
ORIGINAL RESEARCH ARTICLE
published: 24 June 2014

doi: 10.3389/fnhum.2014.00460

Magnocellular-dorsal pathway and sub-lexical route in
developmental dyslexia
Simone Gori 1,2*, Paolo Cecchini 3 , Anna Bigoni 3 , Massimo Molteni 2 and Andrea Facoetti 1,2

1 Developmental and Cognitive Neuroscience Laboratory, Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padova, Italy
2 Developmental Neuropsychology Unit, Istituto Scientifico “E. Medea” di Bosisio Parini, Lecco, Italy
3 Ophthalmological Unit, Istituto Scientifico “E. Medea” di San Vito al Tagliamento, Pordenone, Italy

Edited by:

Usha Goswami, University of
Cambridge, UK

Reviewed by:

Usha Goswami, University of
Cambridge, UK
John Frederick Stein, University of
Oxford, UK

*Correspondence:

Simone Gori, Developmental and
Cognitive Neuroscience Laboratory,
Dipartimento di Psicologia Generale,
Università degli Studi di Padova, Via
Venezia, 8 35131 Padova, Italy
e-mail: simone.gori@unipd.it

Although developmental dyslexia (DD) is frequently associate with a phonological deficit,
the underlying neurobiological cause remains undetermined. Recently, a new model, called
“temporal sampling framework” (TSF), provided an innovative prospect in the DD study.
TSF suggests that deficits in syllabic perception at a specific temporal frequencies are
the critical basis for the poor reading performance in DD. This approach was presented
as a possible neurobiological substrate of the phonological deficit of DD but the TSF can
also easily be applied to the visual modality deficits. The deficit in the magnocellular-dorsal
(M-D) pathway - often found in individuals with DD - fits well with a temporal oscillatory
deficit specifically related to this visual pathway.This study investigated the visual M-D and
parvocellular-ventral (P-V) pathways in dyslexic and in chronological age and IQ-matched
normally reading children by measuring temporal (frequency doubling illusion) and static
stimuli sensitivity, respectively. A specific deficit in M-D temporal oscillation was found.
Importantly, the M-D deficit was selectively shown in poor phonological decoders. M-D
deficit appears to be frequent because 75% of poor pseudo-word readers were at least 1
SD below the mean of the controls. Finally, a replication study by using a new group of poor
phonological decoders and reading level controls suggested a crucial role of M-D deficit in
DD.These results showed that a M-D deficit might impair the sub-lexical mechanisms that
are critical for reading development. The possible link between these findings and TSF is
discussed.
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INTRODUCTION
Developmental dyslexia (DD) is often defined as a deficit in
reading acquisition despite normal intelligence and access to con-
ventional instruction (American Psychiatric Association [APA],
1994). According to the dual-route model (see Perry et al., 2007
for a review), written words can be processed either by the sub-
lexical route or by the lexical route. The sub-lexical route is based
on grapheme-to-phoneme correspondences and allows reading of
unfamiliar words and pseudo-words. The lexical route is based on
lexical unit correspondences and is crucial to read familiar and
irregular words only. Both acquired and developmental disorders
of reading have been generally discussed within this psycholinguis-
tic framework (e.g., Castles and Coltheart, 1993). Phonological
dyslexics show great difficulty in reading unfamiliar words and
pseudo-words compared to known words, and this is thought
to arise from damage to the sub-lexical route. In contrast, sur-
face dyslexia is characterized by impaired reading of irregular
words, and this is thought to arise from a damaged lexical route
(e.g., Castles and Coltheart, 1993), potentially linked to an under-
stimulation of the visual word recognition system resulting from
low experience with literacy.

However, in shallow orthographies such as Italian, spelling-
sound irregularity is limited to the supra-segmental level (i.e., to

stress assignment). Thus, in Italian dyslexic children the increased
weight of sub-lexical processing does not permit precise mea-
surement of the efficiency of the lexical-route (see also Ruffino
et al., 2014). It is crucial to note that — regardless of spelling-
sound regularity − for a beginner reader all words are at first
pseudo-words because the lexical-orthographic representations
still have to be developed. Accordingly, most longitudinal stud-
ies have shown that beginner readers primarily use the sub-lexical
route (see Sprenger-Charolles et al., 2003 for a review).

Phonological decoding, which is typically measured by exam-
ining children’s pseudo-word reading performance, is one of the
most critical skills for successful reading acquisition (e.g., Share,
1995). Interestingly, Ziegler et al. (2003) showed that dyslexics
with regular (German-speaking children) and irregular (English-
speaking children) spelling-to-sound correspondences present an
extremely slow and serial phonological decoding mechanism.
Thus, in learning to read it is of utmost importance to acquire
an accurate and fluent use of the sub-lexical route (e.g., Goswami,
2000; see Vellutino et al., 2004 for a review).

