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A sequential sampling model for multiattribute binary choice options, called multiattribute
attention switching (MAAS) model, assumes a separate sampling process for each attribute.
During the deliberation process attention switches from one attribute consideration to the
next. The order in which attributes are considered as well for how long each attribute is
considered—the attention time—influences the predicted choice probabilities and choice
response times. Several probability distributions for the attention time with different
variances are investigated. Depending on the time and order schedule the model predicts
a rich choice probability/choice response time pattern including preference reversals and
fast errors. Furthermore, the difference between finite and infinite decision horizons for
the attribute considered last is investigated. For the former case the model predicts a
probability p0 > 0 of not deciding within the available time. The underlying stochastic
process for each attribute is an Ornstein-Uhlenbeck process approximated by a discrete
birth-death process. All predictions are also true for the widely applied Wiener process.
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1. INTRODUCTION
Sequential sampling models are powerful models to account
simultaneously for choice probabilities and choice response
times. They have become the dominant approach to modeling
decision processes in cognitive science. Their application includes
a variety of psychological tasks from basic perceptual decision
to complex preferential choice tasks. Early on they have been
applied to identification and discrimination tasks (e.g., Edwards,
1965; Laming, 1968; Pike, 1973; Link and Heath, 1975; Heath,
1981; Ashby, 1983); memory retrieval (e.g., Stone, 1960; Ratcliff,
1978; Van Zandt et al., 2000); and classification (e.g., general
recognition theory, Ashby, 2000; exemplar–based random walk
models of classification, Nosofsky and Palmeri, 1997) to account
for speed-accuracy data. They have also been used for preferen-
tial decision tasks (e.g., decision field theory (DFT), Busemeyer
and Townsend, 1993; multiattribute dynamic decision model,
Diederich, 1997; Diederich and Busemeyer, 1999) to account
for choice response times and choice probabilities interpreted as
preference strength; judgment and confidence ratings (Pleskac
and Busemeyer, 2010); to account for selling prices, certainty
equivalents, and preference reversal phenomena (Busemeyer and
Goldstein, 1992; Johnson and Busemeyer, 2005). More recently,
they have been applied to combining perceptional decision mak-
ing and payoffs (Diederich and Busemeyer, 2006; Diederich, 2008;
Rorie et al., 2010; Gao et al., 2011). Furthermore, these mod-
els have been closely linked to measures from neuroscience like
multi-cell electrode recordings (e.g., Ditterich, 2006; Gold and
Shadlen, 2007; Churchland et al., 2008).

Sequential sampling models assume that (1) stimulus and
choice alternative characteristics can be mapped onto a hypo-
thetical numerical value representing the instantaneous level of
evidence (activation, information, or preference—the wording
often depends on the context), (2) some random fluctuation of
this value over time occurs, (3) this evidence is accumulated
over time, and (4) a final choice is made as soon as the evi-
dence reaches a threshold. Therefore, sequential sampling can be
described as a stochastic process. Two quantities are of foremost
interest: (1) the probability that the process eventually reaches one
of the thresholds or boundaries for the first time (the criterion to
initiate a response), i.e., first passage probability; (2) the time it
takes for the process to reach one of the boundaries for the first
time, i.e., first passage time. The former quantity is related to the
observed relative frequencies, the latter usually to the observed
mean choice response times or the observed choice response time
distribution.

Two classes of sequential sampling models have been predom-
inantly used in psychology: Random walk/diffusion models and
accumulator/counter models. The former are typically applied
to a binary choice task, so that evidence for one choice alterna-
tive is at the same time evidence against the other. A decision
is made as soon as the process reaches one of two preset crite-
ria. In the latter, an accumulator/counter is established for each
choice alternative separately, and evidence is accumulated in par-
allel. A decision is made as soon as one counter wins the race
to reach one preset criterion. The accumulators/counters may or
may not be independent. In the following we focus on random
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walk/diffusion models. For a review of both diffusion models and
counter models see Ratcliff and Smith (2004).

