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The function of the ventral parietal cortex (VPC) is subject to much debate. Many studies
suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal
working memory and the right subserving stimulus-driven attention. However, many
attentional tasks elicit activity in the VPC bilaterally.To elucidate the potential divides across
the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two
tasks that require different demands, an oddball attentional task with low working memory
demands and a working memory task. An anterior region of the VPC was bilaterally active
during novel targets in the oddball task and during retrieval in WM, while more posterior
regions of the VPC displayed dissociable functions in the left and right hemisphere, with
the left being active during the encoding and retrieval of WM, but not during the oddball
task and the right showing the reverse pattern.These results suggest that bilateral regions
of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention
during WM retrieval and oddball detection. The left posterior VPC may be important for
speech-related processing important for both working memory and perception, while the
right hemisphere is more lateralized for attention.

Keywords: stimulus-driven attention, voluntary attention, short-term memory, working memory, verbal working

memory, language

INTRODUCTION
The ventral parietal cortex (VPC) is a large region encompassing
both the supramarginal and angular gyri, and its function has been
the subject of much study and debate in cognitive neuroscience
(Cabeza et al., 2012; Mars et al., 2012; Carter and Huettel, 2013). In
particular, the temporal parietal junction (TPJ), a region residing
at the intersection of the superior temporal sulcus, inferior parietal
cortex, and occipital cortex (Mars et al., 2012), has been ascribed
a wide range of functions ranging from attention (Corbetta et al.,
2000; Todd et al., 2005; Serences and Yantis, 2007; Weissman and
Prado, 2012; Chang et al., 2013; Chica et al., 2013), auditory-motor
integration (Hickok and Poeppel, 2000), updating contextual cues
(DiQuattro and Geng, 2011; DiQuattro et al., 2013), binding of
episode features (Elman et al., 2013) and social cognition (Saxe and
Kanwisher, 2003). Anterior regions of the supramarginal gyrus,
outside the TPJ, have also been attributed a wide variety of func-
tions including verbal working memory storage (Paulesu et al.,
1993; Jonides et al., 1998) and sensory motor processing (Schwartz
et al., 2012; Warbrick et al., 2013). Some of these functions are
claimed to be lateralized; for example, stimulus-driven attention
and social cognition are claimed to be lateralized to the right
hemisphere whereas speech and language processing (e.g., verbal
working memory storage, auditory-motor integration) are more
dominant in the left hemisphere (Duncan et al., 1999; Szczepanski
et al., 2010; Szczepanski and Kastner, 2013).

Determining the functions of the VPC and whether they are
heterogeneous or homogenous has been a frequent subject of
research (Cabeza et al., 2008, 2012; Mars et al., 2012; Nelson et al.,

2012; Carter and Huettel, 2013). Some have argued that the VPC
has a unitary function (Cabeza et al., 2012; Carter and Huettel,
2013) while others have argued that functions across the VPC are
most likely “fractionated” (Mars et al., 2012; Nelson et al., 2012).
The goal of the present study was to assess differences in the pat-
tern of VPC recruitment in two domains in order to observe the
overlap in functional activity. Knowing the pattern of activity of
this region across tasks and how activity relates to performance
will provide a basis for future hypotheses concerning the common
or dissociable functions of the VPC.

Much research has focused on how the right VPC might
contribute a common process across many cognitive domains
(Corbetta et al., 2008; Cabeza et al., 2012; Carter and Huettel,
2013), however, we were especially interested in functions of the
left hemisphere. Similar to the right VPC, the left VPC has been
implicated in many different tasks; that is, the left VPC is argued
to be important for working memory processes involved in stor-
ing verbal information (Paulesu et al., 1993; Salmon et al., 1996;
Gruber and von Cramon, 2001; Barch and Csernansky, 2007) as
well as non-mnemonic processes such as updating sensory and
motor context (Geng and Vossel, 2013). Of course, there may be a
common process that the left VPC contributes to these tasks, but
as a first step, we examined whether such tasks evoked activity in
common or dissociable regions in the left VPC. Toward this end,
we examined the pattern of activity in two different tasks that reli-
ably evoke activity in the left VPC – verbal working memory and
oddball detection – that differ in the demand they place on the
memory system.
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The left VPC has been associated with verbal working mem-
ory functions based on lesion and imaging data. For example,
lesions associated with selective verbal WM deficits are typically
located in the left temporoparietal cortex (Shallice and Vallar,
1990) with the greatest degree of overlap in the left VPC (Graves
et al., 2005). Left VPC activity is also observed in neuroimag-
ing studies of verbal WM when contrasted with non-verbal WM
(Paulesu et al., 1993; Salmon et al., 1996; Gruber and von Cra-
mon, 2001; Barch and Csernansky, 2007). Some have proposed
that this region acts as a dedicated storage buffer as proposed by
Baddeley and Hitch (1974) and Baddeley (2000), whereas oth-
ers have suggested that this region integrates phonological and
motor codes that facilitates verbal WM encoding and maintenance
(Hickok and Poeppel, 2000; Hickok et al., 2009).