Although there are a number of theories attempting to account
for DD, two main views received major support. The first approach
proposes that DD arises from deficits in systems that are specif-
ically linguistic in nature. In particular, the phonological deficit
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theory suggests that DD arises from deficits in phonological pro-
cessing (e.g., Snowling, 2000). In contrast, many authors suggest
that deficits in underlying non-linguistic sensory mechanisms are
the real core abnormality in DD (e.g., Stein and Walsh, 1997;
Vidyasagar and Pammer, 2010 for visual deficits; Wright et al.,
2000; Tallal, 2004 for auditory deficits). This theory, known as the
temporal processing hypothesis is the multi-sensory (i.e., visual
and auditory) version of the magnocellular dorsal (M-D) theory
of DD, suggesting that children with DD have specific deficits
in processing rapidly presented or brief sensory stimuli in either
the visual or auditory modalities (see Farmer and Klein, 1995;
Hari and Renvall, 2001 for reviews). Chiefly, the M-D temporal
hypothesis explicitly claims that phonological decoding deficits in
dyslexics could arise from impairments in sensory processing of
visual and auditory dynamic-stimuli (e.g., Facoetti et al., 2010a,b).
The well known M-D theory of DD is often referred specifically
to the visual modality, and it is a comprehensive, albeit con-
troversial account (e.g., Amitay et al., 2002; Sperling et al., 2005;
Olulade et al., 2013). This theory stems from the observation that
some reading disabled children are impaired in the specific visual
M-D pathway (see Stein and Walsh, 1997; Boden and Giaschi,
2007; Vidyasagar and Pammer, 2010 for reviews). The M-D path-
way originates in the ganglion cells of the retina, passes through
the M-layer of the lateral geniculate nucleus (LGN), and finally
reaches the occipital and parietal cortices (Maunsell and New-
some, 1987). The M-D stream is considered blind to colors, and
responds optimally to contrast differences, low spatial frequen-
cies, and to high temporal frequencies and motion (Livingstone
and Hubel, 1987). The M-D stream seems to be impaired in indi-
viduals with DD, whereas the other major parallel pathway of the
visual system, the parvocellular-ventral (P-V) stream, is intact (see
Stein and Walsh, 1997; Boden and Giaschi, 2007; Vidyasagar and
Pammer, 2010 for reviews). The P-V pathway is characterized by
both lower temporal resolution and superior sensitivity to high
spatial frequencies, and it is also sensitive to color changes (Liv-
ingstone and Hubel, 1987). Several studies showed the specificity
of the M-D pathway deficit in individuals with DD in compari-
son to P-V processing in the normal range, suggesting the crucial
role of the M-D pathway as the dominant visual stream for text
reading (e.g., Lovegrove et al., 1986; Chouake et al., 2012). Dyslex-
ics are less sensitive than typically reading controls to luminance
patterns and motion displays with high temporal and low spa-
tial frequencies (e.g., Eden et al., 1996), visual features that are
primarily associated with the M-D pathway, but they perform
normally on tasks primarily associated with the P-V pathway,
such as those involving color and form (Merigan and Maunsell,
1993).

Most of the evidence for the visual M-D deficit theory has
derived from studies of coherent dot motion perception (see Stein,
2001 for a review), which taps the cortical portion of the M-D
pathway.

However, the coherent dot motion deficit is rarely found in all
individuals in a dyslexic sample (e.g., Talcott et al., 2013). Children
or adult poor readers may be specifically impaired in motion per-
ception only in the presence of high external noise, but not in the
presence of low external noise or when the signal is clearly defined
(Sperling et al., 2006), weakening the strongest evidence for the

more dorsal portion of the M-D pathway deficit in DD. In addi-
tion, pure M-D deficits have rarely been documented in dyslexic
subjects (e.g., Amitay et al., 2002; Sperling et al., 2005). Disabled
readers show impaired performance in non-M-D tasks requiring
fine frequency discrimination, and the stimuli used in those tasks
were neither modulated in time nor briefly presented (e.g., Amitay
et al., 2002). Dyslexic children had difficulties detecting both grat-
ings with high temporal frequency and low spatial frequency (i.e.,
M-D stimuli) and gratings with low temporal frequency and high
spatial frequency (i.e., P-V stimuli) when the grating were embed-
ded in external noise (Sperling et al., 2005). Nevertheless, these
results did not falsify the evidence obtained from a large popula-
tion of studies demonstrating significant and replicable differences
between dyslexic and control groups and longitudinal studies in
the coherent motion perception task (e.g., Cornelissen et al., 1995;
Talcott et al., 2000, 2002, 2013; Boets et al., 2011). In addition,
it has been reported that up to 75% of dyslexic individuals show
visual temporal processing deficits (Lovegrove et al., 1986). Impor-
tant literature supports the transient subsystem deficit hypothesis
in DD which suggests a dissociation in sensitivity between low
spatial, high temporal versus high spatial, low temporal grating
stimuli (e.g., Martin and Lovegrove, 1987; Keen and Lovegrove,
2000). These grating stimuli tap into the receptive field charac-
teristics of the M system at a retino-cortical level providing the
most relevant support for the lower portion of the M-D theory
deficit. Moreover, a post mortem study, in a small sample, showed
that in the brain of individuals with DD the M neurons of the
LGN were noticeably smaller than those found in normal read-
ers’ brains, while the P neurons did not differ (Livingstone et al.,
1991).

