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It is well established that auditory cueing improves gait in patients with idiopathic Parkin-
son’s disease (IPD). Disease-related reductions in speed and step length can be improved
by providing rhythmical auditory cues via a metronome or music. However, effects on cog-
nitive aspects of motor control have yet to be thoroughly investigated. If synchronization
of movement to an auditory cue relies on a supramodal timing system involved in percep-
tual, motor, and sensorimotor integration, auditory cueing can be expected to affect both
motor and perceptual timing. Here, we tested this hypothesis by assessing perceptual
and motor timing in 15 IPD patients before and after a 4-week music training program
with rhythmic auditory cueing. Long-term effects were assessed 1 month after the end
of the training. Perceptual and motor timing was evaluated with a battery for the assess-
ment of auditory sensorimotor and timing abilities and compared to that of age-, gender-,
and education-matched healthy controls. Prior to training, IPD patients exhibited impaired
perceptual and motor timing. Training improved patients’ performance in tasks requiring
synchronization with isochronous sequences, and enhanced their ability to adapt to dura-
tional changes in a sequence in hand tapping tasks. Benefits of cueing extended to time
perception (duration discrimination and detection of misaligned beats in musical excerpts).
The current results demonstrate that auditory cueing leads to benefits beyond gait and
support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a
neuronal network engaged in both perceptual and motor timing.

Keywords: Parkinson disease, auditory cueing, timing, motor behavior, perception

INTRODUCTION
Idiopathic Parkinson’s disease (IPD) is one of the most com-
mon movement disorders. Although substantial progress has been
made regarding the treatment of its cardinal motor symptoms,
progressive brady- or akinesia, rigor, and tremor lead to disability
and are a major challenge for the health care system (Elbaz et al.,
2002). Clinically, gait disorder and postural instability leading to
falls and fractures represent a major challenge for the patients
as the disease progresses (Bloem, 1992; Koller and Montgomery,
1997; Grabli et al., 2012). However, even if motor deficits can be
alleviated by a number of therapeutic regimes (Samii et al., 2004),
cognitive and affective deficits emerge as additional challenges
in the disease’s progression. These may dramatically influence
patients’ quality of life and have been increasingly recognized to
undermine independent living (e.g., Morris et al., 2001; Bloem
et al., 2004).

While many motor symptoms in IPD can be alleviated by phar-
macological treatment and deep-brain stimulation, effects on gait

dysfunctions are rather meager, inconstant, and decrease over time
(Blin et al., 1990; Grabli et al., 2012; Sharma et al., 2012). Therefore,
physical therapy is an essential ingredient of IPD management. It
is non-invasive, cost-efficient, and may slow the progress of the
disease (Kwakkel et al., 2007). One way of compensating for gait
disorders is the use of temporally predictable external cues (Lim
et al., 2005; Spaulding et al., 2012). Rhythmic auditory cues have
been shown to enhance gait spatio-temporal parameters such as
speed and stride length (Lim et al., 2005). Typically patients are
instructed to match their walking speed to a repeated isochro-
nous sound (i.e., metronome) or to the beat of music (Thaut
et al., 1996; McIntosh et al., 1997; Nieuwboer et al., 2007; de
Bruin et al., 2010). Auditory cueing is efficient during stimula-
tion (Howe et al., 2003; Willems et al., 2006; Arias and Cudeiro,
2008), but has also been shown to carry over to uncued gait after
training (Nieuwboer et al., 2007). Some studies report a reduc-
tion of its benefit between 4 and 6 weeks after training (Thaut
et al., 2001) with considerable deterioration almost to pre-test

Frontiers in Human Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 494 | 1

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnhum.2014.00494/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2014.00494/abstract
http://www.frontiersin.org/people/u/140880
http://www.frontiersin.org/people/u/24326
http://www.frontiersin.org/people/u/123141
http://www.frontiersin.org/people/u/11729
http://www.frontiersin.org/people/u/165263
http://www.frontiersin.org/people/u/6974
mailto:kotz@cbs.mpg.de
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
mailto:simone.dalla-bella@univ-montp1.fr


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Benoit et al. Musical cueing in Parkinson’s disease

values after 12 weeks post-intervention (Nieuwboer et al., 2001).
Other studies reported stable cueing benefits even after 4–6 weeks
(Marchese et al., 2000; Lehman et al., 2005).

The neuronal mechanism underlying the sustained benefits of
cueing-based training is largely elusive. It has been suggested that
coupling movement to an external rhythmic stimulus reinforces
compensatory neuronal networks enhancing motor behavior in
IPD (Nombela et al., 2013; see also Kotz and Schwartze, 2011).
One candidate is the sensorimotor network underlying tempo-
ral processing. Structuring actions in time is a key element to
achieve precise and stable coordinated movement such as gait. As
IPD patients also display timing deficits (Hallett, 2008; Allman
and Meck, 2012; Wu et al., 2012), one cause of gait dysfunc-
tions in self-initiated and self-paced movements may be reduced
by enhancing general timing functions. Indeed, dopamine deple-
tion, a characteristic of this disorder, leads to malfunctioning of
the basal-ganglia–cortical circuitry crucially involved in timing
(Wing, 2002; Coull et al., 2011; Merchant et al., 2013). An external
rhythmic cue may modulate the activity within the impaired tim-
ing system. Presenting an external temporally predictable cue, to
which patients can synchronize their steps, provides a regularizing
temporal input to the timing system.