To be more precise and to introduce notation, let X(t) denote
the accumulation process. For a binary choice, say between choice
options A and B (Figure 1), the models assume that the deci-
sion process begins with an initial state of evidence X(0). This
initial state may either favor option A (X(0) > 0) or option B
(X(0) < 0) or may be neutral with respect to A or B (X(0) = 0).
Upon presentation of the choice options, the decision maker
sequentially samples information from the stimulus display over
time, retrieves information from memory, or forms preferences,
depending on the context. The small increments of evidence sam-
pled at any moment in time are such that they either favor option
A (dX(t) > 0) or option B (dX(t) < 0). The evidence is accu-
mulated from one moment in time to the next by summing
the current state with the new increment: X(t + h) ≈ X(t) +
μ (X(t), t) h + σ (X(t), t) (W(t + h) − W(t)). Here, μ(x, t) is
called the drift rate and describes the expected value of incre-
ments per unit time. The factor σ (x, t) in front of the incre-
ments W(t + h) − W(t) of a standard Wiener process W(t)
is called the diffusion rate, and relates to the variance of the
increments. This process continues until the magnitude of the
cumulative evidence exceeds a threshold criterion, θ . The pro-
cess stops and option A is chosen as soon as the accumu-
lated evidence reaches a criterion value for choosing A (here,
X(t) = θA > 0) or it stops and chooses option B as soon as the
accumulated evidence reaches a criterion value for choosing B
(here X(t) = θB < 0). The probability of choosing A over B is
determined by the accumulation process reaching the thresh-
old for A before reaching the threshold for B. The criterion is
assumed to be set by the decision maker prior to the decision
task.

FIGURE 1 | The trajectories symbolize the accumulation process for

three different trials. In one trial (red) the process is absorbed at the
boundary for making an A response. In another trial (blue) the process is
absorbed at the boundary for making a B response. For the third trial (black)
the accumulation process still evolves and no response is yet initiated.

The Wiener process with drift, lately called drift-diffusion
model in the psychological literature (Bogacz et al., 2006), is the
most widely applied model. Different versions reflect additional
assumptions for specific psychological domains. Ratcliff (1978)
proposed a diffusion model for memory retrieval that is used for
various psychological decision tasks. It is based on the work by
Laming (1968) and Link and Heath (1975) and assumes variabil-
ity in the starting point (i.e., X(0) follows a uniform distribution),
and the drift rate μ = μ(t) of the Wiener process is normally
distributed (cf. Laming). The residual time, i.e., the time other
than the decision time, such as stimulus encoding and motor
response, is assumed to be uniformly distributed and added to
the decision time, i.e., response time equals the decision time
plus a residual (non-decision) time. For a recent overview with
applications see Voss et al. (2013). Other approaches include
the Ornstein-Uhlenbeck model that linearly accumulates evi-
dence with decay (Busemeyer and Townsend, 1993; Diederich,
1997), and the leaky competing accumulator model (Usher and
McClelland, 2001) that non-linearly accumulates evidence with
decay.

Common to almost all of these approaches is the assump-
tion that a single integrated source of evidence generates the
evidence during the deliberation process leading to a decision.
In particular, the integrated source may be based on multiple
features or attributes, but all of these features or attributes are
assumed to be combined and integrated into a single source of
evidence, and this single source is used throughout the deci-
sion process until a final decision is reached. Diederich (e.g.,
Diederich, 1995, 1997, 2003, 2008), however, assumed a separate
process for each attribute1. The decision maker switches atten-
tion from one attribute to the next during the time course of
one trial. For instance, in a crossmodal task (visual, auditory, tac-
tile), Diederich (1995) assumed a serial processing controlled by
stimulus input at given stimulus onset asynchronies (SOA). That
is, the order of attributes, here a light, followed by a tone, fol-
lowed by a tactile vibration, as well as the point in time when
a new attribute was added, here the tone presented at t1 (t1

ms after the light onset) and the tactile vibration at t2 (t2 ms
after the light onset) was determined externally by the experi-
mental setup. In the following we will call an attention switch
at predetermined, fixed times, and predefined order attributes,
a deterministic time and order schedule. Often, however, neither
the processing order of attributes nor the point in time when
the decision maker switches attention from one attribute to the
next are known or can be inferred from the experimental setup.
For those cases, Diederich (1997) proposed a specific model in
which attention switches from one attribute to the next with some
probability. This is an instance of a random time and order sched-
ule which will be investigated more systematically in the present
study.