Detection of oddball or novel stimuli reliably evokes bilat-
eral activity in the VPC. Oddball tasks are argued to recruit
the VPC because infrequent events capture attention (Corbetta
et al., 2008). Accordingly, other studies such as those exam-
ining contingent capture from task-relevant stimuli have also
reported bilateral VPC activity (Serences et al., 2005). These find-
ings and others have been the basis for the proposal that this
region is involved in stimulus-driven attention (Cabeza et al.,
2012), although other non-mnemonic functions such as sensori-
motor integration (Carter and Huettel, 2013) or context updating
(DiQuattro et al., 2013) have also been proposed. Importantly,
there is little support for a strict lateralization of these functions
in the VPC. For example, many studies of oddball detection find
bilateral responses in the VPC to rare targets (c.f., Kiehl et al., 2001,
2005; Laurens et al., 2005; Wolf et al., 2008). Moreover, an increas-
ing number of studies have found engagement of the left VPC
during stimulus-driven capture (Wolf et al., 2008; Weidner et al.,
2009; Doricchi et al., 2010).

We chose oddball detection and verbal working memory tasks
because they evoke reliable activity in the left VPC, but differ
in the demands they place on the memory system. In our odd-
ball detection task, participants have to respond to any stimulus
that is different than the standard stimulus. They do not have
to remember a pre-specified target and, thus, working memory
demands are relatively low. We also examined activity in each stage
of a verbal working memory task – encoding, maintenance, and
retrieval. Encoding and oddball detection are similar in that they
both require attention and visual perception whereas maintenance
and oddball detection are quite different in terms of processing
internal or external stimuli. Examining the pattern of overlap
in these two tasks can provide some insight into VPC function
in the left hemisphere. For example, left VPC activity at encod-
ing in WM and during oddball detection might suggest a role
of this region in visual processing or attention, but not in WM
storage.

In a previous study of verbal WM (Ravizza et al., 2011), we
found that anterior portions of the VPC were active during encod-
ing and retrieval, but not during maintenance. In contrast, the
posterior segment of the VPC in the temporal–parietal junc-
tion was active during all working memory stages. In that paper,
we suggested that the posterior VPC was important for storing
verbal information because of its involvement in speech percep-
tion. The anterior VPC was proposed to have a non-mnemonic

contribution to verbal working memory performance perhaps via
stimulus-driven attention. Thus, we predict that the left ante-
rior VPC will be active in both encoding and retrieval stages
of the WM task and in the oddball detection task. For the left
posterior VPC, we predict that it will be active in the WM task,
but not during oddball detection. Although we are focused on
the left VPC, patterns of activity will also be reported for the
right hemisphere in order to compare potential differences in
laterality.

MATERIALS AND METHODS
PARTICIPANTS
Twenty right-handed individuals (11 F/9 M) between the ages
of 20 and 29 (average age ± SD, 21.5 ± 2.1) participated in this
study. All participants were paid US $20 for their participation and
provided informed consent following the procedures approved
by the Human Research Protection Program at Michigan State
University. Data from three participants were excluded from all
analyses. Participants were excluded either because of technical
difficulty with the scanner, a failure to follow task instructions, or
chance performance in the object WM task. Thus, data from 17
participants were analyzed. Due to a technical difficulty, behavioral
data for one participant was unreliable for the oddball task. This
participant was included in all other analyses.

STIMULI
Seventeen English consonants presented in 36-point Arial font
composed the set of verbal items. The set of object stimuli con-
sisted of seventeen Korean letters of similar size and complexity
to the English letters (Paulesu et al., 1993). All subjects confirmed
that they did not know the Korean language. The stimuli were cen-
tered on a 32′′ LCD monitor with a 1024 × 768 matrix resolution
and subtended.88◦ and 1.3◦ of visual angle.

EXPERIMENTAL DESIGN
Behavioral data were collected via the E-prime software package
(Psychology Software Tools) with a fiber optic response keypad.
For the oddball task, participants were shown a series of percent
signs (%) interspersed with novel target stimuli at random times
(Figure 1A). Novel targets consisted of English and Korean let-
ters and occurred with a minimum of 14.4 s and a maximum
of 25.2 s from the time of the last target. The jitter in the odd-
ball task was set in increments of 1800 ms; specifically, oddball
events could occur at one of seven times (14.4, 16.2, 18, 19.8,
21.6, 23.4, or 25.2 s) after the previous oddball target. Partici-
pants were asked to press their right index finger on the keypad
whenever they saw a stimulus that was not a percentage sign. Stim-
ulus duration was 600 ms and a blank screen was presented for
600 ms between stimuli. A subset of the standard stimuli (per-
cent signs) were used as the baseline condition, so that we could
isolate activity to the standard stimulus from that associated with
novel targets; this was denoted as the “control target” for the task.
These control targets were randomly selected percent signs with
the same presentation constraints as the novel targets. The odd-
ball task was completed in five runs (4 min 48 s each) and the
total number of trials per condition varied from 15 to 30, since the
novel targets were presented at random times. On average, 49.3%
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FIGURE 1 | Experimental design of the oddball (A) and working

