computes head
direction during visually-guided navigation. Hippocampus 22, 2219–2237. doi:
10.1002/hipo.22040

Garden, D. L. F., Dodson, P. D., O’Donnell, C., White, M. D., and Nolan,
M. F. (2008). Tuning of synaptic integration in the medial entorhinal cor-
tex to the organization of grid cell firing fields. Neuron 60, 875–889. doi:
10.1016/j.neuron.2008.10.044

Gaudiano, P., and Grossberg, S. (1991). Vector associative maps: unsupervised real-
time error-based learning and control of movement trajectories. Neural Netw.
4, 147–183. doi: 10.1016/0893-6080(91)90002-M

Giocomo, L. M., Hussaini, S. A., Zheng, F., Kandel, E. R., Moser, M. B., and
Moser, E. I. (2011). Grid cells use HCN1 channels for spatial scaling. Cell 147,
1159–1170. doi: 10.1016/j.cell.2011.08.051

Giocomo, L. M., Zilli, E., Fransen, E., and Hasselmo, M. E. (2007). Temporal fre-
quency of subthreshold oscillations scales with entorhinal grid cell field spacing.
Science 315, 1719–1722. doi: 10.1126/science.1139207

Gorchetchnikov, A., and Grossberg, S. (2007). Space, time, and learning in the hip-
pocampus: how fine spatial and temporal scales are expanded into population
codes for behavioral control. Neural Netw. 20, 182–193. doi: 10.1016/j.neunet.
2006.11.007

Grossberg, S. (1976). Adaptive pattern classification and universal recoding, I:
parallel development and coding of neural feature detectors. Biol. Cybern. 23,
121–134. doi: 10.1007/BF00344744

Grossberg, S. (1980). How does a brain build a cognitive code? Psychol. Rev. 87,
1–51. doi: 10.1037/0033-295X.87.1.1

Grossberg, S., and Pilly, P. K. (2012). How entorhinal grid cells may learn mul-
tiple spatial scales from a dorsoventral gradient of cell response rates in
a self-organizing map. PLoS Comput. Biol. 8:31002648. doi: 10.1371/jour-
nal.pcbi.1002648

Grossberg, S., and Pilly, P. K. (2014). Coordinated learning of grid cell and place
cell spatial and temporal properties: multiple scales, attention, and oscilla-
tions. Philos.Trans. R. Soc. Lond. B Biol. Sci. 369:20120524. doi: 10.1098/rstb.20
12.0524

Grossberg, S., and Seitz, A. (2003). Laminar development of receptive fields, maps,
and columns in visual cortex: the coordinating role of the subplate. Cereb. Cortex
13, 852–863. doi: 10.1093/cercor/13.8.852

Guanella, A., Kiper, D., and Verschure, P. (2007). A model of grid cells
based on a twisted torus topology. Int. J. Neural Syst. 17, 231–240. doi:
10.1142/S0129065707001093

Hafting, T., Fyhn, M., Molden, S., Moser, M. B., and Moser, E. I. (2005).
Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806.
doi: 10.1038/nature03721

Hasselmo, M. E., Giocomo, L. M., and Zilli, E. A. (2007). Grid cell firing may arise
from interference of theta frequency membrane potential oscillations in single
neurons. Hippocampus 17, 1252–1271. doi: 10.1002/hipo.20374

Hubel, D. H., and Wiesel, T. (1962). Receptive fields, binocular interaction, and
functional architecture of cat striate cortex. J. Physiol. (London). 160, 106–154.

Hubel, D. H., and Wiesel, T. (1977). Functional architecture of macaque monkey
visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59.

Krupic, J., Burgess, N., and O’Keefe, J. (2012). Neural representations of location
composed of spatially periodic bands. Science 337, 853–857. doi: 10.1126/sci-
ence.1222403

Langston, R. F., Ainge, J. A., Couey, J. J., Canto, C. B., Bjerknes, T. L., Witter, M. P.,
et al. (2010). Development of the spatial representation system in the rat. Science
328, 1576–1580. doi: 10.1126/science.1188210

Mhatre, H., Gorchetchnikov, A., and Grossberg, S. (2012). Grid cell hexago-
nal patterns formed by fast self-organized learning within entorhinal cortex.
Hippocampus 22, 320–334. doi: 10.1002/hipo.20901

Navratilova, Z., Giocomo, L. M., Fellous, J.-M., Hasselmo, M. E., and McNaughton,
B. L. (2012). Phase precession and variable spatial scaling in a periodic attractor
map model of medial entorhinal grid cells with realistic after-spike dynamics.
Hippocampus 22, 772–789. doi: 10.1002/hipo.20939

O’Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34,
171–175.

