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The ability to recognize one’s own successful cognitive processing, in e.g., perceptual
or memory tasks, is often referred to as metacognition. How should we quantitatively
measure such ability? Here we focus on a class of measures that assess the
correspondence between trial-by-trial accuracy and one’s own confidence. In general,
for healthy subjects endowed with metacognitive sensitivity, when one is confident,
one is more likely to be correct. Thus, the degree of association between accuracy and
confidence can be taken as a quantitative measure of metacognition. However, many
studies use a statistical correlation coefficient (e.g., Pearson’s r ) or its variant to assess
this degree of association, and such measures are susceptible to undesirable influences
from factors such as response biases. Here we review other measures based on signal
detection theory and receiver operating characteristics (ROC) analysis that are “bias free,”
and relate these quantities to the calibration and discrimination measures developed in the
probability estimation literature. We go on to distinguish between the related concepts of
metacognitive bias (a difference in subjective confidence despite basic task performance
remaining constant), metacognitive sensitivity (how good one is at distinguishing between
one’s own correct and incorrect judgments) and metacognitive efficiency (a subject’s level
of metacognitive sensitivity given a certain level of task performance). Finally, we discuss
how these three concepts pose interesting questions for the study of metacognition and
conscious awareness.
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INTRODUCTION
Early cognitive psychologists were interested in how well peo-
ple could assess or monitor their own knowledge, and asking for
confidence ratings was one of the mainstays of psychophysical
analysis (Peirce and Jastrow, 1885). For example, Henmon (1911)
summarized his results as follows: “While there is a positive cor-
relation on the whole between degree of confidence and accuracy
the degree of confidence is not a reliable index of accuracy.” This
statement is largely supported by more recent research in the
field of metacognition in a variety of domains from memory to
perception and decision-making: subjects have some metacog-
nitive sensitivity, but it is often subject to error (Nelson and
Narens, 1990; Metcalfe and Shimamura, 1996). The determinants
of metacognitive sensitivity is an active topic of investigation
that has been reviewed at length elsewhere (e.g., Koriat, 2007;
Fleming and Dolan, 2012). Here we are concerned with the
best approach to measure metacognition, a topic on which there
remains substantial confusion and heterogeneity of approach.

From the outset, it is important to distinguish two aspects,
namely sensitivity and bias. Metacognitive sensitivity is also
known as metacognitive accuracy, type 2 sensitivity, dis-
crimination, reliability, or the confidence-accuracy correlation.
Metacognitive bias is also known as type 2 bias, over- or under-
confidence or calibration. In Figure 1 we illustrate the difference

between these two constructs. Each panel shows a cartoon density
of confidence ratings separately for correct and incorrect trials on
an arbitrary task (e.g., a perceptual discrimination). Intuitively,
when these distributions are well separated, the subject is able
to discriminate good and bad task performance using the con-
fidence scale, and can be assigned a high degree of metacognitive
sensitivity. However, note that bias “rides on top of” any measure
of sensitivity. A subject might have high overall confidence but
poor metacognitive sensitivity if the correct/error distributions
are not separable. Both sensitivity and bias are important features
of metacognitive judgments, but they are often conflated when
interpreting data. In this paper we outline behavioral measures
that are able to separately quantify sensitivity and bias.

A second important feature of metacognitive measures is that
sensitivity is often affected by task performance itself—in other
words, the same individual will appear to have greater metacog-
nitive sensitivity on an easy task compared to a hard task. In
contrast, it is reasonable to assume that an individual might have
a particular level of metacognitive efficiency in a domain such as
memory or decision-making that is independent of different lev-
els of task performance. Nelson (1984) emphasized this desirable
property of a measure of metacognition when he wrote that “there
should not be a built-in relation between [a measure of] feeling-
of-knowing accuracy and overall recognition,” thus providing for
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FIGURE 1 | Schematic showing the theoretical dissociation between

metacognitive sensitivity and bias. Each graph shows a hypothetical
probability density of confidence ratings for correct and incorrect trials, with
confidence increasing from left to right along each x-axis. Metacognitive
sensitivity is the separation between the distributions—the extent to which
confidence discriminates between correct and incorrect trials.
Metacognitive bias is the overall level of confidence expressed,
independent of whether the trial is correct or incorrect. Note that this is a
cartoon schematic and we do not mean to imply any parametric form for
these “Type 2” signal detection theoretic distributions. Indeed, as shown
by Galvin et al. (2003), these distributions are unlikely to be Gaussian.

the “logical independence of metacognitive ability. . . and objec-
tive memory ability” (Nelson, 1984; p. 111). The question is
then how to distil a measure of metacognitive efficiency from
behavioral data. We highlight recent progress on this issue.

We note there are a variety of methods for eliciting metacog-
nitive judgments (e.g., wagering, scoring rules, confidence scales,
awareness ratings) across different domains that have been dis-
cussed at length elsewhere (Keren, 1991; Hollard et al., 2010;
Sandberg et al., 2010; Fleming and Dolan, 2012). Our focus here is
on quantifying metacognition once a judgment has been elicited.