memory [WM; (B)] task. The oddball task consisted of novel targets
(Korean and English letters), non-targets (percentage signs) and control
targets (same as non-targets, but used as the baseline condition for
comparison purposes; one-third of the time the percentage signs were
denoted as the control targets); stimulus duration was 600 ms, while the
interstimulus interval was 600 ms. (A). Presented is an example sequence
of a novel target (Korean letter) followed by a series of standard stimuli (%)
and another novel target (English letter). Participants indicated whenever
they saw a stimulus that was not a percentage sign. The WM task
consisted of verbal (English letters only) and object (Korean letters only)
trials. Presented is a verbal trial followed by a correctly ordered probe (B). A
fixation cross marked the onset of each trial (2 s), followed by the
presentation of five randomly selected stimuli (all verbal or all object; 8 s).
Participants were to rehearse the stimuli in serial order (16 s) and make a
response when the probe (r→c) was presented (4 s). A fixation cross
marked the end of the trial (12 s).

of the novel targets were object stimuli, while 50.7% were verbal
stimuli.

The WM task consisted of five runs of eight trials each [four
verbal (English letter trials) and four object (Korean letters tri-
als) in random order] and total trial duration was 42 s (5 min
44 s/run). The sequence of each trial was as follows (refer to
Figure 1B). A fixation cross appeared at the onset of each trial
for 2 s. During the encoding phase, a sequence of five randomly
selected stimuli (all verbal or all object) was displayed across an
8 s interval. Each stimulus in the sequence was displayed for 1 s
with an induced temporal jitter between 200 and 1000 ms between
stimuli. The jittering scheme resulted in the constant length of 8 s
for the encoding interval. Participants were instructed to rehearse
the stimuli in serial order during a maintenance period (16 s),
which was indicated by a series of dashed lines (—-) that appeared
on the screen. A probe (r→c) initiated the start of the retrieval
period and participants were asked to indicate whether the stim-
uli were in the order in which they were presented. The probe
was in the correct order half of the time, while two adjacent
letters from the list were swapped the other half of the time.
Participants indicated a correct sequence by pressing their right
index finger, while incorrect sequences were indicated by press-
ing their right middle finger on the response box. Participants
had 4 s to make a response before a fixation cross appeared on

the screen for 12 s marking the end of the trial. Only subsets of
fMRI time points were analyzed for each stage of the WM task in
order to reduce the overlap of activity (see ROI analysis for more
detail).

The WM and oddball tasks were completed on the same day,
but all WM runs were completed before the oddball runs. To
ensure that WM demands were low in the oddball task, runs of
the WM task were not alternated with runs of the oddball task
so that participants were less likely to memorize oddball targets.
The WM task was completed first, since it is more cognitively
demanding than the oddball task. All participants practiced the
two tasks briefly before entering the scanner to ensure that they
understood the task directions.

fMRI ACQUISITION
Imaging was performed on a GE 3 T Signa HDx scanner with
high-order shimming applied for improvement of local field
homogeneity. Functional images were collected using gradient
echo planar imaging [TR = 1.8 s (oddball task), 2 s (WM task);
echo time = 28 ms; voxel size = 3.44 mm × 3.44 mm × 3.8 mm;
flip angle = 74◦ (oddball task) 77◦ (WM task); field of
view = 220 mm). TRs differed between the WM and odd-
ball detection tasks because of the faster timing of the odd-
ball detection task. Twenty-eight axial slices were collected
for both tasks in an interleaved fashion with a total of 156
scans/run in the oddball task and 168 scans/run in the WM
task. Sagittal high resolution T1-weighted structural scans (voxel
size = 1.5 mm × 0.938 mm × 1.25 mm) were also acquired from
each participant for anatomical registration.

PREPROCESSING
Preprocessing and first-level analysis of the functional MRI data
was performed using FEAT (v5.98) within FSL (FMRIB’s Soft-
ware Library; Smith et al., 2004). Preprocessing consisted of
motion correction through MCFLIRT (Jenkinson et al., 2002),
brain extraction through the FSL brain extraction tool (BET;
Smith, 2002), spatial smoothing with a Gaussian kernel of full
width at half maximum (FWHM) of 9 mm, and high-pass tempo-
ral filtering (<0.01 Hz). Each participant’s functional MRI scans
were registered to their own high resolution T1 structural scan
(linear transformation; df = 7) followed by registration to a stan-
dard space image (MNI 152; linear transformation; df = 12). FILM
(FMRIB’s Improved Linear Model) was used on the single-subject
data. This method uses auto-correlation correction to pre-whiten
each voxel’s time series, which provides better efficiency of the
model (Woolrich et al., 2001).