1The notion of attributes is defined here in a broad sense. For exam-
ple, it includes dimensions such as color and size of visual target;
amplitude and frequency of a tone; different modalities in a crossmodal
task; payoff information and perceptual information; attitudinal evidence
and perceptual evidence; prize and quality of a consumer product and
more.
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The purpose of this paper is to present a unified treatment
of sequential sampling models for both deterministic and ran-
dom time and order schedules. To do so we start with deriving
expressions for mean choice response times and choice proba-
bilities for a deterministic time and order schedule before we
show how they extend to random time and order schedules,
including Poisson, binomial, geometric, and uniform distribu-
tions for the attention time devoted to each attribute in the
sequence before attention switches to the next randomly or deter-
ministically chosen attribute. We will provide first numerical
evidence on the influence of various properties of a schedule
on the predictions for mean choice response times and choice
probabilities.

2. PRELIMINARIES
The model applies to any finite number of attributes that the
decision maker may consider, i.e., k = 1, . . . , K. For convenience
we first describe the process for one attribute. As underlying
information process for each attribute we assume an Ornstein-
Uhlenbeck process X(t) defined by

dX(t) = (δk − γk X(t)) dt + σk dW(t), (1)

where W(t) is a standard Wiener process. The parameters δk,
γk, and σk are characteristics of the k-th attribute. The attribute
characteristics may affect the quality of the extracted evidence for
choosing A over B and this quality of evidence determines the
drift rate δk. That is, the better an attribute discriminates between
A and B, the larger is δk. The parameter γk which induces a change
of the drift rate depending on the current state in the state space is
often connected to memory processes (e.g., primacy and recency
effects), conflict situations (e.g., approach-avoidance), or similar-
ities between choice alternatives. Thus, together the effective drift
δk − γkX(t) determines the direction and the velocity of the pro-
cess when considering the k-th attribute at time t. Note that by
setting γk to 0 results in a Wiener process with drift. That is, all the
analysis we perform in the following is also valid for the Wiener
process with drift. The diffusion coefficient σk indicates the vari-
ance of the increments of the process, for simplicity, we will set
σk = σ for all k.

2.1. MATRIX APPROACH
Stochastic processes such as the above X(t) can be approximated
by a discrete time, finite state space Markov chain. We use the
matrix approach since it is simple to implement, sufficient in
determining the entities of interest, i.e., choice probabilities and
choice response times, and flexible to account for non-stationary
and non-linear properties one wishes to include for the decision
making process in the future. The continuous state space [θB, θA]
of the piecewise Ornstein-Uhlenbeck process X(t) is replaced by a
finite state space S = {−mB, . . . , mA} with m = mA + mB + 1
states. The diffusion process {X(t), t ≥ 0} is approximated by a
discrete random walk {X̃(n), n ≥ 0} with values in S such that
X(nτ ) ≈ � · X̃(n) and θA ≈ mA� and θB ≈ −mB�, where � is
the step size of change in evidence. To achieve convergence in the
limit, the discretization parameters (� for state space, and τ for
time) are tied to each other by the relation � = σ

√
τ .

The attribute-related matrices Pk, k = 1, . . . , K, are given in
their canonical form by

Pk =
[

I 0

Rk Qk

]

=

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0

p(k)
21 0 p(k)

22 p(k)
23 · · · 0 0

0 0 p(k)
32 p(k)

33 · · · 0 0

0 0 0 p(k)
43 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · p(k)
m − 3,m − 2 0

0 0 0 0 · · · p(k)
m − 2,m − 2 p(k)

m − 2,m − 1

0 p(k)
m − 1,m 0 0 · · · p(k)

m − 1,m − 2 p(k)
m − 1,m − 1

(2)

where

p(k)
i, i − 1 = 1

2

(
1 − (δk − γki�)

√
τ

σ

)
,

p(k)
i, i + 1 = 1

2

(
1 + (δk − γki�)