It should be noted that the M-D pathway terminates mainly
in the posterior parietal cortex (Mishkin and Ungerleider, 1982;
Merigan and Maunsell, 1993), which is the cortical region con-
trolling selective attention in humans (Facoetti and Molteni, 2000;
see Corbetta and Shulman, 2002, 2011 for reviews). Thus, a weak-
ened or abnormal M-D input to the dorsal-stream could result in
a spatial and temporal attention deficit in dyslexic children and
adults (e.g., Brannan and Williams, 1987; Williams et al., 1987;
Valdois et al., 1995; Cestnick and Coltheart, 1999; Hari et al., 1999,
2001; Vidyasagar and Pammer, 1999; Facoetti et al., 2000, 2001,
2005, 2006, 2008, 2010a,b; Iles et al., 2000; Buchholz and McK-
one, 2004; Bosse et al., 2007; Buchholz and Aimola Davies, 2007;
Roach and Hogben, 2007; Ruffino et al., 2010; seeVidyasagar, 1999;
Hari and Renvall, 2001; Boden and Giaschi, 2007; Vidyasagar and
Pammer, 2010; Gori and Facoetti, 2014 for reviews) and specifi-
cally in dyslexics, a more severe poor pseudo-word reading ability
in comparison to word reading skills (Buchholz and McKone,
2004; Facoetti et al., 2006, 2010a; Roach and Hogben, 2007; Jones
et al., 2008; Ruffino et al., 2010, 2014). Children with autism spec-
trum disorder have shown attentional zooming-out and dorsal
pathway disorders (e.g., Ronconi et al., 2012, 2013a,b, 2014), the
visual attentional deficit is now recognized as a core feature of
DD (Franceschini et al., 2012, 2013; Zorzi et al., 2012; see Gori
and Facoetti, 2014 for a review). The sub-lexical route is crucial
for reading pseudo-words or new words during reading acquisi-
tion in all alphabetic languages, and it specifically requires serial
attentional graphemic parsing (Facoetti et al., 2010a).
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Recently, a new model, labeled“temporal sampling framework”
(TSF),was proposed by Goswami (2011) providing a new, different
and, intriguing prospect in the DD study. TSF integrates the data
on the auditory processing deficit with the findings on neural oscil-
latory mechanisms related to the temporal sampling of speech. In
short, the innovative proposal by Goswami (2011) suggests that
deficits in syllabic perception at relatively low temporal frequen-
cies (inside of the range of the delta/theta, i.e., <10 Hz) are the
critical basis for the reading disability in DD (Power et al., 2013).
This hypothesis is supported by the findings that show the role
of neuronal oscillations in speech perception (Luo and Poeppel,
2007). Although this approach was presented as a possible neuro-
physiological substrate of the phonological deficit of DD the TSF
it is not only limited to that but also, can easily be applied to all the
stages of processing within the visual system (Vidyasagar, 2013).
TSF also has the potential to integrate several low level deficits
already associated with DD (Vidyasagar, 2013; Pammer, 2014). As
suggested by Vidyasagar (2013) the D-stream deficit could also be
integrated in the TSF theory because the TSF fits well in describing
the attentional feedback within the D-stream. What is expected is
a deficit in neural oscillation at higher temporal frequency than
in the auditory modality because the M-D visual stream process
relatively high temporal frequency (Vidyasagar, 2013).

Assuming that the M-D pathway deficit is the neurobiologi-
cal basis of visual selective attention disorders in DD, we predict
that the M-D deficit should be found mainly in poor phonolog-
ical decoders. Therefore, the aim of the present study was to
investigate the efficiency of the visual M-D pathway inside the
TSF approach in dyslexic and typically reading children (age- and
reading-matched) using the frequency doubling (FD) illusion. The
FD illusion is a visual illusion that was first described by Kelly
(1966). Measuring a visual illusion, even if it sounds counter-
intuitive, can be done in a very accurate way (e.g., Gori et al.,
2006, 2008, 2010a, 2011; Yazdanbakhsh and Gori, 2008; Giora and
Gori, 2010; Gori and Spillmann, 2010; Ito, 2012). The FD illusion
appears to be dependent on the spatial and temporal frequency
of a flickering grating. When a grating with a spatial frequency
of 0.1–4 c/deg is flickering faster than 15 Hz, the viewer perceives
a grating with double the physical spatial frequency. The FD was
later explained by Kelly (1981) in terms of the full wave rectifica-
tion carried out by the visual system. Such rectification is found in
M(y)-cells of the primate retina (Benardete et al., 1992) and LGN
(Kaplan and Shapley, 1982; Marrocco et al., 1982). It is therefore
suggested, that responses from the M(y)-cells underlie perception
of the FD illusion (see Maddess et al., 1992 for a detailed discussion
regarding the relationship between M(y)-cells and frequency dou-
bling). A previous study (Pammer and Wheatley, 2001) showed
that individuals with DD are less sensitive to the FD illusion than
normal readers, supporting a low-level deficit in the M-D pathway.
Kevan and Pammer (2008) demonstrated that children at risk of
DD already show a higher threshold for the FD illusion even at the
pre-reading stage. Importantly, the threshold for the FD illusion
at the pre-reading stage predicts future reading skills (Kevan and
Pammer, 2009). The FD illusion is, therefore, a consolidated M-D
index which taps the lower portion of the M-D pathway and can
be difficultly described in terms of signal-to-noise exclusion (e.g.,
Sperling et al., 2005, 2006; Olulade et al., 2013). Interestingly, the