MEASURES OF METACOGNITIVE SENSITIVITY
A useful starting point for all the measures of metacognitive sensi-
tivity that follow is the 2 × 2 confidence-accuracy table (Table 1).
This table simply counts the number of high confidence ratings
assigned to correct and incorrect judgments, and similarly for
low confidence ratings. Intuitively, above-chance metacognitive
sensitivity is found when correct trials are endorsed with high
confidence to a greater degree than incorrect trials1. Readers with
a background in signal detection theory (SDT) will immediately
see the connection between Table 1 and standard, “type 1” SDT
(Green and Swets, 1966). In type 1 SDT, the relevant joint prob-
ability distribution is P(response, stimulus)—parameters of this
distribution such as d′ are concerned with how effectively an
organism can discriminate objective states of the world. In con-
trast, Table 1 has been dubbed the “type 2” SDT table (Clarke
et al., 1959), as the confidence ratings are conditioned on the
observer’s responses (correct or incorrect), not on the objec-
tive state of the world. All measures of metacognitive sensitivity
can be reduced to operations on this joint probability distribu-
tion P(confidence, accuracy) (see Mason, 2003, for a mathematical
treatment).

1These ratings may be elicited either prospectively or retrospectively.

Table 1 | Classification of responses within type 2 signal detection

theory.

Type I decision High confidence Low confidence

Correct Type 2 hit (H2) Type 2 miss (M2)

Incorrect Type 2 false alarm (FA2) Type 2 correct rejection (CR2)

In the discussion that follows we assume that stimulus strength
or task difficulty is held roughly constant. In such a design, fluc-
tuations in accuracy and confidence can be attributed to noise
internal to the observer, rather than external changes in signal
strength. This “method of constant stimuli” is appropriate for
fitting signal detection theoretic models, but it also rules out
other potentially interesting experimental questions, such as how
behavior and confidence change with stimulus strength. In the
section Psychometric Function Measures we discuss approaches
to measuring metacognitive sensitivity in designs such as these.

CORRELATION MEASURES
The simplest measure of association between the rows and
columns of Table 1 is the phi (φ) correlation. In essence, phi is the
standard Pearson r correlation between accuracy and confidence
over trials. That is, if we code correct responses as 1’s, and incor-
rect responses as 0’s, accuracy over trials forms a vector, e.g., [0 1
1 0 0 1]. And if we code high confidence as 1, and low confidence
as 0, we can likewise form a vector of the same length (number
of trials). The Pearson r correlation between these two vectors
defines the “phi” coefficient. A related and very common mea-
sure of metacognitive sensitivity, at least in the memory literature,
is the Goodman–Kruskall gamma coefficient, G (Goodman and
Kruskal, 1954; Nelson, 1984). In a classic paper, Nelson (1984)
advocated G as a measure of metacognitive sensitivity that does
not make the distributional assumptions of SDT.

G can be easily expanded to handle designs in which confi-
dence is made using a rating scale rather than a dichotomous
high/low design (Gonzalez and Nelson, 1996). Though popular,
as measures of metacognitive sensitivity both phi and gamma
correlations have a number of problems. The most prominent is
the fact that both can be “contaminated” by metacognitive bias.
That is, for subjects with a high or low tendency to give high
confidence ratings overall, their phi correlation will be altered
(Nelson, 1984)2. Intuitively one can consider the extreme cases
where subjects perform a task near threshold (i.e., between ceiling
and chance performance), but rate every trial as low confidence,
not because of a lack of ability to introspect, but because of an
overly shy or humble personality. In such a case, the correspon-
dence between confidence and accuracy is constrained by bias. In
an extensive simulation study, Masson and Rotello (2009) showed
that G was similarly sensitive to the tendency to use higher or
lower confidence ratings (bias), and that this may lead to erro-
neous conclusions, such as interpreting a difference in G between

2Another way of stating this is that phi is “margin sensitive”—the value of phi
is affected by the marginal counts of Table 1 (the row and column sums) that
describe an individual’s task performance and bias.
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groups as reflecting a true underlying difference in metacognitive
sensitivity despite possible differences in bias.

TYPE 2 d ′

A standard way to remove the influence of bias in an estima-
tion of sensitivity is to apply SDT (Green and Swets, 1966). In
the case of type 1 detection tasks, overall percentage correct is
“contaminated” by the subject’s bias, i.e., the propensity to say
“yes” overall. To remove this influence of bias, researchers often
estimate d′ based on the hit rate and false alarm rate, which
(assuming equal-variance Gaussian distributions for internal sig-
nal strength) is mathematically independent of bias. That is, given
a constant underlying sensitivity to detect the signal, estimated d′
will be constant given different biases.