√
τ

σ

)
,

for i = 2, . . . , m − 1 (here, the index i corresponds to the state
i − 1 − mB). As � → 0 (or, equivalently, τ → 0), the decision
probabilities and mean choice response times obtained from the
Markov chain model converge to the values obtained from the
underlying continuous process X(t). The identity matrix I cor-
responds to the two absorbing states (−mB and mA) associated
with the two decision thresholds, one for each choice alternative;
the matrix Qk contains the transient probabilities, corresponding
to the updating evidence process, and the matrix Rk contains the
one-step transition probabilities from the transient to the absorb-
ing states. In particular, the first column vector of the matrix Rk

(denoted by RB,k) contains the transient probabilities for reaching
alternative B, while the second RA,k contains the ones for alter-
native A. For details and derivations see Diederich (1997) and
Diederich and Busemeyer (2003).

2.2. TIME AND ORDER SCHEDULE
For K attributes, each one to be considered for some specific
time in some specific order it is convenient to introduce a formal
schedule of both time and order. A finite time and order schedule
consists of a set of L consecutive time intervals {[tl − 1, tl]}l=1,...,L

and the attribute sequence {kl ∈ {1, . . . , K}}l = 1,...,L which spec-
ifies that during the time interval [tl − 1, tl] the kl-th attribute
is considered. At switching time tl, l = 1, . . . , L − 1, attention
switches from attribute kl to attribute kl + 1. Depending on the
situation, the final time tL may be set finite (then the decision pro-
cess may also finish without deciding for one of the alternatives)
or infinite. Consequently, the process X(t) determined by such a
schedule is a piecewise Ornstein-Uhlenbeck process, defined over
a finite partition t0 = 0 < t1 < . . . < tL − 1 < tL ≤ +∞ of the
time interval [0, tL], where for t ∈ [tl − 1, tl] the process is deter-
mined by (1) with k = kl. Figure 2 shows an example with three
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FIGURE 2 | A piecewise Ornstein-Uhlenbeck process with three

different attributes. The attribute order is (1, 2, 1, 3), attribute 1 is
considered twice in the sequence of attribute consideration. Switching
attention from one attribute to the next occurs at fixed times t1, t2, and t3.
The trajectories reflect the accumulation process for two different trials.
The black solid lines indicate the effective drift of the process.

different attributes (K = 3) and a deterministic time and order
schedule of length L = 4 with switching times tl independent
of the trajectories, and attribute order (1, 2, 1, 3), i.e., k1 = 1,
k2 = 2, k3 = 1, k4 = 3 (note that the first attribute is reconsidered
once).

For fixed � resp. τ , the m × m transition proba-
bility matrix P̃n containing the transition probabilities
p̃ii′ := P(X̃n + 1 = i′|X̃n = i) for the n-th step of the discrete-
time random walk depends on the currently considered attribute
defined by the time and order schedule, i.e., we set P̃n = Pkl if
n = nl − 1, . . . , nl − 1, where n0 = 0, τnl ≈ tl for l = 1, . . . , L (if
tL = ∞, we formally set nL = ∞).

3. CHOICE PROBABILITIES AND MEAN CHOICE RESPONSE
TIMES

In this section we derive the choice probabilities and mean choice
response times for various time and order schedules. For sim-
plicity we assume an unbiased process, i.e., with X(0) = 0 and
symmetric decision thresholds , i.e., θA = −θB. Since the diffu-
sion coefficient is a scaling parameter it will be set to σ = 1 for all
attributes throughout. We start with the deterministic time and
order schedule.

3.1. DETERMINISTIC TIME AND ORDER SCHEDULE
The evidence accumulation process for attribute k1, which is con-
sidered first, evolves until time t1 when the second attribute k2
comes into consideration, triggering a change in the accumula-
tion process. This attribute in turn is considered until time t2
when a third attribute k3 is considered and so forth until a deci-
sion is initiated (or tL is reached). Let the random variables TA
and TB denote the finite time when the process reaches a deci-
sion threshold θA or −θB, stops, and a decision response for A

or B is initiated. With the switching times tl replaced by integers
nl ≈ tl/τ , the choice probability Pr[choose A] = Pr(TA < ∞) is
then approximated by the value pA obtained from the discrete
random walk model as

Pr(TA < ∞) ≈ pA := Z′
n1∑

i = 1

Qi − 1
k1

RA,k1

+ Z′Qn1
k1

n2∑
i = n1 + 1

Qi−(n1 + 1)
k2

RA,k2 + . . . . . .