FD illusion was never previously tested in children with DD in
shallow languages as Italian. More importantly, the FD illusion is
a temporal stimulus that fit well with the opportunity to measure
the M-D pathway functionality inside the context of the TSF. What
is expected, indeed, is that if a neural oscillation deficit is present
also in the visual system of children with DD and specifically in
their M-D stream (Vidyasagar, 2013), the children with DD will
need more contrast to perceive the flickering stimulus at the same
oscillation frequency in comparison with the chronological-age
control group.

In addition, we studied the efficiency of the P-V pathway in
the same children to rule out the alternative explanation that per-
ceptual processing is generally inefficient in dyslexic children (e.g.,
because of poor perceptual noise exclusion). The task employed
was High-Pass Resolution (HPR) perimetry which measures the
detection threshold for fixed ring-shaped stimuli of different sizes.
HPR perimetry is commonly adopted for selective analysis of the
lower portion of the P-V pathway.

A crucial aim of this study was to investigate if a specific sub-
group of children with DD, i.e., poor phonological decoders, were
affected by the M-D deficit. In the Experiment 1 we selected a poor
phonological decoder subgroup and we compared them with the
chronological-age control group. In the Experiment 2 we collected
a new poor phonological decoder group in order to carry out a
replication study. Stringently, we contrast the new group with a
reading-level (RL) control group. The RL children (see Goswami,
2003) were never included in previous studies using FD illusion.
The inclusion of the RL group is particularly important to address
the issue of the causal link between FD illusion perception and
poor phonological decoding.

EXPERIMENT 1
METHODS
Participants
Seventeen dyslexic children (mean age 11 years, SD = 2), were
selected from a sample of children referred to the Neuropsychiatric
Unit of the scientific Hospital “E. Medea” of San Vito al Taglia-
mento, Pordenone, Italy, because of specific reading disability.
These children had been diagnosed as dyslexic based on standard
criteria (American Psychiatric Association [APA], 1994). Their
performance reading aloud had to be two standard deviations
below the norm in one reading subtest or 1 standard deviation
below the norm in at least two reading subtests according to the
Italian age-standardized tests (Sartori et al., 1995). The ability
to read aloud was measured using a clinical standardized Ital-
ian test composed of 112 words (separated into four lists; word
reading task, Sartori et al., 1995) and phonological decoding abil-
ity was measured using three standardized clinical lists of 48
Italian pseudo-words (pseudo-word Reading task, Sartori et al.,
1995). Finally, reading fluency and errors in age-standardized
prose passages from Italian clinical tests were used to measure
ecological-context reading (Sartori et al., 1995).

The children with DD were selected on the basis of:

(1) a full-scale IQ greater than, or equal to, 85, as measured by
the Wechsler intelligence scale for children-revised (WISC-R;
Wechsler, 1986);
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(2) normal or corrected-to-normal vision and hearing;
(3) absence of neurological and/or psychiatric disorders;
(4) absence of specific language impairments (American Psychi-

atric Association [APA], 1994); and
(5) absence of attention deficit disorders with or without hyper-

activity (ADHD and ADD; American Psychiatric Association
[APA], 1994). Several recent studies have shown that sustained
attention deficits are significant covariates in group studies
using dyslexics and controls pointing out the relevance of this
exclusion criterion (e.g., Rochelle et al., 2009).