There have been several evaluations of this approach to char-
acterize metacognitive sensitivity (Clarke et al., 1959; Lachman
et al., 1979; Ferrell and McGoey, 1980; Nelson, 1984; Kunimoto
et al., 2001; Higham, 2007; Higham et al., 2009), where type 2
hit rate is defined as the proportion of trials in which subjects
reported high confidence given their responses were correct (H2
in Table 1), and type 2 false alarm rate is defined as the proportion
of trials in which subjects reported high confidence given their
responses were incorrect (FA2 in Table 1). Type 2 d′ = z(H2)
− z(FA2), where z is the inverse of the cumulative normal dis-
tribution function3. Theoretically, then, by using standard SDT,
type 2 d′ is argued to be independent from metacognitive bias
(the overall propensity to give high confidence responses).

However, type 2 d′ turns out to be problematic because SDT
assumes that the distribution of internal signals for “correct” and
“incorrect” trials are Gaussian with equal variances. While this
assumption is usually more or less acceptable at the type 1 level
(especially for 2-alternative forced-choice tasks), it is highly prob-
lematic for type 2 analysis. Galvin et al. (2003) showed that these
distributions are of different variance and highly non-Gaussian if
the equal variance assumption holds at the type 1 level. Using sim-
ulation data, Evans and Azzopardi (2007) showed that this leads
to the type 2 d′ measure proposed by Kunimoto et al. (2001) being
confounded by changes in metacognitive bias.

TYPE 2 ROC ANALYSIS
Because the standard parametric signal detection approach is
problematic for type 2 analysis, one solution is to apply a non-
parametric analysis that is free from the equal-variance Gaussian
assumption. In type 1 SDT this is standardly achieved via ROC
(receiver operating characteristic) analysis, in which data are
obtained from multiple response criteria. For example, if the pay-
offs for making a hit and false alarm are systematically altered,
it is possible to systematically induce more conservative or lib-
eral criteria. For each criterion, hit rate and false alarm rate can
be calculated. These are plotted as individual points on the ROC
plot—hit rate is plotted on the vertical axis and false alarm rate
on the horizontal axis. With multiple criteria we have multiple
points, and the curve that passes through these different points
is the ROC curve. If the area under the ROC is 0.5, performance

3Kunimoto and colleagues labeled their type 2 d′ measure a′.

is at chance. Higher area under ROC (AUROC) indicates higher
sensitivity.

Because this method is non-parametric, it does not depend on
rigid assumptions about the nature of the underlying distribu-
tions and can similarly be applied to type 2 data. Recall that type
2 hit rate is simply the proportion of high confidence trials when
the subject is correct, and type 2 false alarm rate is the proportion
of high confidence trials when the subject is incorrect (Table 1).
For two levels of confidence there is thus one criterion, and one
pair of type 2 hit and false alarm rates. However, with multi-
ple confidence ratings it is possible to construct the full type 2
ROC by treating each confidence level as a criterion that separates
high from low confidence (Clarke et al., 1959; Galvin et al., 2003;
Benjamin and Diaz, 2008). For instance, we start with a liberal cri-
terion that assigns low confidence = 1 and high confidence = 2–4,
then a higher criterion that assigns low confidence = 1 and 2 and
high confidence = 3 and 4, and so on. For each split of the data,
hit and false alarm rate pairs are calculated and plotted to obtain
a type 2 ROC curve (Figure 2A). The area under the type 2 ROC
curve (AUROC2) can then be used as a measure of metacogni-
tive sensitivity (in the Supplementary Material we provide Matlab
code for calculating AUROC2 from rating data). This method is
more advantageous than the gamma and phi correlations because
it is bias-free (i.e., it is theoretically uninfluenced by the overall
propensity of the subject to say high confidence) and in con-
trast to type 2 d′ does not make parametric assumptions that are
known to be false.

In summary, therefore, despite their intuitive appeal, simple
measures of association such as the phi correlation and gamma do
not separate metacognitive sensitivity from bias. Non-parametric
methods such as AUROC2 provide bias-free measures of sensi-
tivity. However, a further complication when studying metacog-
nitive sensitivity is that the measures reviewed above are also
affected by task performance. For instance, Galvin et al. (2003)
showed mathematically that AUROC2 is affected by both type
1 d′ and type 1 criterion placement, a conclusion supported
by experimental manipulation (Higham et al., 2009). In other
words, a change in task performance is expected, a priori, to
lead to changes in AUROC2, despite the subject’s endogenous
metacognitive “efficiency” remaining unchanged. One approach
to dealing with this confound is to use psychophysical techniques
to control for differences in performance and then calculate
AUROC2 (e.g., Fleming et al., 2010). An alternative approach
is to explicitly model the connection between performance and
metacognition.