+ Z′Qn1
k1

. . . Q
nL − 1−nL − 2
kL − 1

nL∑
i = nL − 1 + 1

Q
i−(nL − 1 + 1)
nL RA,kL ,

(3)

where Z is the probability distribution for the initial state X(0).
For instance, for an unbiased process, Z would be a coordinate
vector with probability 1 at state 0 halfway between the deci-
sion thresholds. The remaining vectors and matrices are those
defined in (2). The evidence accumulation process for a succes-
sive attribute starts with the final evidence state of the previous
attribute. Note that Z′Qn1

k1
to Z′Qn1

k1
. . . Q

nL − 1−nL − 2
kL − 1

are defec-
tive distributions, i.e., the entries of these vectors do not sum
up to 1, for the states of the random walk at discrete times
n1, . . . , nL − 1. Further note that the stochastic process is time
homogeneous within each time interval [0, t1) to [tL − 1, tL] but
non-homogeneous across [0, tL] (see Diederich, 1992, 1995).

Similarly, the mean response time for choosing alternative A is
approximated as

E[TA | choose A] ≈ ETA := τ

pA

[
Z′

n1∑
i = 1

iQi − 1
k1

RA,k1

+ Z′Qn1
k1

n2∑
i = n1 + 1

iQi − (n1 + 1)
k2

RA,k2 + . . . . . .

+ Z′Qn1
k1

. . . Q
nL − 1−nL − 2
kL − 1

nL∑
i = nL − 1 + 1

iQ
i − (nL − 1 + 1)
nL RA,kL

⎤
⎦ .

(4)

The probability and the mean response time for choosing alter-
native B can be determined similarly. Note that p0 := 1 − (pA +
pB), the probability of not making a decision until the final time
tL, is strictly positive if tL < ∞. As shown in Diederich (1997),
these formulas can be further compactified. We will do this below
for the general case of deterministic and random schedules by
deriving an efficient recursion for their evaluation.

3.2. RANDOM TIME AND ORDER SCHEDULE
The above derivation of formulas for choice probabilities and
mean response times for a deterministic time and order schedule
have counterparts for random schedules which we describe next
in three steps.

3.2.1. Random order schedule
For generating the attribute order {kl}l = 1,...,L, we consider

stochastic K × K matrices D(l) such that d(l)
k ′k ≥ 0 describes the
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probability with which attention switches from the k ′-th attribute
to the k-th attribute at switching time tl ≈ τnl, l = 1, . . . , L − 1.

Normally, d(l)
kk = 0 would be assumed, to avoid a no switching

situation. For two attributes K = 2, we must then have d(l)
11 =

d(l)
22 = 0, d(l)

12 = d(l)
21 = 1, and the attribute sequence is either

(1, 2, 1, 2, . . . ) or (2, 1, 2, 1, . . . ), depending on whether k1 = 1
or k1 = 2. For three attributes and L = 3, choosing

D(1) =
⎡
⎣ 0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

⎤
⎦ , D(2) =

⎡
⎣ 0 1 0

1 0 0
3/4 1/4 0

⎤
⎦ ,

would for k1 = 1 result in order sequences (1, 2, 1), (1, 3, 1),
(1, 3, 2) with probability 1/2, 3/8, 1/8, respectively. The above
matrix D(1) models the situation when no preference or bias for
considering attributes can be asserted.

3.2.2. Random time schedule
We assume that the number of discrete time steps during which
attention is paid to the k-th attribute is a discrete random variable
denoted by Tat with given distribution. In principle, this distribu-
tion may change its type and may have different parameters, such
as expected value, depending on the attribute and the attribute
order {kl}l = 1,...,L. This can be used to model time pressure and
other temporal effects. However, often we assume one and the
same distribution type for attention times across all attributes,
and allow for different parameters only.