The children with DD were divided into two subgroups (i.e.,
poor and non-impaired phonological decoders) according to their
performance on the pseudo-word reading test (Sartori et al., 1995).
Children were considered poor phonological decoders (PPD,
n = 12 dyslexic children) if their performance, in terms of mean
between accuracy and speed of pseudo-word reading, was below
two standard deviation from the norm. The remaining children
were assigned to the non-impaired phonological decoders sub-
group (NPD, n = 5 dyslexic children). Note that pseudo-word
reading efficiency is the most appropriate measure of phonologi-
cal decoding skills. A performance well below the normative data
implies that the child is a poor phonological decoder (e.g., Facoetti
et al., 2006, 2010a; Ruffino et al., 2010, 2014). In dyslexic children
with a regular spelling-to-sound correspondence, like Italian, it
is practically impossible to apply the classical English sub-typing
(i.e., phonological and surface DD; e.g., Castles and Coltheart,
1993; Talcott et al., 2013) because the English language presents an
higher number of irregular words. Importantly, the two dyslexic
groups did not differ in word reading [t(14) = 0.68, p > 0.05]
nor in text reading [t(14) = −0.01, p > 0.05] abilities, exclud-
ing that our PPDs were simply more severely impaired dyslexic
children.

Twenty four chronological, age- and IQ-matched typically
reading children (mean age 10 years, SD = 2) were randomly
selected from the same primary school. They were of average
or above average intelligence on three WISC-R (Wechsler, 1986)
sub-tests (i.e., Block Design and Comprehension).

All participants’ parents gave informed consent.
Table 1 shows the mean and SD of age, Block Design, Com-

prehension and text reading tests for the control and dyslexic
groups. Controls and dyslexics were comparable to chronological
age and IQ. In contrast, controls and dyslexics were significantly

different on accuracy and speed of word and text reading. In
Table 2 we showed that PPD and NPD groups differed only for the
pseudo-word reading mean (accuracy and speed).

All participants underwent a complete ophthalmological evalu-
ation, consisting of “Early Treatment Diabetic Retinopathy Study”
(ETDRS) chart (standardized eye charts and visual acuity test),
orthoptic examination, anterior segment slit lamp examination,
cycloplegic refraction, and indirect ophthalmoscopy.

Apparatus and stimuli
Frequency doubling perimetry. The FD perimetry relies on the
frequency doubling illusion described in the Introduction. The set-
tings resembled the ones adopted, in a previous study, by Pammer
and Wheatley (2001). A low spatial frequency grating displayed in
counter-phase flicker mode at a high temporal frequency is per-
ceived as if it had twice its actual spatial frequency. The Humphrey
Matrix perimeter was the presentation tool used with the pro-
gram threshold set to 30-2. The threshold is expressed as contrast
attenuation in decibels (dB) and it is calculated by a staircase algo-
rithm built into the Humphrey Matrix perimeter tool. Thresholds
ranged from 0 to 38 db. The stimulus was presented at 69 loca-
tions in the 30 central degrees of the visual field. The background
luminance was 100 cd/m2. The pattern consisted of a sinusoidal
grating presented at different contrast levels, arranged in 5◦ × 5◦
square stimuli, and a circular macular stimulus of 2.5◦ radius. The
spatial frequency of the bar target was 0.50 cy/deg, the counter-
phase flickered at 18 Hz and was presented for 300 ms. The FD
provides selective stimulation of the M-retinal ganglion cells and
M LGN neurons. Due to the design of the target, no P-cell activity
should be stimulated. Visual fields with 20% or less false positive
or false negative responses, and 30% or less fixation errors were
considered acceptable.

High-pass resolution (ophthimus) perimetry. The Ophthimus
system HPR perimetry uses ring-shaped stimuli, consisting of dark
borders and a lighter core. Fourteen different sized targets are avail-
able (ranged from 1.26 to 17.64 dB). The target contrast was held
constant while the size varied in steps of 1.26 dB. The background
luminance was 20 cd/m2. The luminance of the ring borders was
15 cd/m2 and the luminance of the ring core was 25 cd/m2. The
target was “high-pass spatial frequency filtered”. The participants
either detected and resolved it, or it was invisible to them. The
perimeter assesses resolution thresholds as the smallest stimulus

Table 1 | Mean (M) and standard deviation (SD) of age, Comprehension, Block Design sub-test (WISC-R;Wechsler, 1986), text reading errors and

speed in the control and dyslexic groups.

Controls (N = 24) Dyslexics (N = 17) Comparison

M SD M SD T (39) P

Age (months) 124 21 128 27 −0.46 0.65

Comprehension (standard score) 10.9 2.3 12 2.6 −1.49 0.14

Block design (standard score) 13.8 2.2 12.5 2.9 1.71 0.09

Text reading errors (number) (Z -score) 2.1, 0.54 2.5, 0.56 10.7, −1.05 6.7, 1.19 −5.78, −5.66 <0.001, <0.001

Text reading speed (s) (Z -score) 33, 0.31 20.7, 0.48 82, −2.58 49.9, 1.5 −4.31, −8.81 <0.001, <0.001
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Table 2 | Mean (M) and standard deviation (SD) of Comprehension, Block Design sub-test (WISC-R;Wechsler, 1986), text reading mean (errors

and speed), word reading mean (errors and speed), pseudo-word reading mean (errors and speed) in the two dyslexic subgroups: the poor

phonological decoders (PPD) and the non-impaired phonological decoders (NPD) groups.