MODEL-BASED APPROACHES
The recently developed meta-d′ measure (Maniscalco and Lau,
2012, 2014) exploits the fact that given Gaussian variance assump-
tions at the type 1 level, the shapes of the type 2 distributions are
known even if they are not themselves Gaussian (Galvin et al.,
2003). Theoretically therefore, ideal, maximum type 2 perfor-
mance is constrained by one’s type 1 performance. Intuitively, one
can again consider the extreme cases. Imagine a subject is per-
forming a two-choice discrimination task completely at chance.
Half of their trials are correct and half are incorrect due to chance
responding despite zero type 1 sensitivity. To introspectively
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FIGURE 2 | (A) Example type 2 ROC function for a single subject. Each
point plots the type 2 false alarm rate on the x-axis against the type 2
hit rate on the y-axis for a given confidence criterion. The shaded area

under the curve indexes metacognitive sensitivity. (B) Example
underconfident and overconfident probability calibration curves, modified
after Harvey (1997).

distinguish between correct and incorrect trials would be impos-
sible, because the correct trials are flukes. Thus, when type 1
sensitivity is zero, type 2 sensitivity (metacognitive sensitivity)
should also be so. This dependency places strong constraints on a
measure of metacognitive sensitivity.

Specifically, given a particular type 1 variance structure and
bias, the form of the type 2 ROC is completely determined (Galvin
et al., 2003). We can thus create a family of type 2 ROC curves,
each of which will correspond to an underlying type 1 sensitivity
assuming that the subject is metacognitively ideal (i.e., has max-
imal type 2 sensitivity given a certain type 1 sensitivity). Because
such a family of type 2 ROC curves are all non-overlapping
(Galvin et al., 2003), we can determine the curve from this fam-
ily with just a single point, i.e., a single criterion. With this, we
can obtain, given the subject’s actual type 2 performance data,
the underlying type 1 sensitivity that we expect if the subject is
ideal is placing their confidence ratings. We label the underlying
type 1 sensitivity of this ideal observer meta-d′. Because meta-d′
is in units of type 1 d′, we can think of it as the sensory evidence
available for metacognition in signal-to-noise ratio units, just as
type 1 d′ is the sensory evidence available for decision-making in
signal-to-noise ratio units. Among currently available methods,
we think meta-d′ is the best measure of metacognitive sensitiv-
ity, and it is quickly gaining popularity (e.g., Baird et al., 2013;
Charles et al., 2013; Lee et al., 2013; McCurdy et al., 2013). Barrett
et al. (2013) have conducted extensive normative tests of meta-d′,
finding that it is robust to changes in bias and that it recovers sim-
ulated changes in metacognitive sensitivity (see also Maniscalco
and Lau, 2014). Matlab code for fitting meta-d′ to rating data is
available at http://www.columbia.edu/∼bsm2105/type2sdt/.

One major advantage of meta-d′ over AUROC2 is its ease
of interpretation and its elegant control over the influence of
performance on metacognitive sensitivity. Specifically, because
meta-d′ is in the same units as (type 1) d′, the two can be
directly compared. Therefore, for a metacognitively ideal observer
(a person who is rating confidence using the maximum possi-
ble metacognitive sensitivity), meta-d′ should equal d′. If meta-
d′ < d′, metacognitive sensitivity is suboptimal within the SDT

framework. We can therefore define metacognitive efficiency as
the value of meta-d′ relative to d′, or meta-d′/d′. A meta-d′/d′
value of 1 indicates a theoretically ideal value of metacognitive
efficiency. A value of 0.7 would indicate 70% metacognitive effi-
ciency (30% of the sensory evidence available for the decision
is lost when making metacognitive judgments), and so on. A
closely related measure is the difference between meta-d′ and d′,
i.e., meta-d′ − d′ (Rounis et al., 2010). One practical reason for
using meta-d′ − d′ rather than meta-d′/d′ is that the latter is a
ratio, and when the denominator (d′) is small, meta-d′/d′ can give
rather extreme values which may undermine power in a group
statistical analysis. However, this problem can also be addressed
by taking log of meta- d′/d′, as is often done to correct for the
non-normality of ratio measures (Howell, 2009). Toward the end
of this article we explore the implications of this metacognitive
efficiency construct for a psychology of metacognition.

The meta-d′ approach is based on an ideal observer model of
the link between type 1 and type 2 SDT, using this as a bench-
mark against which to compare subjects’ metacognitive efficiency.
However, meta-d′ is unable to discriminate between different
causes of a change in metacognitive efficiency. In particular, like
standard SDT, meta-d′ is unable to dissociate trial-to-trial vari-
ability in the placement of confidence criteria from additional
noise in the evidence used to make the confidence rating—both
manifest as a decrease in metacognitive efficiency.