For instance, the geometric distribution (as implicitly consid-
ered in Diederich, 1997) is given by

Pr(Tat = n) = (1 − r)n − 1r, n = 1, 2, . . . ,

and characterized by a single parameter r > 0, with expecta-
tion 1/r and variance (1 − r)/r2, and the uniform distribution
is defined as

Pr(Tat = n) = 1

2M + 1
, n = N − M, . . . , N + M,

with parameters N and M = 0, 1, . . . , N − 1 and expectation N
and variance M(M + 1)/3. Details for other tested distributions
(Poisson with parameter λ > 0, and binomial distributions with
parameters n and p) are omitted. For comparable expectation val-
ues E(Tat) (i.e., for parameter choices 1/r ≈ N ≈ λ ≈ np), the
geometric distribution has much larger variance than the Poisson,
binomial and uniform distribution with M ≈ √

N (the latter are
very close to each other). Figure 3 shows the pdf and cdf for
different Tat distributions with fixed mean value E(Tat) = 300.
The two uniform distributions are with M = 150 = N/2 and
M = 299 = N − 1. Varying the parameter M of the uniform dis-
tribution allows us to produce intermediate results between the
deterministic and geometric distribution cases as shown in the
following.

3.2.3. Constructing random time and order schedules
We create a random time and order schedule of length L in two
steps: First, given an initial distribution of k1 ∈ {1, . . . , K}, we

create the attribute sequence {kl}l=2,...,L using a non-stationary
Markov chain model with transition probability matrices D(l), l =
1, . . . , L − 1. In a second step, for each l = 1, . . . , L, the attention

time T(l)
at = nl − nl − 1 is created by the discrete random vari-

able responsible for the attention time paid to the kl-th attribute,
choices are independent for the different l. Consequently, tl −
tl − 1 ≈ τT(l)

at is the real attention time paid to the kl-th attribute.
We note that semi-random schedules, where the sequence {kl} is

given deterministically, and only the T(l)
at are determined as in the

second step outlined above, are covered if we choose the D(l) such

that d(l)
kl,kl + 1

= 1.

To understand the recursive computation of choice probabil-
ities and mean response times in this more general case, we first
consider the special cases L = 1, 2, and illustrate the derivation
on some distribution types of the random variable Tat generating
attention times by providing concrete formulas. In general, the
distribution for Tat is given by its probability mass distribution
(pdf) and cumulative distribution function (cdf)

Pr(Tat = n) = pn,k, (5)

Pr(Tat ≤ n) = fn,k :=
n∑

i = 0

pi,k, n = 0, 1, . . . .

We start with L = 1, and will drop the index l from the notation
introduced in the previous subsection. Since the probability of
choosing alternative A at the i-th step is given by Z′Qi − 1

k RA,k,
i = 1, . . . , Tat , and Tat is a random variable distributed according
to (5) we get

pA,k =
∞∑

n = 1

pn,kZ′
(

n∑
i = 1

Qi − 1
k

)
RA,k

= Z′
[ ∞∑

i = 1

( ∞∑
n = i

pn,k

)
Qi − 1

k

]
RA,k

= Z′
[ ∞∑

i = 0

(1 − fi,k)Qi
k

]
RA,k.

A similar formula holds for pB,k. To avoid repetition, introduce
the row vector pAB,k := [pB,k, pA,k], then

pAB,k = Z′Vk, Vk :=
[ ∞∑

i = 0

(1 − fi,k)Qi
k

]
Rk. (6)

The 2 × (m − 2) matrix Vk depends on the attribute and its
parameters via Qk, Rk, and on the chosen attention time distribu-
tion and the cdf (fn,k). For the discussed concrete attention time
distributions these matrices may be precomputed, in some cases
closed-form expressions can be found, e.g., for the geometric
distribution with parameter r = rk we have
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FIGURE 3 | Probability mass distributions (A) and cumulative

distribution functions (B) for commonly used attention time

distributions. All distributions have expected value 300. The uniform

distributions with N = 300 and M = N/2 = 150 are labeled as Unif.1
and with N = 300 and M = N − 1 = 299 as Unif.2. Geom. represents
the geometric distribution.