External cues generate temporal expectations (e.g., via a process
called “entrainment”; Jones, 1976; Large and Jones, 1999; Large,
2008) allowing to predict when a next event (e.g., a step) should
occur. This may facilitate movement optimization and execution.
Rhythm-driven expectations can regularize and stabilize move-
ment by synchronizing the timing of an action execution to the
beat structure of an auditory stimulus (e.g., Nombela et al., 2013).
Since this process is probably supported by a neural circuitry less
affected by IPD, it may compensate progressive malfunctioning
of the basal-ganglia–cortical circuitry (e.g., Lewis et al., 2007).
The compensatory system is likely to involve cerebello-thalamo-
cortical circuitry (see also Kotz et al., 2009; Kotz and Schwartze,
2011; Nombela et al., 2013), a hypothesis which has received some
support from studies with IPD patients. Cerebellar connections to
the SMA are hyperactivated when action is externally cued (Sen
et al., 2010). Moreover, activity of the cerebellar anterior lobule is
enhanced following 1-month of cueing-based training (del Olmo
et al., 2006).

The aforementioned circuitry is likely to support auditory
cueing and its effects on gait kinematics, and is part of a domain-
general system affording both perceptual and motor timing (Coull
et al., 2011; Merchant et al., 2013; Schwartze and Kotz, 2013).
Therefore, it is expected that auditory cueing may not merely
improve motor control during gait, but more generally to enhance
performance in tasks involving perceptual and motor timing (e.g.,
hand tapping or duration discrimination). Effects of auditory
cueing beyond gait kinematics have not been systematically inves-
tigated so far. The goal of the present study was therefore to test
whether a 1-month training of gait via auditory cueing enhances
perceptual and motor timing. This hypothesis was tested by sub-
mitting a group of IPD patients to the Battery for the Assessment of
Auditory Sensorimotor and Timing Abilities (BAASTA),a compre-
hensive set of tasks for the assessment of perceptual and motor tim-
ing abilities. Patients were tested before, right after, and 1 month
following the training. Impairment prior to training was assessed

in comparison to a group of healthy age-matched participants
(controls) considered as baseline. Improvement in perceptual and
motor timing was expected in response to external cueing. More-
over, as long-term benefits of auditory cueing on gait have been
observed several weeks after training (Nieuwboer et al., 2007), we
addressed the question whether improvement in timing abilities
would similarly persist 1 month after the training.

MATERIALS AND METHODS
PARTICIPANTS
Fifteen right-handed non-demented patients (10 males) with IPD,
aged 49–80 years (M = 67.2, SD= 7.5) participated in the study
(see Table 1). Scores of the Unified Parkinson’s Disease Rating
Scale (UPDRS) and staging according to Hoehn and Yahr (H&Y)
were assessed by an experienced neurologist (H.O.). Patients did
not discontinue medication, and the levodopa equivalent daily
dose was on average 363 mg. They were clinically assessed at
the Clinic for Cognitive Neurology at the University Hospital in
Leipzig, Germany. Patients showed moderate symptoms of IPD,
with an average H&Y stage of 2 (SD= 0.7) and a UPDRS of 37.7
(SD= 18.8). Inclusion criteria were low scores (<5; M = 1.29)
on the Geriatric Depression Scale (Yesavage et al., 1982), absence
of a hearing impairment, absence of musical training as assessed
by a customized questionnaire for musical aptitudes. Additional
neuropsychological testing included the Token-test (De Renzi
and Vignolo, 1962), the consortium to establish a registry for
Alzheimer’s disease (CERAD) (Welsh et al., 1994) and the Parkin-
son neuropsychometric dementia assessment (PANDA) (Kalbe
et al., 2008). No other severe neurological or psychiatric illness
was reported. Twenty (10 males) right-handed healthy adults,
who matched the patients in age (M = 66.4, SD= 7.8) and educa-
tion (M = 14.4 years; SD= 3.0) formed the control group. Healthy
controls had no history of neurological or psychiatric disorders,
showed no hearing impairments and did not actively practice
music. All participants, recruited via the database of the Max
Planck Institute for Human Cognitive and Brain Sciences, Leipzig,
Germany, gave informed consent and were remunerated for their
participation. The study was approved by the Ethics Committee
of the University of Leipzig, Germany.

PROCEDURE
IPD patients took part in an auditory cuing training program.
A 2-day assessment of perceptual and movement kinematics was
administered before, after, and 1 month following the interven-
tion. Controls were assessed only once. IPD patients were tested
while they were in an ON-state. Details about the training program
and the evaluation of perceptual and motor timing are provided
in detail below.

TRAINING
The training sessions took place at the Day Clinic for Cognitive
Neurology at the University of Leipzig. Patients were asked to walk
while following a familiar German folk song. No explicit instruc-
tions to synchronize their footsteps to the beat of music were
provided. The song was played without lyrics and the beat of the
song was emphasized with a superimposed salient high-pitch bell
sound. The beat rate of the auditory stimulus was set to±10% of
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Table 1 | Demographic and clinical characteristics for IPD patients and healthy controls.