A similar bias-free approach to modeling metacognitive accu-
racy is the “Stochastic Detection and Retrieval Model” (SDRM)
introduced by Jang et al. (2012). The SDRM not only mea-
sures metacognitive accuracy, but is also able to model different
potential causes of metacognitive inaccuracy. The core of the
model assumes two samplings of “evidence” per stimulus, one
leading to a first-order behavior, such as memory retrieval, and
the other leading to a confidence rating. These samples are dis-
tinct but drawn from a bivariate distribution with correlation
parameter ρ. This variable correlation naturally accounts for dis-
sociations between confidence and accuracy. For instance, if the
samples are highly correlated, the subject will tend to be confident
when behavioral performance is high, and less confident when
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behavioral performance is low. The SDRM additionally models
noise in the confidence rating process itself through variability
in the setting of confidence criteria from trial to trial. SDRM
was originally developed to account for confidence in free recall
involving a single class of items, but it can be naturally extended
to two choice cases such as perceptual or mnemonic decisions.
By modeling these two separate sources of variability, SDRM is
able to unpack potential causes of a decrease in metacognitive
efficiency. However, SDRM requires considerable interpretation
of parameter fits to draw conclusions about underlying metacog-
nitive processes, and meta-d′ may prove simpler to calculate and
work with for many empirical applications.

METACOGNITIVE BIAS
Metacognitive bias is the tendency to give high confidence rat-
ings, all else being equal. The simplest of such measures is the
percentage of high confidence trials (i.e., the marginal proportion
of high confidence judgments in Table 1, averaging over correct
and incorrect trials), or the average confidence rating over tri-
als. In standard type 1 SDT, a more liberal metacognitive bias
corresponds to squeezing the flanking confidence-rating criteria
toward the central decision criterion such that more area under
both stimulus distributions falls beyond the “high confidence”
criteria.

A more liberal metacognitive bias leads to different patterns
of responding depending on how confidence is elicited. If confi-
dence is elicited secondary to a decision about options “A” or “B,”
squeezing the confidence criteria will lead to an overall increase in
confidence, regardless of previous response. However, confidence
is often elicited alongside the decision itself, using a scale such as
1 = sure “A” to 6 = sure “B,” where ratings 3 and 4 indicate low
confidence “A” and “B,” respectively. A more liberal metacognitive
bias in this case would lead to an increased use of the extremes of
the scale (1 and 6) and a decreased use of the middle of the scale
(3 and 4).

PSYCHOMETRIC FUNCTION MEASURES
The methods for measuring metacognitive sensitivity we have
discussed above assume data is obtained using a constant level
of task difficulty or stimulus strength, equivalent to obtaining a
measure of d′ in standard psychophysics. If a continuous range
of stimulus difficulties are available, such as when a full psycho-
metric function is estimated, it is of course possible to apply the
same methods to each level of stimulus strength independently.
An alternative approach is to compute an aggregate measure of
metacognitive sensitivity as the difference in slope between psy-
chometric functions constructed from high and low confidence
trials (e.g., De Martino et al., 2013; de Gardelle and Mamassian,
2014). The extent to which the slope becomes steeper (more accu-
rate) under high compared to low confidence is a measure of
metacognitive sensitivity. However, this method may not be bias-
free, or account for individual differences in task performance, as
discussed above.

DISCREPANCY MEASURES
We close this section by pointing out that some researchers have
used “one-shot” discrepancy measures to quantify metacogni-
tion. For instance, if we ask someone how good their memory

is on a scale of 1–10, we obtain a rating that we can then
compare to memory performance on a variety of tasks. This
discrepancy score approach is often used in the clinical litera-
ture (e.g., Schmitz et al., 2006) and in social psychology (e.g.,
Kruger and Dunning, 1999) to quantify metacognitive skill or
“insight.” It is hopefully clear from the preceding sections that
if one only has access to a single rating of performance, it
is not possible to tease apart bias from sensitivity, nor mea-
sure efficiency. To continue with the memory example, a large
discrepancy score may be due to a reluctance to rate oneself
as performing poorly (metacognitive bias), or a true blind-
ness to one’s memory performance (metacognitive sensitivity).
In contrast, by collecting trial-by-trial measures of performance
and metacognitive judgments we can build up a picture of
an individual’s bias, sensitivity and efficiency in a particular
domain.

JUDGMENTS OF PROBABILITY
Metacognitive confidence can be formalized as a probability judg-
ment directed toward one’s own actions—the probability of a
previous judgment being correct. There is a rich literature on the
correspondence between subjective judgments of probability and
the reality to which those judgments correspond. For example,
a weather forecaster may make several predictions of the chance
of rain throughout the year; if the average prediction (e.g., 60%)
ends up matching the frequency of rainy days in the long run we
can say that the forecaster is well calibrated. In this framework
metacognition has a normative interpretation as the accuracy of
a probability judgment about one’s own performance. We do not
aim to cover the literature on probability judgments here; instead
we refer the reader to several comprehensive reviews (Lichtenstein
et al., 1982; Keren, 1991; Harvey, 1997; Moore and Healy, 2008).
Instead we highlight some developments in the judgment and
decision-making literature that directly bear on the measurement
of metacognition.