PPD (N = 12) NPD (N = 5) Comparison

M SD M SD T (15) P

Comprehension (standard score) 12.5 2.58 11 2.45 1.11 0.28

Block design (standard score) 12.67 2.64 12 2.67 0.42 0.68

Text reading mean (Z -score) −1.66 0.85 −2.15 1.02 −1.02 0.33

Word reading mean (Z -score) −4.03 1.95 −3.33 1.86 0.68 0.51

Pseudoword reading mean (Z -score) −3.26 1.09 −0.92 0.67 4.39 <0.001

size seen in the 50 locations over the central 30◦ of the visual field.
The blindspot is not mapped. The high-pass spatial frequency
filter allows for selective analysis of the P-cells of the retina and
probably of the LGN. Due to the software characteristics, fixation
errors were not tested for the HPR perimetry.

Procedures
All participants performed the FD and the HPR perimetry in ran-
dom order, beginning with one of the two eyes. On another day,
they performed the two visual field tests again, beginning with the
other eye, in order to avoid fatigue and any learning effects. The
children were verbally instructed on how to perform the two tests
and were given the opportunity to practice. Two pauses were given
throughout each test, and a 5-min pause was permitted between
testing of the first and second eye.

Each child was seated comfortably with their face against the
eyepiece. For the FD testing the child was given a description of
the display, and instructed to press the response button each time
she/he saw a pattern against the homogeneous background. For
the HPR task each child had to report whenever they saw a circle
in any tested position of the visual field.

RESULTS
FD results
All groups and subgroups were normally distributed as showed
by a non-significant Shapiro-Wilk test of normality (all ps > .05).
The mean FD thresholds (averaged for all positions and the two
eyes) for the children with DD (n = 17) differed significantly [t-
test: t(39) = 2.697, p < 0.05] in comparison to the normal reader
age- and IQ-matched controls (n = 24), showing that the dyslexic
group was less sensitive to the FD illusion at 18 Hz of temporal
frequency of (see the Figure 1 and the plot of the individual data
in Figure 6A). An univariate ANCOVA (omnibus test) was run
in which the independent variable was group (chronological age-
and IQ-matched controls, PPDs and NPDs) and the dependent
variable was the mean FD threshold, co-varied for the partici-
pant’s age [F(3,37) = 11.999, p < 0.05, η2

p = 0.493; see Figure 2

and the plot of the individual data in Figure 6A]. A planned
comparison (univariate ANCOVA) was then run where the inde-
pendent variable was group (chronological age- and IQ-matched
controls vs. PPDs) and the dependent variable was the mean FD
threshold, co-varied for the participants’ ages [F(2,33) = 15.139,

FIGURE 1 |The difference between the chronological age- and

IQ-matched (CA) controls and dyslexic children in the FD task

measuring the M-D pathway functionality (i.e., M threshold) in the

Experiment 1. ∗p < 0.05.

p < 0.05, η2
p = 0.478]. Finally another planned comparison (uni-

variate ANCOVA), where the independent variable was the group
(age- and IQ-matched controls vs. NPDs) and the dependent vari-
able was the mean FD threshold, co-varied for the participants’
ages [F(1,26) = 1.899, p > 0.05, η2

p = 0.068]. In summary, only the
PPDs were significantly worse than the controls in their mean FD
threshold.

Although PPD children showed a significantly worse perfor-
mance in the FD task at the group level, in comparison with the
controls, it is important to establish how reliable is this abnor-
mal pattern at the individual level. In the PPD group, 75%
of them were at least 1 SD below the mean of the controls
(Figure 3).

Based on these results indicating a specific relationship between
M-D pathway and the spelling to sound translation process we
concentrate our Experiment 2 only on the PPDs.

HPR results
All groups and subgroups were normally distributed as showed by
a non-significant Shapiro-Wilk test of normality (all ps > 0.05).
The mean HPR thresholds (averaged for all positions and the two
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FIGURE 2 |The difference between chronological-age and IQ matched

(CA) controls and the subtypes of children with DD (i.e., poor

phonological decoders, hereafter PPD and non-impaired phonological

decoders, hereafter NPD) in the FD task (Experiment 1). ∗p < 0.05.

eyes) for the children with DD (n = 17) and the normal reader
age- and IQ-matched controls (n = 24) did not differ significantly
[t-test: t(39) = 0.432, p > 0.05] showing that the dyslexic and nor-
mal reader groups were similar in their P-V pathway performance
(see Figure 4 and the plot of the individual data in Figure 6B).

The relationship between M-D functioning and reading text ability
Partial correlation between M-D pathway functioning (indexed by
FD threshold) and the text reading efficiency (the mean between
speed and errors z-scores) in the entire sample (n = 40; a child with
DD score is missing), controlling for chronological age, IQ (block
design and similarities), and the P-V functioning, was significant
(r = 0.43, p < 0.01).