Patients Controls

Mean (SD) n Mean (SD) n

Demographics

Females – 5 – 10

Males – 10 – 10

Handedness

Right – 15 – 20

Age 67.2 (7.5) 15 66.4 (7.8) 20

Years of education 14.7 (2.7) 15 14.4 (3.0) 20

Age at onset 59.3 (7.4) 15 – –

Disease duration 7.9 (2.7) 15 – –

Clinical Characteristics

UPDRS

I (mentation, behavior, and mood) 2.47 (1.8) 15 – –

II (activities of daily living) 12 (6.11) 15 – –

III (motor examination) 23.3 (12.4) 15 – –

Total score 37.7 (18.8) 15 – –

Hoehn and Yahr 2.0 (0.7) 15 – –

0.5 – 1 – –

1 – 2 – –

2 – 6 – –

2.5 – 5 – –

3 – 1 – –

Schwab and England 87.9 (5.8) 15 – –

Medication

L-Dopa LED 136.0 (159.3) 14 – –

Ago LED 253.0 (201.2) 14 – –

Total LED 363.0 (260.5) 15 – –

a patient’s spontaneous walking cadence as assessed prior to the
first training session. The chosen beat rate [i.e.,+10% (n= 8) or
−10% (n= 7)] was the one which led to the longest step length as
assessed in prior testing (Willems et al., 2006). Patients underwent
three training sessions per week for 1 month. Medication was kept
constant over the whole course of the study. Stimuli were delivered
via a portable MP3-player (Sansa-Clip) and headphones (Sansa-
Clip earbuds). Each training session lasted 30 min and consisted
of three phases. In the first phase (10 min) the patient walked to
the auditory rhythmic stimulus for 8 min. The stimulus was then
stopped while the patient continued walking for 2 min at the same
speed. In the second phase (10 min), the patient performed stop-
and-go trials, in which the auditory stimulus was played for 30 s.
At the end of the stimulus presentation, the patient stopped walk-
ing and restarted at the onset of the next stimulus presentation.
During the last 2 min, the patient repeated the stop-and-go trials
without the stimulus. The third phase (10 min) was the same as
phase 1.

BATTERY FOR THE ASSESSMENT OF AUDITORY SENSORIMOTOR AND
TIMING ABILITIES (BAASTA)
Patients and controls were submitted to the BAASTA, which con-
sists of a series of perceptual timing and motor timing tasks
sketched out below. The test battery was administered over 2 days.

PERCEPTUAL TIMING TASKS
The first three tasks (duration discrimination, anisochrony detec-
tion with tones, and anisochrony detection with music) allow
estimating thresholds of duration discrimination of two tones
and to detect an interval embedded in an isochronous sequence
of tones or in a musical excerpt. Thresholds are estimated using
a maximum-likelihood adaptive procedure (MLP) (Green, 1993)
implemented in the MLP toolbox (Grassi and Soranzo, 2009) in
MATLAB. Participants performed 3 blocks of 16 trials each. In
each trial, the stimulus difference was changed adaptively depend-
ing on the participants’ response. Thresholds corresponded to the
midpoint of the psychometric curve defined as a probability of
63.1% of correct detection (Grassi and Soranzo, 2009). Stimuli
were delivered via headphones (Sennheiser HD201) at a com-
fortable sound pressure level. A response was provided verbally
by participants and entered by the experimenter via a computer
keyboard. The tasks were preceded by four practice trials with
feedback.

DURATION DISCRIMINATION
The goal of this test is to measure the ability to discriminate two
subsequent durations. The participants are presented with pairs of
pure tones (frequency= 1 kHz; interval between tones= 600 ms).
The first tone lasts 600 ms (standard duration) while the second
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tone (comparison) varies between 600 and 1000 ms. The duration
of the second tone is controlled by the MLP algorithm. Partici-
pants’ task is to note if the second tone lasts “longer” than the first
or has the “same” duration.

ANISOCHRONY DETECTION WITH TONES
This test assesses the sensitivity to time shifts (i.e., anisochrony) in
a sequence of isochronous stimuli (Hyde and Peretz, 2003; Sowin-
ski and Dalla Bella, 2013). Participants listen to sequences of five
tones (tone frequency= 1047 Hz, duration= 150 ms). Isochro-
nous sequences have a constant inter-onset-interval (IOI) while
in non-isochronous sequences the fourth tone occurs earlier than
expected based on the IOI of the preceding tones. This displace-
ment results in reciprocal time shifts between tones 3/4 (short-
ened) and 4/5 (lengthened). The standard IOI is 600 ms. The
magnitude of the local shift, up to 30% of the IOI (180 ms), is
controlled by the MLP algorithm. After each sequence, partici-
pants are asked to judge whether the sequence was “regular” or
“irregular.”