WHOLE-BRAIN ANALYSIS
Higher-level group analysis was done using FLAME (FMRIB’s
Local Analysis of Mixed Effects). FLAME uses each partici-
pant’s time series data to model the participant’s activity in each
condition. Individual time course vectors describing the onset
of each event were convolved with a canonical double-gamma
hemodynamic response function (HRF), along with its tempo-
ral derivative, and entered as predictors in a modified general
linear model (GLM). In the oddball task, four regressors were
included in the final model: correct (detected) targets, incorrect
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targets, control targets and non-targets (standard stimulus; refer
to Figure 1A). Due to the fact that there were no differences
found between verbal and object targets in the oddball task
(no clusters found at Z = 3.1, p = 0.001) these conditions
were combined in the final model. To identify regions respon-
sive to targets during the oddball task, a two-sample paired
t-test was conducted between correct novel and control tar-
gets. Results of this contrast were thresholded at FWE-corrected
p < 0.05.

For the WM task twelve regressors were included in the model:
2 (verbal versus object trials) × 3 (encoding versus maintenance
versus retrieval stages) × 2 (correct versus incorrect trials). One-
way t-tests were performed to identify significant (above baseline;
mean response different from zero) regions of activation at each
stage of the task (correct encoding, maintenance, and retrieval).
Baseline in this analysis included the unmodeled portion of the
signal. All resulting images were thresholded at FWE-corrected
p < 0.05.

TIME COURSE ANALYSIS
Time courses for VPC ROIs produced in the whole-brain analysis
were calculated using a mean time series extraction utility in FSL.
We considered activity as residing in the VPC if the peak voxel
was located in the supramarginal or angular gyrus of the parietal
cortex below the intraparietal sulcus (z < 30 in Talairach space).
Given potential smoothing errors, peak coordinates in the group
analysis that fell within the superior temporal gyrus were also con-
sidered part of the VPC if adjacent voxels appeared in the parietal
cortex.

For the oddball task, percent change in signal intensity was cal-
culated as the difference between signal intensity at each time point
relative to the start of each trial. For the WM task, we assessed per-
cent signal change at points of minimal overlap between each stage
of the serial-recognition task in which the hemodynamic response
function (HRF; 4–6 s lag time) would be at its peak (see Ravizza
et al., 2011). The points corresponded to 6–12 s after the onset of
the trial for encoding, 20–26 s after trial onset for maintenance,
and 28–34 s after trial onset for retrieval. Thus, the likelihood
of overlap of activity for encoding and maintenance is very low.
However, potentially there is activity overlap in the retrieval stage
which occurs at the later time points. The first two and last two
time points of each trial were used to assess baseline activity. Paired
t-tests were used to compare signal intensity at each stage to base-
line, as well as for comparisons between signal intensity for the
verbal and object condition at each stage. For all ROI-based analy-
ses, t values with p < 0.05, uncorrected were considered statistically
significant.

The whole-brain analysis of the oddball task produced a large
cluster encompassing the anterior parietal, motor, and premotor
cortices in the left hemisphere. To isolate anterior VPC activity, a
5 mm radius spherical mask centered on the VPC peak in the left
hemisphere was created. This mask was registered to subject space
where the average time series for all voxels falling within the mask
was extracted. This region of the left anterior VPC overlapped
with the VPC ROIs generated by the whole-brain analysis of WM
retrieval, and the mask was subsequently used when extracting
time course data from the WM task as well. This ensured that we

isolated activity in the anterior VPC as well as targeting only voxels
that were active in both tasks.

The right aVPC sites and the left posterior VPC regions were
more focal in the inferior parietal cortex and superior temporal
gyrus. For these sites, time courses were extracted from the entire
ROI produced in the whole-brain analyses.

RESULTS
BEHAVIORAL RESULTS
Participants were highly accurate at detecting novel targets
(mean = 95.5%). There were no differences in detecting ver-
bal or object targets in accuracy [t(15) = 0.92, p = 0.37) or RT
[t(15) = 1.22, p = 0.24; Figures 2A,B). In the WM task, partici-
pants performed better on verbal trials compared to object trials.
Accuracy was greater [t(16) = 2.73, p < 0.05], and reaction time
(RT) was faster [t(16) = 3.7, p < 0.05) for the verbal condition
compared to the object condition (Figures 2C,D).

ODDBALL TASK
The whole brain analysis of the oddball task was used to iden-
tify regions responsive to oddball targets. No differences were
found when comparing verbal and object oddball targets in the