To determine the predictive relationships between M-D path-
way functioning and ecological reading skills in a more stringent

way, we computed a three-step fixed-entry multiple regression
analysis in which the dependent variable was text reading effi-
ciency. To control for the effects of chronological age, verbal
and nonverbal IQ, and P-V pathway functioning, the predictors
entered at the three steps were as follows: (1) age, block design
and similarities, (2) P-V pathway threshold, and (3) M-D path-
way threshold. The ANOVA regression model was significant
[F(5,34) = 2805, p < 0.05] explaining the 29% of the text read-
ing quote of variance. Only the M-D pathway measure, entered
last, accounted for a significant quote of unique variance in text
reading efficiency (r2 change = 0.16, p < 0.01).

EXPERIMENT 2
METHODS
Participants
In a replication study, we selected a new sample of 8 PPDs (mean
age 11 years, SD = 2) and a RL matched control group (10 younger
children well matched to the dyslexics for reading ability and IQ,
mean age 7 years, SD = 1). In order to find an RL group in Italian
speaking language population, it is necessary to search for younger
children than would be use in countries with deeper orthographic-
to-phonological mapping than in Italian. All the inclusion criteria
were the same for the Experiment 1. For details of the new two
groups check Table 3. All participants’ parents gave informed
consent.

Apparatus and stimuli
Frequency doubling perimetry. The procedure was exactly the
same for the Experiment 1. The HPR perimetry task was not
performed because the results were not be discriminative in the
Experiment 1.

RESULTS
The mean FD thresholds (averaged for all positions and the two
eyes) for PPDs (n = 8) and the typical readers IQ- and RL matched

FIGURE 3 |The scatter-plot shows that at individual level the 75% of the PPDs (the red triangle) are at least 1 SD under the mean of the CA controls

(the green circle) in the FD task (Experiment 1).

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 460 | 6

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Gori et al. Magnocellular deficits in developmental dyslexia

FIGURE 4 | No difference was found between age and IQ matched (CA)

controls and the children with DD in the HPR task measuring the P-V

pathway functionality (i.e., P threshold) in the Experiment 1.

controls (n = 10) differed significantly [t-test: t(16) = 2.962,
p < 0.05] showing that the PPDs were less sensitive to the
FD illusion at 18 Hz of temporal frequency even compared
to younger normal readers with the same reading abilities (see
Figure 5 and the plot of the individual data in Figure 6A). The
two control groups (CA and RL) did not differ in the FD illu-
sion threshold (p > 0.05). It is not surprising that age did not
affect that task because the M-D pathway should be completely
operative much before the age of 7 years (e.g., Gori et al., in
press).

Although the study was designed as two independent experi-
ments the PPDs of the Experiment 1 and 2 were very similar in age
and they did not differ in other relevant variables. Additionally,
we found it could be of interest to merge the two groups of PPDs
and contrast them with the CA and the RL controls. We applied
an univariate ANOVA with the FD threshold as the independent
variable and groups (PPD, n = 25, CA, n = 24 and RL, n = 10) as
the between subjects factor. The Group main effect was significant
[F(2,56) = 7.33; p < 0.05] and PPD group differed from CA and
from RL (Bonferroni multiple comparison with ps < 0.05). This
result confirmed the results obtained separately in Experiment 1
and 2.

FIGURE 5 |The difference between the new sample of PPDs and

reading-level and IQ-matched (RL) controls in the FD task

(Experiment 2). ∗p < 0.05.

DISCUSSION
These results provide strong support for an M-D deficit in DD
that has its origins at the sub-cortical level of the pathway (i.e., at
the LGN). Notably, this deficit characterized only a subgroup of
dyslexics, namely the poor phonological decoders.

The absence of differences in the P-V task between groups
emphasizes the selectivity of the visual deficit that seems to be
associated with the reading disability in the sub-lexical route. It
is therefore impossible to attribute the difference found in the
FD task to poor testing endurance, as the children with DD
performed as well as the typically reading children on the HPR
task. The absence of a difference between the two groups in the
P-V task cannot be attributed to a ceiling or a floor effect that
could mask a poor performance of children with DD as shown
by the individual data shown in Figure 6B. The graph shows
that the data of both groups were not clustered on the limits
of the stimulation range. Consequently, even if the M-D and
the P-V task could be different in difficulty, both tasks should
have enough sensitivity to show a possible difference between
groups.

Moreover, the poor phonological decoders with DD not only
demonstrated less sensitivity to the FD illusion compared to the
typical reading age- and IQ-matched group (supporting Pammer
and Wheatley, 2001), but also to a reading-level and IQ-matched

Table 3 | Mean (M) and standard deviation (SD) of chronological age, Block Design sub-test (WISC-R;Wechsler, 1986), phonological decoding

speed and errors in the reading-level (RL) controls and poor phonological decoders (PPD) of the Experiment 2.