ANISOCHRONY DETECTION WITH MUSIC
The purpose of the third task is to assess participants’ ability to
detect a time shift (i.e., deviant beat) in a short musical excerpt
(Sowinski and Dalla Bella, 2013). In each trial, a computer-
generated musical excerpt is presented to participants. The excerpt
is a two-bar fragment (i.e., eight quarter notes overall) taken from
Bach’s “Badinerie” orchestral suite for flute BWV 1067, played
with a piano timbre at a tempo of 100 beats/min (IOI= 600 ms;
beat= quarter note). The IOI between musical beats is not manip-
ulated in a regular sequence, while a local time shift (as in the
previous task) is introduced at the onset of the fifth beat in an
irregular sequence. The standard IOI between musical beats is
600 ms. The magnitude of the time shift, up to 30% (180 ms) of
the IOI between musical beats, is controlled by the MLP algorithm.
Participants’ task is to judge whether the sequence was “regular”
or “irregular.”

BEAT ALIGNMENT TEST
This task examines sensitivity to the beat conveyed by a musical
stimulus. The task is an adapted version of the beat alignment task
(Iversen and Patel, 2008; Fujii and Schlaug, 2013). Participants are
presented with four musical excerpts including a salient beat struc-
ture. Two are fragments from Bach’s “Badinerie” and two from
Rossini’s “William Tell Overture.” Each excerpt includes 20 beats
(beat= quarter note). An isochronous sequence with a triangle
timbre is superimposed on the music starting on the seventh beat.
The isochronous sequence is either aligned to the musical beat
or unaligned. In the latter case either relative phase is changed
(with the tones preceding or following the beats by 33% of the
IOI between beats, while keeping the same tempo of the musical
stimulus), or period (with the tones being presented at a slower
or faster rate by 10% of the quarter note duration). The 4 musical
excerpts are presented at 3 different tempi (IOIs of 450, 600, and
750 ms, respectively), for a total of 24 beat-aligned trials and 48
beat-unaligned trials (72 trials overall). After each excerpt, partici-
pants are asked whether the isochronous sounds are aligned to the
musical beat (perception of a regular pulse evoked by music).

MOTOR TIMING TASKS
Motor timing is assessed by hand tapping (Aschersleben, 2002;
Repp, 2005). Participants are instructed to tap as regularly as pos-
sible with their right hand either without stimulation (unpaced
tapping) or in the presence of a rhythmic auditory stimulus (paced
tapping). Tapping is recorded via a Roland SPD-6 MIDI percus-
sion pad controlled by MAX-MSP software (version 5.1). Stimuli
are delivered over headphones (Sennheiser HD201) at a comfort-
able sound pressure level. No auditory feedback is provided during
tapping. The tasks are preceded by practice trials.

UNPACED TAPPING
The aim of this task is to assess the tapping rate and variability in
the absence of a pacing stimulus. Participants are instructed to tap
regularly at a comfortable rate for 60 s, while maintaining tapping
rate as constant as possible. The same task is realized also with the
left hand. Unpaced tapping tasks are repeated once more at the
end of all the motor timing tasks of the BAASTA.

PACED TAPPING TO AN ISOCHRONOUS SEQUENCE
This task assesses sensorimotor synchronization with isochronous
sequences of tones. Participants are instructed to synchronize their
taps to an isochronous sequence of 60 piano tones (tone fre-
quency= 1319 Hz). The sequence is presented at three IOIs: 600,
450, and 750 ms. Each tapping trial at a given tempo is repeated
twice.

PACED TAPPING TO MUSIC
In this task, the ability to synchronize to the beat of a musical stim-
ulus is tested. Participants synchronize their taps to the beat of a
well-formed musical excerpt from Bach’s “Badinerie” and from
Rossini’s “William Tell Overture” (quarter note IOI= 600 ms),
each including 64 beats. The tapping trial for each musical excerpt
is repeated twice.

SYNCHRONIZATION–CONTINUATION
The purpose of this test is to assess motor timing when partici-
pants continued tapping at a given rate after prior synchronization
with an isochronous sequence (Wing and Kristofferson, 1973a,b;
O’Boyle et al., 1996). Participants synchronize to a series of 10
piano tones presented isochronously at 3 tempi (600, 450, or
750 ms) and are instructed to continue tapping at the same rate
(continuation phase) for a duration corresponding to 30 IOIs in
the absence of a pacing stimulus. The end of the trial is indicated
by a low-pitch tone. Each tapping trial at a given tempo is repeated
twice.

ADAPTIVE TAPPING
This final test examines the ability to adapt to tempo change in
a synchronization–continuation task, using an adaptive tapping
task (Schwartze et al., 2011). Series of 10 tones are presented to
participants. The first six tones of the sequences have an IOI of
600 ms, while the remaining four tones either maintain the same
IOI or, in 67% of the trials, show a slower tempo (with a final IOI
of 630 or 670 ms) or a faster tempo (with a final IOI of 570 or
525 ms). Participants are instructed to synchronize to the initial
tempo, to adapt to the tempo change, and to continue tapping at
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the new tempo after the presentation of the last tone for a dura-
tion corresponding to 10 IOIs. At the end of each trial, participants
are asked whether they perceived acceleration, deceleration, or no
tempo change in the sequence. There are 10 blocks with 6 trials
per block (4 with tempo change, 2 without), presented in random
order.