Vk =
∞∑

i = 0

⎛
⎝ ∞∑

j = i + 1

rk(1 − rk)j − 1

⎞
⎠Qi

kRk

=
∞∑

i = 0

(1 − rk)
i Qi

kRk = (
I − (1 − rk)Qk

)−1
Rk.

Next we discuss choice probabilities for the case L = 2, assum-
ing for simplicity that the attention time distribution is the same
for all attributes. To save on indices, denote k1 ≡ k ′, k2 ≡ k, and
D(1) ≡ D (this matrix is responsible for the random choice of k
given any k ′). Then the decision probability vector pAB,k ′,k for
reaching alternatives B or A in with attribute order (k ′, k) has
two parts: the probabilities of having decided on while still con-
sidering the k ′-th attribute (i.e., TA/τ ≤ T′

at , where T′
at is the

randomly generated attention time for the first attribute k ′ ) plus
the probabilities that τT′

at < TA/τ ≤ T′
at + Tat , where Tat is the

randomly (and independently) generated attention time for the
second attribute k. On top of this, k itself is randomly chosen
according to the entries in the k ′-th row of D. Thus, for each fixed
k1 = k ′ and n1 = T′

at according to (6) probabilities for reaching
a decision after n1 are given by

[
Pr

(
T′

at <
TB

τ
< ∞

)
, Pr

(
T′

at <
TA

τ
< ∞

)]
n1 = T′

at ,k1 = k ′

≈
K∑

k = 1

dk ′kZ′Qn1
k ′ Vk = Z′QT′

at
k ′

(
K∑

k = 1

dk ′kVk

)
.

Thus, for L = 2, the choice probabilities (under the assumption
that k1 = k ′ is fixed) can be obtained as

[pB, pA]k1 = k ′ = Z′Vk ′ +
∑
n ≥ 0

pn,k ′ Z′Qn
k ′

(
K∑

k = 1

dk ′kVk

)

= Z′
⎡
⎣Vk ′ +

⎛
⎝∑

n ≥ 0

pn,k ′ Qn
k ′

⎞
⎠( M∑

m = 1

dk ′kVk

)⎤⎦

= Z′
[

Vk ′ + Bk ′

(
K∑

k = 1

dk ′kVk

)]
, k ′ = 1, . . . , K,

where

Bk =
∑
n ≥ 0

pn,kQn
k , k = 1, . . . , K, (7)

are (m − 2) × (m − 2) matrices depending on the attribute and
attention time distribution type. For example, for the geomet-
ric distribution this simplifies to Bk = rkQk(I − (1 − rk)Qk)−1,
closed form expressions are available for Poisson, binomial, and
uniform distributions as well.

For arbitrary L, it is more convenient to write the result-
ing recursion in terms of block-matrix-vector operations.
Denote by
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Z the K × 1 array with each entry equal to the initial
distribution Z (and think of Z′ as its
transpose, a 1 × K array with entries Z′),

B the K × K diagonal array with the Bk on the
diagonal (similarly for C defined later),

I the K × K diagonal array, with identity matrices I of
the appropriate size on the diagonal,

V the K × 1 array with the Vk as entries (similarly for
W defined later), and

pAB the K × 2 matrix, whose rows are the choice
probabilities [pA, pB]|k1=k defined before
in the case L = 2.

Then the above result for L = 2 can be compactly written as

pAB = Z′ (I + BD) V. (8)

Note that the product BD of the array B with the matrix D is inter-
preted as the K × K array with dk ′kBk ′ as entry in row k ′ and
column k. Moreover, by iterating (8), one arrives at the formula
for arbitrary L:

pAB = Z′ (I + BD(1)
)

. . .
(

I + BD(l − 1)
)

V. (9)

Formulas for mean response times can be derived similarly.
Indeed, for L = 1, denote by ETA,k the mean response time
for reaching alternative A when considering the k-th attribute
for a random time Tat distributed according to (5). Then
ETA,k ≈ τ etA,k/pA,k, where

etA,k =
∞∑

n = 1

pn,k

(
n − 1∑
i = 0

(i + 1)Z′Qi
k

)
RA,k

= Z′
⎡
⎣ ∞∑

i = 0

⎛
⎝ ∞∑

n = i + 1

pn,k

⎞
⎠ (i + 1)Qi

k

⎤
⎦RA,k

= Z′
[ ∞∑

i = 0

(1 − fi,k)(i + 1)Qi
k

]
RA,k. (10)

Similarly for ETB,k and etB,k. Thus, similar to (6), we can write

etAB,k : = [etB,k, etA,k] = Z′Wk, (11)

Wk : =
[ ∞∑

i = 0

(1 − fi,k)(i + 1)Qi
k

]
Rk, k = 1, . . . , K.