Pastoll, H., Solanka, L., van Rossum, M. C., and Nolan, M. F. (2013). Feedback inhi-
bition enables theta-nested gamma oscillations and grid firing fields. Neuron 77,
141–154. doi: 10.1016/j.neuron.2012.11.032

Payne, B. R., Berman, N., and Murphy, E. H. (1981). Organization of direction
preferences in cat visual cortex. Brain Res. 211, 445–450. doi: 10.1016/0006-
8993(81)90971-9

Pilly, P. K., and Grossberg, S. (2012). How do spatial learning and memory occur in
the brain? Coordinated learning of entorhinal grid cells and hippocampal place
cells. J. Cogn. Neurosci. 24, 1031–1054. doi: 10.1162/jocn_a_00200

Pilly, P. K., and Grossberg, S. (2013a). Spiking neurons in a hierarchical self-
organizing map model can learn to develop spatial and temporal properties of
entorhinal grid cells and hippocampal place cells. PLoS ONE 8:e0060599. doi:
10.1371/journal.pone.0060599

Pilly, P. K., and Grossberg, S. (2013b). How reduction of theta rhythm by
medial septum inactivation may covary with disruption of entorhinal grid cell
responses due to reduced cholinergic transmission. Front. Neural Circuits 7:173.
doi: 10.3389/fncir.2013.00173

Ranck, J. B. Jr. (1984). Head direction cells in the deep layers of dorsal presubiculum
in freely moving rats. Soc. Neurosci. Abstr. 10, 599.

Redish, A. D., Elga, A. N., and Touretzky, D. S. (1996). A coupled attractor model of
the rodent head direction system. Netw. Comput. Neural Syst. 7, 671–685. doi:
10.1088/0954-898X/7/4/004

Royer, S., and Pare, D. (2003). Conservation of total synaptic weight through
balanced synaptic depression and potentiation. Nature 422, 518–522. doi:
10.1038/nature01530

Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser,
M. B., et al. (2006). Conjunctive representation of position, direction, and
velocity in entorhinal cortex. Science 312, 758–762. doi: 10.1126/science.1
125572

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 337 | 9

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Pilly and Grossberg Learning of grid cell modules

Schmidt-Heiber, C., and Hausser, M. (2013). Cellular mechanisms of spatial
navigation in the medial entorhinal cortex. Nat. Neurosci. 16, 325–331. doi:
10.1038/nn.3340

Stackman, R. W., and Taube, J. S. (1997). Firing properties of head direction cells in
the rat anterior thalamic nucleus: dependence on vestibular input. J. Neurosci.
17, 4349–4358.

Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B., and Moser, E.
I. (2012). The entorhinal grid map is discretized. Nature 492, 72–78. doi:
10.1038/nature11649

Taube, J. (1995). Head direction cells recorded in the anterior thalamic nuclei of
freely moving rats. J. Neurosci. 15, 70–86.

Tsanov, M., and Manahan-Vaughan, D. (2007). Intrinsic, light-independent
and visual activity-dependent mechanisms cooperate in the shaping of
the field response in rat visual cortex. J. Neurosci. 27, 8422–8429. doi:
10.1523/JNEUROSCI.1180-07.2007

Weliky, M., Bosking, W. H., and Fitzpatrick, D. (1996). A systematic map of
direction preference in primary visual cortex. Nature 379, 725–728. doi:
10.1038/379725a0

Wills, T. J., Cacucci, F., Burgess, N., and O’Keefe, J. (2010). Development of the
hippocampal cognitive map in preweanling rats. Science 328, 1573–1576. doi:
10.1126/science.1188224

Yoon, K., Buice, M. A., Barry, C., Hayman, R., Burgess, N., and Fiete, I. R. (2013).
Specific evidence of low-dimensional continuous attractor dynamics in grid
cells. Nat.Neurosci. 16, 1077–1084. doi: 10.1038/nn.3450

Yoshida, M., Giocomo, L. M., Boardman, I., and Hasselmo, M. E. (2011).
Frequency of subthreshold oscillations at different membrane potential
voltages in neurons at different anatomical positions on the dorsoventral
axis in the rat medial entorhinal cortex. J. Neurosci. 31, 12683–12694. doi:
10.1523/JNEUROSCI.1654-11.2011