GAIT ASSESSMENT
Gait kinematics in the absence of auditory cues was assessed with
a Vicon MX Motion Capture System during the second day of
testing. Sixteen passive reflective markers (14 mm) were attached
to participants’ lower body (four on the hip, three on each leg
and foot, respectively) in accordance with the Conventional Gait
Model (Baker, 2006). Participants were asked to walk for 1 min
at their spontaneous walking speed. The trial was repeated twice.
The performance was recorded using Vicon Nexus Software.

ANALYSIS
Perceptual timing tasks
In duration discrimination and anisochrony detection tasks, the
smallest threshold value obtained across the three blocks (i.e., the
best performance), expressed in percent of IOI (Weber Ratio) was
retained as the final threshold. In the Beat Alignment Test (BAT),
the number of Hits (i.e., when a misaligned metronome was cor-
rectly detected; maximum= 48 items) and of FAs (i.e., when a
misalignment was erroneously reported; maximum= 24 items)
was calculated. Trials with a FA rate higher than 30% were dis-
carded. The percent of Hits minus FAs was computed to obtain an
unbiased measure of detection performance.

Motor timing tasks
In the Unpaced tapping tasks, and in the continuation phase
of the synchronization–continuation and adaptive tapping tasks
accuracy of motor timing was obtained by computing the mean
inter-tap interval (ITI). Tapping variability was calculated with the
Coefficient of Variation (CV) of the ITI (i.e., the ratio of the SD of
the ITIs over the mean ITI). In Paced tapping tasks, synchroniza-
tion accuracy was obtained by calculating the mean absolute asyn-
chrony (i.e., not signed) between the taps and pacing stimuli/beats.
Small asynchrony indicates high accuracy. Synchronization vari-
ability is indicated by the standard error of asynchrony between
taps and pacing stimuli. Both synchronization accuracy and pre-
cision are indicated in percent of the IOI. For both paced tapping
and synchronization–continuation tasks, the results obtained in
the trial showing the lowest variability were submitted to further
analysis. Finally, in the adaptive tapping task, adaptation of tap-
ping to the tempo change was measured with the adaptation index
corresponding to the mean ITI of the continuation phase divided
by the target ITI calculated for all tempi (see Schwartze et al., 2011).
The adaptation indexes for faster (plus) and slower tempi (minus)
were calculated separately. The sensitivity index (D-prime) for
detecting tempo changes was also computed (Schwartze et al.,
2011).

Statistical analysis
Since data were not normally distributed in both groups in more
than 50% of the cases as assessed with Kolmogorov–Smirnov test,

groups and condition were compared with non-parametric tests.
To assess whether IPD patients were impaired prior to the training
program, their performance was compared to that of controls with
Mann–Whitney’s tests. If patients’ performance in the BAASTA
was impaired at baseline, pre-/post-performance was compared
with Wilcoxon matched-pairs tests. Patients’ individual perfor-
mance was compared to that of controls via corrected t -tests
(Crawford and Garthwaite, 2002).

RESULTS
GAIT
When walking at comfortable speed in the absence of an exter-
nal cue, patients showed lower stride length (M = 980.4 mm) as
compared to controls (M = 1152.3 mm) (U = 76, p < 0.01). Cue-
ing training increased stride length (M = 1037.0 mm at post-test;
W =−70, p < 0.05) and this benefit was maintained 1 month after
the training had ended (M = 1028.9 mm; W =−78, p < 0.05).

BAASTA
Before submitting data to the following analyses, trials were
screened for outliers (e.g., for perceptual tasks, blocks with a higher
false alarm rate higher than 30%; for motor tasks, taps with ITI
deviating by more than three times the interquartile range from
the median). A low number of outliers was found in both patients
and controls. Overall in the perceptual tasks, 3.3% of the trials
were rejected for patients and 3.8% for controls. In the motor
tasks, <1% of taps were discarded for both patients and controls.

The effect of training on perceptual and motor timing abil-
ities was examined for the tasks of the BAASTA where patients
showed impaired performance relative to controls pre-training.
The mean results obtained in these tasks are shown in Figure 1
(perceptual tasks), and Figure 2 (motor tasks). Patients showed
higher thresholds than controls (U = 75.5, p < 0.05) in the dura-
tion discrimination task before the training. Patients improved
following the training, an effect that was not confirmed post-
training but in the follow-up evaluation (W = 66.0, p < 0.05).
One month following the intervention, the difference between
patients’ and controls’ discrimination thresholds was no longer
significant. Patients displayed worse detection of anisochronies
in musical stimuli than controls (U = 87.5, p < 0.05); yet, train-
ing did not improve patients’ performance in this task. Finally,
in the BAT, patients had more difficulties in detecting misaligned
beats before intervention when compared to controls (U = 74.5,
p < 0.05). This difference was present for tempi with inter-beat-
intervals of 600 and 750 ms (U = 84.5, p < 0.05 and U = 68.0,
p < 0.05, respectively). No difference between patients (M = 11.8,
SEM= 0.8) and controls (M = 12.9, SEM= 0.9) was found at the
fastest tempo (450 ms). The detection of misaligned beats gener-
ally improved when tested at follow-up. The difference pre-/post-
training just failed to reach significance (W =−49.0, p= 0.07).
This effect of training was mostly driven by patients’ performance
at the average tempo (W =−37.0, p < 0.05). Patients’ perfor-
mance at the follow-up testing did not significantly differ from
that of controls.