There are two general classes of probability judgment prob-
lem. Discrete cases refer to probabilities assigned to particular
statements, such as “the correct answer is A” or “it will rain
tomorrow.” Continuous cases are where the assessor provides a
confidence interval or some other indication of their uncertainty
in a quantity such as the distance from London to Manchester.
While the accuracy of continuous judgments is also of interest,
our focus here is on discrete judgments, as they provide the clear-
est connection to the metacognition measures reviewed above.
For example, in a 2AFC task with stimulus class d and response
a, an ideal observer should base their confidence on the quantity
P(d = a).

An advantage of couching metacognitive judgments in a prob-
ability framework is that a meaningful measure of bias can be
elicited. In other words, while a confidence rating of “4” does not
mean much outside of the context of the experiment, a probabil-
ity rating of 0.7 can be checked against the objective likelihood of
occurrence of the event in the environment; i.e., the probability
of being correct for a given confidence level. Moreover, probabil-
ity judgments can be compared against quantities derived from
probabilistic models of confidence (e.g., Kepecs and Mainen,
2012).
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QUANTIFYING THE ACCURACY OF PROBABILITY JUDGMENTS
The judgment and decision-making literature has independently
developed indices of probability accuracy similar to G and
meta- d′ in the metacognition literature. For example, following
Harvey (1997), a “probability score” (PS) is the squared differ-
ence between the probability rating f and its actual occurrence c
(where c = 1 or 0 for binary events, such as correct or incorrect
judgments):

PS = (
f − c

)2

The mean value of the PS averaged across estimates is known
as the Brier score (Brier, 1950). As the PS is an “error” score, a
lower value of PS is better. The Brier score is analogous to the phi
coefficient discussed above.

The decomposition of the Brier score into its component
parts may be of particular interest to metacognition researchers.
Particularly, one can decompose the Brier score into the following
components (Murphy, 1973):

PS = O + C − R

where O is the “outcome index” and reflects the variance of
the outcome event c: O = c(1 − c); C is “calibration,” the good-
ness of fit between probability assessments and the correspond-
ing proportion of correct responses; and R is “resolution,” the
variance of the probability assessments. Note that in studies of
metacognitive confidence in decision-making, memory, etc., the
outcome event is simply the performance of the subject. In other
words, when performance is near chance, the variance of the
outcomes—corrects and errors—is maximal, and O will be high.
In contrast, when performance is near ceiling, O is low. This
decomposition therefore echoes the SDT-based analysis discussed
above, and accordingly both reach the same conclusion: sim-
ple correlation measures between probabilities/confidence and
outcomes/performance are themselves influenced by task per-
formance. Just as efforts have been made to correct measures
of metacognitive sensitivity for differences in performance and
bias, similar concerns led to the development of bias-free mea-
sures of discrimination. In particular, Yaniv et al. (1991) describe
an “adjusted normalized discrimination index” (ANDI) that
achieves such control.

Calibration (C) is defined as:

C = 1

N

J∑

j=1

Nj
(
fj − cj

)2

where j indexes each probability category. Calibration quantifies
the discrepancy between the mean performance level in a cat-
egory (e.g., 60%) and its associated rating (e.g., 80%), with a
lower discrepancy giving a better PS. A calibration curve is con-
structed by plotting the relative frequency of correct answers in
each probability judgment category (e.g., 50–60%) against the
mean probability rating for the category (e.g., 55%) (Figure 2B).
A typical finding is that observers are overconfident (Lichtenstein
et al., 1982)—probability judgments are greater than mean %
correct.

Resolution is a measure of the variance of the probability
assessments, measuring the extent to which correct and incorrect
answers are assigned to different probability categories:

R = 1

N

J∑

j=1

Nj
(
cj − c

)2

As R is subtracted from the other terms in the PS, a larger vari-

ance is better, reflecting the observer’s ability to place correct and
incorrect judgments in distinct probability categories.

Both calibration and resolution contribute to the overall
“accuracy” of probability judgments. To illustrate this, consider
the following contrived example. In a general knowledge task,
a subject rates each correct judgment as 90% likely to be cor-
rect, and each error as 80% likely to be correct. Her objective
mean performance level is 60%. She is poorly calibrated, in the
sense that the mean subjective probability of being correct out-
strips her actual performance. But she displays good resolution
for discriminating correct from incorrect trials using distinct lev-
els of the probability scale (although this resolution could be
even higher if she chose even more diverse ratings). This example
raises important questions as to the psychological processes that
permit metacognitive discrimination of internal states (e.g., reso-
lution, or sensitivity) and the mapping of these discriminations
onto a probability or confidence scale (calibration; e.g., Ferrell
and McGoey, 1980). The learning of this mapping, and how it
may lead to changes in metacognition, has received relatively little
attention.

IMPLICATIONS OF BIAS, SENSITIVITY, AND EFFICIENCY FOR
A PSYCHOLOGY OF METACOGNITION
The psychological study of metacognition has been interested
in elucidating the determinants and impact of metacognitive
sensitivity. For instance, in a classic example, judgments of
learning (JOLs) show better sensitivity when the delay between
initial learning and JOL is increased (Nelson and Dunlosky,
1991), presumably due to delayed JOLs recruiting relevant diag-
nostic information from long-term memory. However, many
of these “classic” findings in the metacognition rely on mea-
sures such as G (Rhodes and Tauber, 2011) that may be con-
founded by bias and performance effects (although see Jang
et al., 2012). We strongly urge the application of bias-free
measures of metacognitive sensitivity reviewed above in future
studies.