FIGURE 2 | Average accuracy and reaction time (RT) for the oddball

[(A,B) ± SEM] and working memory [WM; (C,D) ± SEM] task. For the
oddball task, there were no differences in detecting verbal or object targets
in accuracy (A) or RT (B). For the WM task, participants had both higher
performance (C) and faster RT (D) for verbal trials. *Asterisks indicate a
significant difference between the verbal and object trials of the WM task
at p < 0.05. For better visualization of the differences in accuracy and RT,
the y-axis starts a higher value in (A,C,D), this is represented by the jagged
line in these graphs.
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whole brain analysis so these conditions were collapsed and com-
pared to the baseline condition. Consistent with other studies
of oddball detection (c.f., Kiehl et al., 2001, 2005; Laurens et al.,
2005; Wolf et al., 2008), the group contrast between correct tar-
get > control target in the oddball task revealed activation across
a large area of the parietal cortex, including the left and right
VPC (Figure 3). The peak of activation in the left VPC resided
in the supramarginal gyrus (Talairach coordinates: −52, −25,
24; Figure 3A). Two regions of the right VPC were also sensi-
tive to oddball targets in the whole-brain analysis. One region
was homologous to the left VPC region in the right anterior VPC
(aVPC; Talairach coordinates: 52, −24, 24; k = 26; described
above (Figure 3B) and the other region had peak activity more
posterior in the VPC (pVPC; Talairach coordinates: 59, −37,
24; k = 141) and included part of the superior temporal gyrus
(Figure 3C).

WM TASK
We also measured activity in different stages of the verbal WM
task to assess whether VPC regions engaged in WM differed from
those observed in the oddball task. Significant activity in the left

VPC was observed during encoding in the whole-brain analysis
(Talairach coordinates: −62, −40, 20). This more posterior region
in the VPC included part of the supramarginal and superior tem-
poral gyrus and did not overlap with the left aVPC region found
in the oddball task (Figures 3F,H). In post hoc analyses, this left
pVPC/STG region tended to be more active for verbal informa-
tion than objects, but the comparison did not reach significance
[t(16) = 2.02, p = 0.061]. Other regions found to be active during
encoding, maintenance, and retrieval for verbal versus baseline are
displayed in Table 1.

During the maintenance interval, no regions of the VPC
were significantly active in the whole-brain analysis. However, at
retrieval, a large area of the VPC was observed that overlapped
with the bilateral aVPC regions supporting oddball detection
and the left pVPC site supporting verbal WM encoding (see
Figure 3F for overlap). The aVPC sites (left and right) active
in the oddball task were then used as ROI’s to extract time-
course information at other stages of the WM task that were
not directly produced by this analysis (encoding and maintenance
of verbal WM and all stages of object WM; see ROI Analysis in
Methods).

FIGURE 3 | Regions of the VPC active in the oddball and WM

tasks. Blue indicates significant activity in the oddball task, yellow
indicates significant activity at encoding in the WM task, and green
denotes significant activity at retrieval in the WM task (D–F). Left and
right aVPC regions [left: (D); right: (E)] in the supramarginal gyrus were
active in the oddball task [left: (A); right: (B)] and at retrieval during the
WM task [left: (G); right: (I)]. A separate region in the left STG/VPC (D)

was active at encoding and retrieval (H), but not for oddball detection
whereas the homologous region in the right hemisphere (E) displayed
the opposite pattern; namely, the right STG/VPC was reliably active in
the oddball task (C) but not the WM task. The BOLD percent signal
change is defined with respect to the image signal of the first time
point of a trial, which is at the baseline. Note that only activity in
regions of the STG and VPC is shown in the figure.
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Table 1 | Global Z -max values andTalairach coordinates for areas active when comparing verbal versus baseline for encoding, maintenance, and

retrieval.

Structure Hem. X Y Z BA Z -max k

Encoding

Precentral gyrus L −47 −3 37 6 7.93 50484

*Frontal operculum, inferior frontal gyrus, inferior temporal gyrus,

precentral gyrus, supramarginal gyrus, lateral occipital cortex,

cingulate gyrus, supplementary motor cortex, cerebellum

L and R

Superior temporal gyrus L −62 −40 20 22 6.2 205

Superior temporal gyrus R 65 −36 12 22 5.54 97

Paracentral lobe R 2 −41 60 5 4.6 29

Middle frontal gyrus L −25 50 −12 11 4.91 17

Temporal lobe; sub-gyral R 37 −9 −22 20 4.65 17

Maintenance

Precentral gyrus L −49 −3 41 6 5.94 207

Medial frontal gyrus L −7 3 54 6 5.44 166

Parietal lobe; Insula L −33 −42 26 13 5.16 154

Medial frontal gyrus R 26 32 15 9 5.1 125

Cerebellum; Culmen R 25 −57 −26 NA 4.84 47

Precentral gyrus L −48 11 5 44 4.61 17

Retrieval

Inferior parietal lobe L −45 −34 46 40 7.73 73744

*Frontal pole, frontal orbital cortex, inferior frontal gyrus,

supramarginal gyrus, angular gyrus, postcentral gyrus, cingulate

gyrus, middle temporal gyrus, cerebellum

L and R

Superior frontal gyrus L −27 55 −11 10 5.3 165

Limbic lobe; uncus L −22 5 −31 28 4.81 73

Occipital lobe; cuneus R 4 −86 28 19 4.74 14

Middle frontal gyrus L −43 42 −16 11 4.58 12

*Asterisks indicated areas contained in the larger clusters found in encoding and retrieval. Z-max values and Talairach coordinates for areas larger than 10 voxels are
illustrated. **coordinates are in Talariach space; p < 0.05.