RL controls (N = 10) PPD (N = 8) Comparison

M SD M SD T (16) P

Block design (standard score) 11.5 1.43 11 1.51 0.72 0.48

Chronological age (months) 91.5 5.4 126.2 8.67 10.41 0.001

Pseudo-word reading speed (s) 54.5 14.96 64.12 25.38 1.01 0.33

Pseudo-word reading errors (errors) 7.3 2.54 7.9 2.74 0.46 0.65
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FIGURE 6 | (A) The scatter-plot of the individual data showing the
difference between the children without DD (i.e., CA and RL
controls) and the subtypes of children with DD (NPD and PPD) in
the FD task measuring the M-D pathway functionality (Experiment 1
and 2). The findings did not change running the ANCOVA without

the outliers. Error bars represent one standard deviation of the
mean. (B) The plot of the individual data showing the difference
between the children without (i.e., CA controls) and with DD in the
HPR task (Experiment 1). Error bars represent one standard deviation
of the mean.

control group. The latter result excludes that the M-D deficit is
simply an effect of DD.

This is the first study to show that the M-D deficit in chil-
dren with DD is present also when compared with younger
children with the same reading performance, challenging the
idea that the M-D deficit is a simple effect of reading depri-
vation and not a cause, as recently suggested by Olulade et al.
(2013). Importantly, the results obtained in the between-group
analyses cannot be attributed to the presence of a few (and per-
haps peculiar) dyslexic children in the PPD group but were fully
confirmed by the analyses at the level of individual cases. M-D
deficits were present in a large part of the PPDs (75%) in com-
parison to CA. Moreover, none of the NPDs presents a deficit
in the FD task. Thus, the FD task allowed us to accurately dis-
criminate between poor phonological decoders and CA controls.
Regardless of whether children in the NPD group constitute a
specific subtype in shallow orthographies (e.g., Wimmer, 1993)
or they have partly compensated for their reading deficit, M-D
pathway functioning seems to play an important role in phono-
logical decoding. In general, the results from the current study
provide evidence for an M-D stream involvement in DD charac-
terized by poor phonological decoding (the most frequent pattern
even in Italian individuals with DD; see Facoetti et al., 2006).
This conclusion was supported by the finding that individual
differences in the M-D pathway were predictive of reading per-
formance even after controlling for age, IQ, and P-V pathway
functioning. The FD task allowed us to show an M-D deficit that
seems to be in the lower portion of this visual stream (the sub-
cortical component and/or the primary visual cortex) and that
cannot be interpreted as a signal-to-noise exclusion deficit (which
could be consider the weak point of the coherent dot motion
task) or as an effect of reading level (as clearly highlighted by

the difference with the RL group). The present results could be
interpreted inside the framework of the TSF (Goswami, 2011).
A multi-sensory (auditory and visual) temporal sampling disor-
der of neural oscillations could include the M-D deficit theory as
one of several possible causes of DD. While an auditory deficit
in low temporal frequency is observed in DD (e.g., Goswami,
2011; Power et al., 2013), in the visual modality a higher tem-
poral frequency processing seems to be damaged in children with
DD which is in agreement with the Vidyasagar (2013) prediction
of a temporal oscillation deficit in the M-D pathway. However, the
spatial and temporal sampling of the orthographic information
could also be considered as a proxy deficit for auditory modality
deficits in phonological decoding (e.g., Vidyasagar and Pammer,
2010). Moreover, as recently suggested (Vidyasagar, 2013; Pam-
mer, 2014) the TSF seems to be very appropriate to model not
only for the auditory deficits of DD but also the visual deficits
that appear to be common in DD. Our results, based on tem-
poral illusion sensitivity seem to be the first experimental test
of the TSF in visual modality. The fact that children with DD
need more contrast to see the FD pattern at 18 hz of tempo-
ral frequency, in comparison with both control groups supports
the hypothesis of a neural oscillation deficit in the M-D path-
way of children with DD. This neural oscillation defict seems
to be selective for the M-D stream as theorized by Vidyasagar
(2013).

Further research is now necessary to better understand the
role of the cortical component of the M-D pathway in DD.
In order to pursue that goal a sensitivity task employing spe-
cific motion illusions (i.e., Gori and Hamburger, 2006; Gori
et al., 2006, 2010b, 2011; Gori and Yazdanbakhsh, 2008; Yazdan-
bakhsh and Gori, 2008, 2011; Hamburger, 2012) could be devised
given the fact that this kind of illusory motion is processed by
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V5/MT (Ruzzoli et al., 2011). Potential differences in this task
could not be related to a general perceptual noise exclusion
deficit.

In conclusion, sensitivity to the FD illusion could provide
a simple and powerful diagnostic tool for the evaluation and
identification of the risk of DD, even at the pre-reading stage
(Kevan and Pammer, 2008, 2009) and the results obtained with
the RL group strongly point in the direction of a causal role of
a neural oscillatory deficit in the M-D pathway of individuals
with DD.
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