In the unpaced tapping tasks patients did not differ from con-
trols before the training, in terms of accuracy (IPD: M = 580.4,
SEM= 78.5; controls: M = 600.3, SEM= 63.9) and variability
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Benoit et al. Musical cueing in Parkinson’s disease

FIGURE 1 | Mean performance of IPD patients and controls in the perceptual tasks of the BAASTA. Tasks where patients differed from controls before the
cueing training are selectively reported. Error bars indicate the standard error of the mean (SEM). Note: *p < 0.05; $marginally significant difference.

FIGURE 2 | Mean performance of IPD patients and controls in the motor tasks of the BAASTA. Tasks where patients differed from controls before the
cueing training are selectively reported. Error bars indicate the standard error of the mean (SEM). *p < 0.05; **p < 0.01; $marginally significant difference.

(IPD: M = 0.05, SEM= 0.08; controls: M = 0.05, SEM= 0.004).
In paced tapping tasks, patients tended to be less accurate than
controls when synchronizing with an isochronous sequence, a

difference showing a statistical trend (at 450 ms, U = 102.0,
p= 0.06; at 750 ms, U = 102.5, p= 0.06). The effect of the
training was mostly visible in the follow-up session. Training
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led to increased synchronization accuracy with the isochronous
sequences at the fastest tempo (450 ms) as confirmed by a statistical
trend (W = 50, p= 0.08). A significant increase of synchroniza-
tion accuracy was found in the follow-up session (at 750 ms;
W = 72.0, p < 0.05). Patients’ performance in the follow-up eval-
uation did not statistically differ from that of controls. Patients
and controls did not differ in terms of synchronization variability
before the training (on average, IPD: M = 0.6, SEM= 0.1; con-
trols: M = 0.6, SEM= 0.06). Patients and controls did not differ
in terms of synchronization accuracy (on average, IPD: M = 7.3,
SEM= 1.4; controls: M = 6.9,SEM= 0.8) and variability (on aver-
age, IPD: M = 0.8, SEM= 0.2; controls: M = 0.7, SEM= 0.08)
when they synchronized with music.

In the synchronization–continuation task, patients tested prior
to training were less accurate than controls only at the fastest
tempo (450 ms, U = 78.0, p < 0.01). However, the two groups
did not differ in terms of variability across all tempi (aver-
age variability, IPD: M = 0.03, SEM= 0.003; controls: M = 0.03,
SEM= 0.002). Training had no effect on this task. Similar results
were obtained in the adaptive tapping task. Before the train-
ing, patients exhibited lower accuracy than controls at the fastest
tempi in the continuation phase (at 570 ms, U = 100.0, p < 0.05,
and at 525 ms, U = 94.0, p < 0.05). Moreover, patients performed
worse in detecting tempo changes at 600 ms (U = 99.5, p < 0.05).
Both groups displayed similar tapping variability (on average,
IPD: M = 0.05, SEM= 0.007; Controls: M = 0.05, SEM= 0.005),
and comparable adaptation indexes (on average, IPD: M = 1.5,
SEM= 0.2; Controls: M = 1.4, SEM= 0.1). Training was effective
only in improving the detection of tempo changes, an effect vis-
ible when comparing pre-intervention to follow-up (W =−43,
p < 0.05). Patients’ perception in the follow-up session did not
significantly differ from the performance of healthy controls.

Further analyses targeted the benefits of training on perceptual
and motor timing at the individual level. Table 2 shows the indi-
vidual performance of the 15 IPD patients on the BAASTA tasks
showing significant effects at the group level. z-Scores for each test-
ing session relative to the performance of controls are reported.
Significant results are highlighted by the gray shading. Notably
there are important individual differences in patients. After the
training, some of them performed comparably to age-matched
controls (n= 4), others showed improvement in perceptual/motor
timing (n= 8) while the remaining did not respond to the train-
ing (n= 3). The percent of patients showing perceptual, motor,
or perceptual and motor deficits at the three times of testing are
summarized in Table 3. Perceptual or motor timing impairment is
defined here based on the tasks included in Table 2. As can be seen,
73% of the patients displayed some form of timing impairment
before the training. Post-intervention, poor timing abilities were
found in 67% of the patients, while in the follow-up evaluation,
only 40% of the patients still showed impaired timing.

In summary, training successfully yielded improvements in gait
kinematics, which were still present in follow-up tests 1 month
after the training ended. Prior to training patients performed
worse in several tests of the BAASTA. Training improved per-
formance in three perceptual and two motor tasks at the group
level. However, there were important individual differences: four
patients were unimpaired at the training onset, eight patients

improved their performance with training, while three did not
respond to the intervention.