Zilli, E. A. (2012). Models of grid cell spatial firing published 2005-2011. Front.
Neural Circuits 6:16. doi: 10.3389/fncir.2012.00016

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 27 December 2013; paper pending published: 27 March 2014; accepted: 04
May 2014; published online: 03 June 2014.
Citation: Pilly PK and Grossberg S (2014) How does the modular organization of
entorhinal grid cells develop? Front. Hum. Neurosci. 8:337. doi: 10.3389/fnhum.
2014.00337
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Pilly and Grossberg. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 337 | 10

http://dx.doi.org/10.3389/fnhum.2014.00337
http://dx.doi.org/10.3389/fnhum.2014.00337
http://dx.doi.org/10.3389/fnhum.2014.00337
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Pilly and Grossberg Learning of grid cell modules

APPENDIX
This section describes the SOM model (Grossberg and Pilly,
2012) equations and parameters that were used in the simulations
of grid cell module properties.

STRIPE CELLS
Stripe cells are algorithmically computed, for simplicity, as fol-
lows: If at time t the animat heads along allocentric direction ϕ(t)
with velocity v(t), then the velocity vd(t) along direction d is:

vd(t) = cos (d − ϕ(t))v(t) (1)

The displacement Dd(t) traversed along direction d with respect
to the initial position is calculated by path integration of the
corresponding velocity:

Dd(t) =
∫ t

0
vd(τ )dτ (2)

This directional displacement variable is converted into activa-
tions of various stripe cells. Let Sdps(t) be the activity of a stripe
cell whose spatial fields are oriented perpendicular to direction d
with spatial phase p and spatial period s. Sdps(t) will be maximal at
periodic positions ns + p along direction d, for all integer values
of n. In other words, Sdps(t) will be maximal whenever (Dd mod-
ulo s) = p. Defining the spatial phase difference ωdps between Dd

and p with respect to spatial scale s by:

ωdps(t) = (
Dd(t) − p

)
modulo s, (3)

the stripe cell activity Sdps(t) is modeled by a Gaussian tuning
function:

Sdps(t) = As · exp

(
−
(
min

(
ωdps (t) , s − ωdps (t)

))2

2σ 2
s

)
, (4)

where As is the maximal activity and σs is the standard deviation
of each of its individual stripe fields along preferred direction d.
All directional displacement variables Dd(t) were initialized to 0
at the start of each learning trial.

MAP CELLS
The membrane potential Vm

j of the MEC layer II map cell j
in local population m obeys membrane equation, or shunting,
dynamics within a recurrent on-center off-surround network
(Grossberg, 1976, 1980) as follows:

dVm
j

dt
= 10μj

[
−AVm

j +
(

B − Vm
j

)
⎛
⎝∑

dps

wm
dpsjxdps + α

([
Vm

j

]+)2

zm
j

⎞
⎠

−
(

C + Vm
j

)∑
k �=j

β
([

Vm
k − �

]+)2

⎤
⎦ , (5)

where μj controls the rate of temporal integration, also called the
response rate, of the cell; A is the decay parameter correspond-
ing to the leak conductance; B and −C are the reversal potentials
of the excitatory and inhibitory channels, respectively; wm

dpsj is the
synaptic weight of the projection from the stripe cell with activity

Sdps in Equation 4 to the map cell j in population m; α

([
Vm

j

]+)2

is the on-center self-excitatory feedback signal of the cell, which
helps to resolve the competition among map cells within cell pop-
ulation m, where [V]+ = max (V, 0) defines a threshold-linear
function, and α is the gain coefficient; zm

j is the habituative trans-
mitter gate of map cell j; and β is the connection strength of the

inhibitory feedback signal
([

Vm
k − �

]+)2
from map cell k in the

off-surround to map cell j within population m. The output sig-

nal of map cell j is also

([
Vm

j − �
]+)2

. The membrane potential

of each map cell was initialized to 0 at the start of each trial.