Time series reflecting the percent signal change averaged across
trials were extracted for each participant’s left and right aVPC ROI
in the verbal and object conditions. During the verbal condition,
activity of the left aVPC was significantly above baseline using
the ROI-based threshold of p < 0.05 at encoding [t(16) = 4.32,
p = 0.001], but not during the maintenance phase [t(16) = 0.62,
p = 0.54] (Figure 3G). During the object condition, activity of the
left aVPC was significantly above baseline at encoding [t(16) = 2.6,
p < 0.05] and retrieval [t(16) = 6.42, p < 0.001], but not during
maintenance [t(16) = 1.49, p = 0.16].

Comparisons between the verbal and object conditions revealed
that left aVPC activity was greater in the verbal WM condi-
tion at encoding, but not maintenance or retrieval [encoding:
t(16) = 2.25, p < 0.05; maintenance: t(16) = 2.04, p < = 0.06;
retrieval: t(16) = 1.03, p = 0.32]. This pattern replicated our
previous WM findings for the left aVPC region (Ravizza et al.,
2011) and demonstrates that this region responds preferentially
to information when external stimuli are present at encoding and
retrieval.

The corresponding aVPC in the right hemisphere that was
active at retrieval showed a reduction of activity during main-
tenance compared to baseline [t(16) = 2.18, p < 0.05]
and was not reliably active during encoding even at a much
reduced threshold [t(16) = 0.44, p = 0.67] (Figure 3I). This
region showed no preference for verbal and object conditions
(p values > 0.1).

CORRELATION OF VPC ACTIVITY AND WM PERFORMANCE
To assess whether activity of the left and right aVPC regions found
in both oddball detection and WM retrieval was related to accuracy
on a trial-to-trial basis, we performed a binary logistic regression
using activity in the VPC as a predictor of accuracy on each trial
(see Figure 4 for average time course for error and correct trials).
For this analysis, each trial (n = 35 errors; n = 305 correct items)
was treated as a separate event. Within-subject factors (subject
and trial) were modeled to account for correlated observations in
the data set. Note that errors were not averaged across partici-
pants. For the left aVPC, higher activity at maintenance, averaged
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across the entire maintenance interval timepoints 14–26, was asso-
ciated with a greater likelihood of making an error in memory
(β = −1.09; Wald χ2 = 5.78, p < 0.05; Figure 4). Errors were
not significantly related to activity at encoding (β = −0.7; Wald
χ2 = 1.15, p = 0.28) or retrieval (β = −0.15; Wald χ2 = 0.18,
p = 0.67).

Neither the aVPC site in the right hemisphere nor the pVPC
site in the left hemisphere was related to performance at any stage
of the WM task (R aVPC: all βs < −0.56, all (p-values > 0.2; L
pVPC: (all βs < −0.38, all p values >0.29).

HEMISPHERIC SPECIALIZATION
To assess whether engagement differed by hemisphere, we com-
pared left and right aVPC in verbal WM retrieval and oddball
detection – conditions in which both regions showed significant
activity in the whole-brain analyses. Post hoc t-tests showed that
the left hemisphere was more engaged in verbal WM retrieval
than the right hemisphere [t(16) = 3.56, p = 0.003]. In con-
trast, there was no hemispheric difference in the extent of neural
response in the oddball detection task [t(16) = 0.91, p = 0.37].
Note that this latter result argues against the idea that the aVPC
simply reflects motor-related activity common to both retrieval
and oddball detection. Both the verbal WM and oddball detection
task required right-hand responses, but the left-hemisphere was
not dominant in both tasks.

DISCUSSION
In this study, we examined functional differences among subre-
gions of the VPC by using two tasks that placed low or high
demands on WM. VPC ROIs generated from the whole brain
analysis of the oddball and WM task revealed different patterns
of activation depending on the task. We found that more ante-
rior regions of the VPC were active during the oddball task
and WM retrieval, bilaterally, while posterior regions of the
VPC showed dissociable responses; the left pVPC was engaged
during the WM task, but not during the oddball task and the
right pVPC showed the opposite pattern. In the following dis-
cussion we highlight the pattern of activity of the aVPC and
pVPC in relation to that of previously published reports of VPC
function.

ANTERIOR VPC
We found regions of the left and right supramarginal gyrus that
were sensitive to both oddball targets and WM retrieval. These
regions, however, were not significantly active during the encoding
or maintenance stages of WM. This pattern of results strongly
suggests that the anterior VPC serves a non-mnemonic role in
WM. Below we focus on potential contributions of the left aVPC
to stimulus-driven attention, however, we note that other non-
mnemonic functions such as context updating cannot be ruled
out on the basis of our results.

Evidence for a ventral, frontoparietal pathway involved in
stimulus-driven attention has accumulated over the past decade,
and the right VPC is thought to be a critical node along this path-
way (Corbetta et al., 2000; Todd et al., 2005; Serences and Yantis,
2007; Weissman and Prado, 2012; Chang et al., 2013; Chica et al.,
2013). The right VPC is argued to trigger a shift of attention based
on salient or task-relevant features of a stimulus. One possibility is
that the left VPC provides a similar function to that of the VPC in
the right hemisphere. We predicted that potential stimulus-driven
attention functions of the VPC should be engaged whenever task-
relevant stimuli are present, namely, at encoding and retrieval, but
not during maintenance.