DISCUSSION
The main goal of the current study was to examine the effects of a
1-month auditory cueing gait-training program on perceptual and
motor timing abilities in IPD patients. Performance was assessed
with the BAASTA battery. Prior to the intervention, patients exhib-
ited impaired perceptual timing across all BAASTA tasks except
for anisochrony detection in isochronous sequences. On the con-
trary, motor timing was relatively spared, except lower accuracy
in continuing tapping at a given rate, and in tapping along with
an isochronous sequence. These findings are in line with previous
evidence that IPD is associated with a malfunctioning timing sys-
tem (Harrington et al., 1998, 2011; Spencer and Ivry, 2005; Smith
et al., 2007; Koch et al., 2008; Merchant et al., 2008, 2013; Wear-
den et al., 2008; Jones and Jahanshahi, 2009). Moreover, we could
confirm that auditory cueing has a beneficial effect on uncued gait
by showing increased speed and step length. This effect outlasted
the training (Marchese et al., 2000; Nieuwboer et al., 2001, 2007;
Lehman et al., 2005). Our results show a stable effect of training on
perceptual and motor timing tasks even after the training ended.
In some tasks a delayed effect of cueing on perceptual and motor
timing was observed (i.e., duration discrimination, BAT, paced
tapping with a metronome, and adaptive tapping). The mecha-
nisms leading to such delayed training effects require further study,
for example, by controlling factors such as additional practice or
placebo effects (for a discussion, see below).

Most notably, benefits of the training extended beyond gait,
improving perceptual and motor timing abilities in a number
of non-gait tasks assessed by the BAASTA. Benefits of auditory
cueing on gait kinematics are likely to be mediated by a cerebello-
thalamo-cortical network, which is also involved in timing (for
reviews, see Kotz et al., 2009; Kotz and Schwartze, 2011). More
specifically, projections from the SMA to the primary motor cor-
tex may support motor output and modulate or stabilize gait
kinematics over time. Compensation of a dysfunctional basal gan-
glia timing system via rhythmic auditory cues may be afforded by
this compensatory cerebello-thalamo-cortical network (Sen et al.,
2010). For example, evidence of hypermetabolism in the cere-
bellum of IPD patients, as a result of cueing training (del Olmo
et al., 2006), provides preliminary support for this hypothesis.
This circuitry plays a key role in domain-general timing (Kotz
and Schwartze, 2011) and may underlie perceptual timing and
coupling movement to an external pacing stimulus (Wing, 2002).
Functional and/or structural changes in this compensatory net-
work due to auditory cueing may affect both gait kinematics as
well as perceptual and motor timing. Additional regions that may
be associated with the observed timing benefits of cueing include
temporal and parietal cortical areas (Nombela et al., 2013). For
example, increased activation of the dentate nucleus near the
midline and in the right temporo-parietal junction during a sen-
sorimotor task was observed in IPD following auditory cueing
training (del Olmo et al., 2006). The dentate nucleus has been
linked to timekeeping (Malapani et al., 1998; Casini and Ivry,
1999) and the right inferior parietal and superior temporal cor-
tex are involved in the coding of temporal intervals (Platel et al.,
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Table 2 | Patients’ individual performances (z-scores) on the tasks of the BAASTA showing an effect of the cueing training at a group level.

Duration discrimination BAT D-prime 600 ms Paced tapping accuracy Paced tapping accuracy

z-Score z-Score z-Score 450 ms z-Score 750 ms z-Score

Patient Pre Post Follow-up Pre Post Follow-up Pre Post Follow-up Pre Post Follow-up Pre Post Follow-up

1 2.27 2.04 −0.14 −2.16 −2.16 −0.58 −0.23 0.43 0.43 −0.28 −0.40 2.28 −0.23 −0.48 −0.69

2 0.51 2.43 −0.47 −2.30 −2.02 −1.15 −1.11 −1.11 0.43 −0.46 0.26 −0.04 0.11 0.04 −0.42

3 0.44 −0.14 −0.14 0.72 0.86 0.86 0.43 0.43 0.43 0.43 0.30 0.33 −0.77 −0.90 −0.18

4 0.93 0.57 0.89 0.72 0.86 0.43 −0.75 −0.23 −0.23 −1.00 −0.37 0.18 −0.43 −0.61 −0.30

5 1.47 2.23 0.68 −1.87 −1.73 −0.43 0.42 0.43 0.43 1.22 0.26 −0.85 −0.50 −0.69 −0.97

6 −1.07 0.47 −0.53 0.00 −0.86 −1.30 −1.39 −0.23 0.43 4.56 1.88 3.54 −0.34 −0.46 −0.64

7 0.20 1.18 −0.75 NaN NaN NaN 0.43 −2.05 0.43 1.14 −0.53 0.36 2.30 0.59 0.40

8 2.27 3.36 1.62 −2.74 −2.16 0.14 0.43 0.43 −0.75 6.89 0.79 −0.51 3.86 0.30 0.38

9 −1.16 0.51 −0.59 0.29 0.43 0.14 −0.23 0.43 0.43 −0.34 −0.24 −1.05 −0.59 −0.26 −1.02

10 3.32 2.66 3.52 0.58 0.86 0.43 −1.11 −0.23 −0.10 1.12 0.71 2.27 1.93 8.74 3.25

11 0.23 2.59 4.30 −4.61 −3.74 −2.16 −3.78 0.49 0.43 4.69 0.12 3.19 5.12 2.39 2.45

12 3.48 −0.17 −0.56 0.58 0.00 0.72 0.43 0.43 0.43 −0.09 −0.80 −0.57 0.21 0.21 −0.74