More generally, we believe it is important to distinguish
between metacognitive sensitivity and efficiency. To recap,
metacognitive sensitivity is the ability to discriminate correct
from incorrect judgments; signal detection theoretic analysis
shows that metacognitive sensitivity scales with task performance.
In contrast, metacognitive efficiency is measured relative to a
particular performance level. Efficiency measures have several
possible applications. First, we may want to compare metacog-
nitive efficiency across domains in which it is not possible to
match performance levels. For instance, it is possible to quan-
tify metacognitive efficiency on visual and memory tasks to
elucidate their respective neural correlates (Baird et al., 2013;
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McCurdy et al., 2013). Second, it is of interest to determine
whether different subject groups, such as patients and controls
(David et al., 2012) or older vs. younger adults (Souchay et al.,
2000), exhibit differential metacognitive efficiency after taking
into account differences in task performance. For example, Weil
et al. (2013) showed that metacognitive efficiency increases dur-
ing adolescence, consistent with the maturation of prefrontal
regions thought to underpin metacognition (Fleming and Dolan,
2012). Finally, it will be of particular interest to compare metacog-
nitive efficiency across different animal species. Several stud-
ies have established the presence of metacognitive sensitivity in
some non-human animals (Hampton, 2001; Kornell et al., 2007;
Middlebrooks and Sommer, 2011; Kepecs and Mainen, 2012).
However, it is unknown whether other species such as macaque
monkeys have levels of metacognitive efficiency similar to those
seen in humans.

Finally, the influence of performance, or skill, on efficiency
itself is of interest. In a highly cited paper, Kruger and Dunning
(1999) report a series of experiments in which the worst-
performing subjects on a variety of tests showed a bigger dis-
crepancy between actual performance and a one-shot rating than
the better performers. The authors concluded that “those with
limited knowledge in a domain suffer a dual burden: Not only
do they reach mistaken conclusions and make regrettable errors,
but their incompetence robs them of the ability to realize it”
(p. 1132). Notably the Dunning–Kruger effect has two distinct
interpretations in terms of sensitivity and efficiency. On the one
hand the effect is a direct consequence of metacognitive sensitiv-
ity being determined by type 1 d′. In other words, it would be
strange (based on the ideal observer model) if worse perform-
ing subjects didn’t make noisier ratings. On the other hand, it
is possible that skill in a domain and metacognitive efficiency
share resources (Dunning and Kruger’s preferred interpretation),
leading to a non-linear relationship between d′ and metacogni-
tive sensitivity. As discussed above, one-shot ratings are unable to
disentangle bias, sensitivity and efficiency. Instead, by collecting
trial-by-trial metacognitive judgments and calculating efficiency,
it may be possible to ask whether efficiency itself is reduced in
subjects with poorer skill.

IMPLICATIONS OF BIAS, SENSITIVITY, AND EFFICIENCY FOR
STUDIES OF CONSCIOUS AWARENESS
There has been a recent interest in interpreting metacognitive
measures as reflecting conscious awareness or subjective (often
visual) phenomenological experience, and in this final section
we discuss some caveats associated with these thorny issues. As
early as Peirce and Jastrow (1885) it has been suggested that
a subject’s confidence can be used to indicate level of sensory
awareness. Namely, if in making a perceptual judgment, a sub-
ject has zero confidence and feels that a pure guess has been
made, then presumably the subject is not aware of sensory infor-
mation driving the decision. If their judgment turns out to be
correct, it would seem likely to be a fluke or due to unconscious
processing.

However, confidence is typically correlated with task accuracy
(type 1 d′)—indeed, this is the essence of metacognitive sen-
sitivity. It has been argued that type 1 d′ itself should not be

taken as a measure of awareness because unconscious processing
may also drive type 1 d′ (Lau, 2008), as demonstrated in clini-
cal cases such as blindsight (Weiskrantz et al., 1974). Lau (2008)
gives further arguments as to why type 1 d′ is a poor measure
of subjective awareness and argues that it should be treated as a
potential confound. In other words, because type 1 d′ does not
necessarily reflect awareness, in measuring awareness we should
compare conditions where type 1 d′ is matched or otherwise
controlled for. Importantly, to match type 1 d′, it is difficult to
focus the analysis at a single-trial level, because d′ is a prop-
erty of a task condition or group of trials. Therefore, Lau and
Passingham (2006) created task conditions that were matched for
type 1 d′ but differed in level of subjective awareness, permitting
an analysis of neural activity correlated with visual awareness but
not performance. Essentially, such differences between conditions
reflect a difference in metacognitive bias despite type 1 d′ being
matched.