A region subserving stimulus-driven attention should be active
at encoding given that attention prioritizes the access of informa-
tion into WM (Gazzaley and Nobre, 2012) regardless of whether
attention is directed voluntarily or by stimulus-driven factors
(Cowan, 1999; Brown et al., 2000; Farrell and Lewandowsky,
2002). In fact, working memory performance is better for task-
relevant items that capture stimulus-driven attention (Schmidt
et al., 2002; Bays and Husain, 2008) especially at times when the
ability to attend voluntarily is likely to be diminished (Ravizza and
Hazeltine, 2013).

Stimulus-driven attention may also facilitate WM retrieval.
First, stimulus-driven attention may be necessary for re-orienting
attention to the retrieval probe. Stimulus-driven attention may
be critical for shifting attention to the probe given that atten-
tional resources are likely to be recruited for internal maintenance
processes. Second, stimulus-driven attention may be captured
by a salient aspect of the probe item. According to the atten-
tion to memory (AtoM) model, stimulus-driven attention is

FIGURE 4 |Time course of average (±SEM) activity for the left VPC

during verbal (A) and object (B) trials of the WM task. Error (solid line) and
correct (dashed line) trials are shown for each condition. A binary logistic

regression indicated that higher activity averaged during the maintenance
period (timepoints 14–26; shaded area) of the verbal condition was associated
with a greater likelihood of making an error.
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engaged when retrieval cues are salient; saliency in this con-
text refers to either a highly novel item that has not been
previously encoded (“new”) or that triggers a rich memory rep-
resentation of an item that has been encoded (“old”; Kim and
Cabeza, 2007; Cabeza et al., 2008). Consistent with a VPC role in
stimulus-driven attention, the VPC was more engaged in high con-
fidence “old” and “new” trials compared to low-confidence trials
(Kim and Cabeza, 2007).

The results of our study provided only partial support for
the stimulus-driven attention account of left aVPC function. In
support of this account, the left aVPC was active at retrieval in
response to the probe item. Moreover, activity of the anterior
VPC was at baseline levels during maintenance when attention
must be directed to the contents of memory rather than to new
incoming information. Critically, greater activity during the main-
tenance interval predicted an error. This is consistent with other
results showing that activity of the VPC is associated with errors
when stimulus-driven attention is captured by irrelevant distrac-
tors (Olesen et al., 2007; Anticevic et al., 2009; Majerus et al., 2012).
In fact, several studies have demonstrated that the more the VPC is
suppressed during maintenance, the less likely salient visual infor-
mation is to be detected or attended (Todd et al., 2005), and the
more likely that the memory set will be recalled (Anticevic et al.,
2009). The degree of suppression also seems to be load depen-
dent as the VPC has been shown to be parametrically suppressed
proportional with the number of items maintained in WM (Todd
et al., 2005; Majerus et al., 2012).

Contrary to our predictions, there was little evidence that the
aVPC was recruited at encoding. Although activity at encod-
ing was above baseline, it did not survive whole-brain correc-
tion. It is possible that voluntary attention was sufficient for
encoding items into WM. We have shown, for example, that
stimulus-driven attention improves recall only when items are
at the end of a list when voluntary attention was more likely
to have lapsed (Ravizza and Hazeltine, 2013). Thus, this null
result should be interpreted with caution, as stimulus-driven
attention may not be necessary in our design for accurate
encoding.

Thus, our findings are strongly supportive of a role of the
aVPC in a non-mnemonic function rather than WM storage or
phonological-motor integration. We found only partial support,
however, for a specific role of the aVPC in stimulus-driven atten-
tion. Future studies are necessary to directly test whether the
left VPC is necessary for triggering stimulus-driven attention to
information at encoding and retrieval.

POSTERIOR VPC
A left pVPC site spanning the STG and VPC was engaged at encod-
ing and retrieval of the WM task, but not during the oddball task.
Post hoc analyses revealed that activity in this region was sustained
over the maintenance delay. This region is similar to the STG
region observed in speech perception and production (Okada and
Hickok, 2006; Acheson et al., 2011; Koenigs et al., 2011) and the
region showing maintenance-related activity in verbal WM (Sakai
et al., 2002; Hickok et al., 2003; Buchsbaum et al., 2005; Fiebach
et al., 2006; Ravizza et al., 2011). Given its association with speech
perception, this region is unlikely to serve as a dedicated WM

buffer. Most likely, this region supports speech-related process-
ing that supports both WM and perception, and is hypothesized
to support verbal WM through its role in integrating phonologi-
cal and motor codes (Hickok and Poeppel, 2000; Hickok, 2009).
This finding supports the idea of WM storage as the reactivation
of sensory processes or long-term memory representations rather
than a buffer used only to maintain items for a short period of
time (Ranganath et al., 2004; Buchsbaum and D’Esposito, 2008;
Serences et al., 2009; Riggall and Postle, 2012).