13 1.07 3.23 −0.24 −0.86 −1.30 0.29 0.43 0.43 0.43 1.10 0.79 2.13 1.78 1.98 1.82

14 0.64 0.44 0.47 −2.30 −3.89 −3.31 −2.79 −3.58 −1.39 −0.42 0.58 −0.46 1.17 1.25 0.46

15 0.93 0.20 −1.00 0.58 0.29 0.29 0.43 0.43 0.43 −1.04 −0.11 −0.09 0.04 0.24 −0.46

Values highlighted in gray indicate significant differences between the performances of patients and of healthy controls, as assessed with corrected t-tests (Crawford and Garthwaite, 2002). ‘NaN’ indicates missing

values.

p < 0.05; p < 0.01; p < 0.001.
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Table 3 | Percentage of IPD patients who exhibited impaired

perceptual and/or motor timing relative to healthy controls pre-,

post-training, and at the follow-up.

Pre Post Follow-up

Perceptual only 5/15 (33%) 6/15 (40%) 1/15 (7%)

Motor only 3/15 (20%) 1/15 (7%) 3/15 (20%)

Perceptual and motor 3/15 (20%) 3/15 (20%) 2/15 (13%)

No impairment 4/15 (27%) 5/15 (33%) 9/15 (60%)

1997; Liegeois-Chauvel et al., 1998). Yet, the contribution of these
regions to the benefits of auditory cueing is not clear to date and
deserves further enquiry. In line with previous research, we find
considerable variability between individual patients (Merchant
et al., 2008). We observed a spectrum of individual profiles. Some
patients were impaired in either or both perceptual and motor
timing, while others performed comparable to healthy controls.
For tasks positively affected by the training, eight patients showed
an improvement after training, while six patients improved in
perceptual timing, one in motor timing, and one in both tim-
ing functions. Four out of the six patients who improved in
the BAT (beat-based timing) showed a comparable profile in the
duration discrimination task (interval-based timing). Among the
non-responders, 4 out of 15 showed no timing impairments prior
to the training. Differences between patients may point to differ-
ent loci of impairment within the neuronal network supporting
perceptual and motor timing. The observed variability across tasks
may be accounted for in the context of a hybrid model of timing,
recently proposed by Merchant and collaborators (Merchant et al.,
2008, 2013). The model postulates a partially distributed network,
involving a core timing mechanism (e.g., cortico-thalamo-basal
ganglia structures) and task-driven context-dependent mecha-
nisms, engaged by specific behavioral contexts/tasks. A viable
hypothesis is that performance variability between individuals and
across tasks may therefore stem from the interaction between the
core timing system and context- or task-dependent areas (for a dis-
cussion, see Merchant et al., 2013). A similar account may explain
why in a functionally degenerated network, such as in IPD, training
may show rather variable effects.

The study has some limitations that need to be addressed in
further studies. One caveat is that the observed effects may be
placebo effects in therapy. Indeed, placebo effects in PD can be
very strong, and have been reported for dopamine release (e.g., de
la Fuente-Fernandez et al., 2001). Moreover, there is a possibility
that patients kept performing additional auditory cueing training
at home after the end of the 1-month training session. We can-
not exclude this possibility, even if patients were not encouraged
to do so and even if the cueing device was not made available to
the patients after the training. Finally, since BAASTA was adminis-
tered three times for each patients, learning may act as a confound
when considering the effects of training on perceptual and motor
timing. Note, however, that the effects of the training on percep-
tual and motor timing abilities was selective, and confined to a
subset of tasks of the BAASTA. Moreover, a thorough look at the
individual performance of PD patients reveals different patterns of

improvement due to training (e.g., delayed vs. immediate effects
of training). These findings speak against a general explanation of
improvements due to auditory cueing as a mere placebo, learning
or practice effect. Indeed, these factors should indistinctly affect
all tasks and patients in a similar fashion. Nevertheless, these fac-
tors should be carefully considered in further studies. A possibility
which was not implemented in the present study is to include a
control condition, where participants would perform a similar task
in the absence of auditory cueing (e.g., music listening, or walking
in the absence of a cue). This condition would allow pinpoint-
ing the contribution of coupling perception and action, which is
characteristic of an auditory cueing training, compared to merely
listening to music or uncued motor activity. In addition, submit-
ting healthy participants to the BAASTA in a test–retest design will
allow examining the contribution of practice and assessing which
tasks of the battery are more susceptible to learning effects.

In summary, a training scheme relying on musically paced gait
over 4 weeks in patients with mild to moderate IPD was shown
to produce beneficial effects on perceptual and motor timing
beyond gait. We suggest that such a generalization is mediated by a
domain-general system, which governs perceptual and motor tim-
ing beyond gait. Such a network may be recruited when patients
have to couple steps to auditory stimuli. These findings are relevant
for theories about the functional and neuronal underpinnings of
timing in performance and perception. However, they may also
be considered as a first step toward the development of novel
strategies for training cognitive aspects of IPD, extending beyond
motor symptoms. Training targeted to cognitive functioning may
be highly needed, since IPD has been increasingly recognized to
not only affect movement but also cognition (Svenningsson et al.,
2012). Training schemes bridging motor performance and cog-
nition may be an important building block for devising efficient
intervention strategies to delay cognitive decline in IPD.
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