In contrast, other studies have focused on metacognitive sen-
sitivity, rather than bias, as a relevant measure of awareness. For
instance, Kolb and Braun (1995) used binocular presentation and
motion patterns to create stimuli in which subjects had positive
type 1 d′ (in a localization task), but near-zero metacognitive
sensitivity. Although this finding has proven difficult to replicate
(Morgan and Mason, 1997), here we focus on the conceptual basis
of their argument. The notion of taking a lack of metacognitive
sensitivity as reflecting lack of awareness has also been discussed
in the literature on implicit learning (Dienes, 2008), and is intu-
itively appealing. Lack of metacognitive sensitivity indicates that
the subject has no ability to introspect upon the effectiveness of
their performance. One plausible reason for this lack of ability
is an absence of conscious experience on which the subject can
introspect.

However, there is another possibility. Metacognitive sensitiv-
ity is calculated with reference to the external world (whether
a judgment is objectively correct or incorrect), not the subject’s
experience, which is unknown to the experimenter. Thus, while
low metacognitive sensitivity could be due to an absence of con-
scious experience, it could also be due to hallucinations, such that
the subject vividly sees a false target and thus generates an incor-
rect type 1 response. Because of the vividness of the hallucination,
the subject may reasonably express high confidence (a type 2 false
alarm, from the point of view of the experimenter). In the case
of hallucinations, the conscious experience does not correspond
to objects in the real world, but it is a conscious experience all
the same. Thus, low metacognitive sensitivity cannot be taken
unequivocally to mean lack of conscious experience.

That said, we acknowledge the close relationship between
metacognitive sensitivity and awareness in standard laboratory
experiments in the absence of psychosis. Intuitively, metacogni-
tive sensitivity is what gives confidence ratings their meaning.
Confidence or bias fluctuates across individual trials (a single trial
might be rated as “seen” or highly confident), whereas metacog-
nitive sensitivity is a property of the individual, or at least a
particular condition in the experiment. High confidence is only
meaningfully interpretable as successful recognition of one’s own
effective processing when it can be shown that there is some
reasonable level of metacognitive sensitivity; i.e., that confidence

Frontiers in Human Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 443 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Fleming and Lau How to measure metacognition

ratings were not given randomly. For instance, Schwiedrzik et al.
(2011) used this logic to argue that differences in metacog-
nitive bias reflected genuine differences in awareness, because
metacognitive sensitivity was positive and unchanged in their
experiment.

We note that criticisms also apply to using metacognitive
bias to index awareness. In all cases, we would need to make
sure that type 1 d′ is not a confound, and that the confidence
level expressed is solely due to introspection of the conscious
experience in question. Thus, the strongest argument for pre-
ferring metacognitive bias rather than metacognitive sensitivity
as a measure of awareness is a conceptual one. Metacognitive
sensitivity measures the ability of the subject to introspect, not
what or how much conscious experience is being introspected
upon on any given trial. For instance, in what is sometimes
called type 2 blindsight, patients may develop a “hunch” that
the stimulus is presented, without acknowledging the existence
of a corresponding visual conscious experience. Such a hunch
may drive above-chance metacognitive sensitivity (Persaud et al.,
2011). More generally, it is unfortunate that researchers often
prefer sensitivity or sensitivity measures simply because they are
“bias free.” This advantage is only relevant when we have good
reasons to want to exclude the influence of bias! Otherwise, bias
and sensitivity measures are just different measures. This is true
for both type 1 and type 2 analyses. Instead it might be useful
to think of metacognitive sensitivity as a background against
which awareness reports should be referenced. Metacognitive
sensitivity indexes the amount we can trust the subject to tell us
something about the objective features of the stimulus. But lack
of trust does not immediately rule out an idiosyncratic conscious
experience divorced from features of the world proscribed by the
experimenter.

CONCLUSIONS
Here we have reviewed measures of metacognitive sensitivity,
and pointed out that bias is a confounding factor for popu-
lar measures of association such as gamma and phi. We point
out that there are alternative measures available based on SDT
and ROC analysis that are bias-free, and we relate these quan-
tities to the calibration and resolution measures developed in
the probability estimation literature. We strongly urge the appli-
cation of the bias-free measures of metacognitive sensitivity
reviewed above in future studies of metacognition. We distin-
guished between the related concepts of metacognitive bias (a
difference in subjective confidence despite basic task perfor-
mance remaining constant), metacognitive sensitivity (how good
one is at distinguishing between one’s own correct and incor-
rect judgments) and metacognitive efficiency (a subject’s level
of metacognition given a certain basic task performance or sig-
nal processing capacity). Finally, we discussed how these three
concepts pose interesting questions for future studies of metacog-
nition, and provide some cautionary warnings for directly
equating metacognitive sensitivity with awareness. Instead, we
advocate a more traditional approach that takes metacognitive
bias as reflecting levels of awareness and metacognitive sensi-
tivity as a background against which other measures should
be referenced.
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