In contrast, the pVPC in the right hemisphere was not reliably
active in the verbal WM task, but was engaged in oddball detection.
Given that both aVPC and pVPC in the right hemisphere were
engaged in oddball detection, one possibility is that more cortical
area is devoted to processes such as stimulus-driven attention or
context updating in the right hemisphere compared to the left. In
contrast, these non-linguistic processes may be restricted to more
anterior parietal regions than those in the right hemisphere as a
result of the lateralization of language functions on the left. It
may be that more posterior regions of the VPC were recruited for
language processing (Suchan and Karnath, 2011).

COMMON AND DISSOCIABLE RESPONSES OF THE VPC
Functions of the left VPC appeared to be fractionated rather
than unitary. The aVPC and pVPC showed different pat-
terns of response in the WM and oddball tasks. The aVPC
was active in oddball detection and WM retrieval which we
have suggested is consistent with the stimulus-driven atten-
tion account. The pVPC did not show reliable activity in the
oddball task, but was active during all stages of a WM task.
Critically, the regions differed in their activity during mainte-
nance; that is, maintenance engaged the pVPC whereas activity
of the aVPC was at baseline. Moreover, aVPC activity in the
maintenance stage was associated with making an error. Simi-
lar to Suchan and Karnath (2011), we suggest that the pVPC was
adapted to process language and, additionally, that its role in
speech perception also serves to maintain this information in
WM. In contrast, anterior regions may have retained a simi-
lar function to its homolog in the right hemisphere, perhaps in
stimulus-driven attention. Interestingly, the site we observed in
oddball detection in the left aVPC is consistent with the more ante-
rior site of lesions producing attentional impairments in atypical
cases of left hemisphere neglect (Ogden, 1985). Thus, the aVPC
might be important for WM because of its role in stimulus-driven
attention.

In contrast, there was more support for a shared process in the
right hemisphere. According to one account, this shared process
is argued to be stimulus-driven attention (or bottom-up atten-
tion). Variations in the localization of VPC activity across tasks are
explained by selective preferences for different types of informa-
tion (Cabeza et al., 2012). In our explanation of VPC activity, we
have capitalized upon this idea. Note, however, that the hypothesis
that the VPC moves attention via stimulus-driven factors has been
challenged (Carter and Huettel, 2013; DiQuattro et al., 2013). For
example, responses of the right VPC to stimuli appear to be too
late in the processing stream to provide a fast re-orienting signal
(see Corbetta et al., 2008; DiQuattro et al., 2013 or a discussion of
this issue). Instead, the right pVPC is argued to be a multi-modal
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association area important for creating and updating the sensori-
motor context (DiQuattro et al., 2013) or decision-making context
(Carter and Huettel, 2013). The present results cannot adjudicate
between these alternative theories of VPC function. Instead, our
findings are generally supportive of a potential unitary function
of the right VPC.

LIMITATIONS
The WM and attention tasks were presented in a fixed order with
the WM task always preceding the oddball task. As explained previ-
ously, interleaving the tasks may have introduced a WM demand
on the oddball task. Moreover, the WM task was more difficult
than the oddball task and would be more vulnerable to fatigue
if presented after the oddball task. It must be noted, however,
that this fixed order may have affected the results. For example,
participants may have expended less effort during the oddball
task because it was at the end of the scan. It is also possible
that the oddball stimuli were not very novel given that they had
been previously presented in the WM task. Both of these fac-
tors may have diminished neural responses to oddball targets.
Although oddball detection rate was very high, these potential
effects cannot be ruled out and should be directly tested in future
experiments.

Slow-event related designs are useful in isolating activity dur-
ing multiple stages of a single event; however, this method has
the disadvantage of reducing the number of trials per condition.
We presented 20 trials per condition in the WM task which was
further reduced due to (a small number of) errors. Signal values
were potentially noisy which would reduce our power to observe
the effects of our experimental manipulations. Future work could
implement jittered fast-even related designs to balance the needs
for more trials with the ability to isolate stages of interest.

CONCLUSION
In this study, we observed dissociable patterns of activity in regions
of the left and right VPC. The anterior VPC, bilaterally, was sen-
sitive to novel targets in the oddball task and was active during
retrieval of the WM task. We argue that the pattern of activity in
this region is consistent with theories of the ventral parietal cortex
as subserving a non-mnemonic process such as stimulus-driven
attention. The data also suggest that the aVPC is unlikely to sup-
port verbal WM storage and, instead, maintenance is most likely
to occur in regions involved in speech perception.

In contrast, posterior regions of the VPC/STG showed disso-
ciable functions with the left hemisphere responding primarily in
the WM task and the right hemisphere in the oddball detection
task. This dissociation corresponds with the traditional way in
which these areas have been characterized with verbal WM func-
tions in the left hemisphere and attention functions in the right
hemisphere.
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