ADAPTIVE WEIGHTS
The adaptive weights wm

dpsj of projections from stripe cells to map
cells are governed by a variant of the competitive instar learning
law (Grossberg, 1976; Carpenter and Grossberg, 1987; Grossberg
and Seitz, 2003):

dwm
dpsj

dt
= λ

([
Vm

j − �
]+)2

⎡
⎣(1 − wm

dpsj

)
xdps − wm

dpsj

∑
(p,q,r) �= (d,p,s)

xpqr

⎤
⎦ , (6)

where λ is the learning rate; the map cell output signal([
Vm

j − �
]+)2

gates learning on and off; and the learning rule

defines a self-normalizing competition among afferent synaptic
weights to the target cell, leading to a maximum learned total
weight to the cell of 1. Each weight wm

dpsj was initialized to a ran-
dom value drawn from a uniform distribution between 0 and 0.1
at the start of the first trial.

HABITUATIVE GATING
The habituative transmitter zm

j of map cell j in population m is
defined by:

dzm
j

dt
= 10η

⎡
⎣(1 − zm

j

)
− γ zm

j

(
α

([
Vm

j

]+)2
)2
⎤
⎦ , (7)

where η controls the overall response, or habituation, rate of the
transmitter and γ scales its depletion rate. In particular, term(

1 − zm
j

)
controls the gate recovery rate to the target level of

1, and term −γ zm
j

(
α

([
Vm

j

]+)2
)2

controls the gate inactiva-

tion rate, which is proportional to the current gate strength zm
j
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times the square of the signal

(
α

([
Vm

j

]+)2
)

that zm
j gates in

Equation 5. The squaring operation causes the gated signal to first
increase and then decrease through time in response to excita-
tory input (Gaudiano and Grossberg, 1991), thereby regulating
the duration of intense cell activity, and thus cell perseveration.
The habituative transmitter of each map cell was initialized to its
maximum value of 1 at the start of each trial.

SIMULATION SETTINGS
The parameter values used in the simulations were A = 3; B = 1;
C = 0.5; α = 17.5; β = 1.5; γ = 0.2; λ = 0.025; η = 0.05; and
� = 0.1. The differential equations governing model dynamics
were numerically integrated using Euler’s forward method with
a fixed time step �t = 2 ms.

The development of three entorhinal SOMs were simulated:
one comprising 50 map cells, all with response rate μ = 1, that
received adaptive inputs from stripe cells of two spacings (s1 =
20, s2 = 35 cm); one comprising 50 cells, half with μ = 1 and the
remaining with μ = 0.6, that received adaptive inputs from stripe
cells of two spacings (s1 = 20, s2 = 35 cm); and the other com-
prising 90 cells, one-third with μ = 1, one-third with μ = 0.6,
and the remaining one-third with μ = 0.3, that received adap-
tive inputs from stripe cells of three spacings (s1 = 20, s2 = 35,
s3 = 50 cm). In each case, stripe cells also varied with nine direc-
tion preferences (−80◦ to 80◦ in steps of 20◦), and four spatial
phases (p = [0, s/4, s/2, 3s/4] for the stripe spacing s) per direc-
tion. Peak activities As of stripe cells were set to 1, 0.8, and 0.6 for
spacings of 20, 35, and 50 cm, respectively. The standard deviation

σs of each stripe field Gaussian tuning was set to 8.84% of the
stripe spacing. The development of the entorhinal map cells into
their adult counterparts was accomplished by employing 20 trials,
in each of which the animat ran along a novel realistic trajec-
tory of ∼20 min in a circular environment with a radius of 50 cm.
These trajectories were obtained by rotating an original rat tra-
jectory (data: Sargolini et al., 2006) about the midpoint of the
environment, which is also the starting point, by random angles.
The original trajectory was, also, interpolated to increase its tem-
poral resolution to match the time step of numerical integration
of model dynamics (�t = 2 ms).

POST-PROCESSING
The 100 × 100 cm environment was divided into 2.5 × 2.5 cm
bins. During each trial, the amount of time spent by the animat
in the various bins was tracked. The output activity of each map
cell in every spatial bin was accumulated as the trajectory visited
that bin. The occupancy and activity maps were smoothed using
a 5 × 5 Gaussian kernel with standard deviation equal to one. At
the end of each trial, smoothed rate maps for each map cell were
obtained by dividing the cumulative activity variable by cumula-
tive occupancy variable in each bin. For each map cell, six local
maxima with r > 0.05 and closest to the central peak in the spa-
tial autocorrelogram of its smoothed rate map were identified.
Gridness score, which measures how hexagonal and periodic a
grid pattern is, was then derived using the method described in
Wills et al. (2010), and grid spacing was obtained as the median
of the distances of the six local maxima from the central peak
(Hafting et al., 2005).
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