The matrices Wk can be precomputed to any accuracy at essen-
tially the same cost as the Vk. For particular distributions, the
formulas can be turned into closed form expressions.

Next, let us look at L = 2. By using similar notation and argu-
ments as for choice probabilities, the quantities etA,k ′,k, etB,k ′,k
have a part before and after T′

at . This, together with (10), (11),
gives

etAB|k1 = k ′ = Z′Wk ′ +
∞∑

n = 0

pn,kZ′Qn
k ′

(
K∑

k = 1

dk ′k(nVk + Wk)

)

= Z′
[

Wk ′ +
( ∞∑

i = 0

pi,k ′ iQi
k ′

)(
K∑

k = 1

dk ′kVk

)

+
( ∞∑

i = 0

pi,k ′ Qi
k ′

)(
K∑

k = 1

dk ′kWk

)]

= Z′
[

Wk ′ + Ck ′

(
K∑

k = 1

dk ′kVk

)
+ Bk ′

(
K∑

k = 1

dk ′kWk

)]
,

where
Ck =

∑
n ≥ 0

pn,knQn
k , k = 1, . . . , K. (12)

Thus, the counterpart of (8) is

etAB = Z′((CD)V + (I + BD)W), (13)

From here, combining with (8), a joint recursion for computing
pAB and etAB results:

[pAB, etAB] = [Z′, Z′]
[

I + BD(1) 0
CD(1) I + BD(1)

]
. . .

[
I + BD(L − 1) 0

CD(L − 1) I + BD(L − 1)

] [
V
W

]
. (14)

We conclude this section with a few remarks. In Diederich (1997),
under the name MADD/pp, a slightly different presentation of
random schedules is given for the special case of geometrically
distributed attention times. It is not hard to see, that (with the
notation rij used in the K = 3 example presented in Section
4.2 Diederich, 1997) our model is equivalent to MADD/pp as
L → ∞, if we set rk = 1 − rkk for the parameters r of the
geometrically distributed Tat , k = 1, 2, 3, and dkk = 0, dkk ′ =
rkk ′/(1 − rkk), k ′ �= k, for the entries of the matrix D = D(l),
l ≥ 1. The advantage of the MADD/pp model is that it provides
closed form formulas for the case L = ∞, a possibility that we did
not pursue here for other types of attention time distributions.

In previous sequential decision models with finite L
(Diederich, 1997), the last attribute was always considered
infinitely long (infinite decision horizon) to avoid the situation
of no decision, i. e., p0 > 0. This can be incorporated into the
current model by modifying the definition of the matrices Vk, Wk

corresponding to the last interval [tL − 1,∞) to

Vk = (I − Qk)−1Rk, Wk = (I − Qk)−2Rk, k = 1, . . . , K,

and modifying the recursion (14) slightly. Alternatively, one can
artificially change the parameters of the attention time distribu-
tion for l = L such that its expected value is sufficiently large, and
make p0 practically negligible. Since infinite decision horizons do
not seem to adequately reflect the situation of a real decision pro-
cess or laboratory experiment, it might be interesting to work
under scenarios where tL is fixed and finite that we described in
this paper.
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4. SIMULATIONS
We present some simulations that demonstrate the predictive
power of the proposed model. We focus on features that have
not been considered in Diederich (1997) for the deterministic
case. Throughout this section we fix certain parameters, such as
σ = 1, θA = −θB = 10, � = 1

4 , τ = 1
16 (this implies a state space

size of m = 81), and always start at the neutral position X(0) = 0
between choice alternatives A and B.

4.1. IMPACT OF ATTENTION TIME DISTRIBUTIONS
First, we show how different assumptions on the random-
ness of the attention time Tat (i.e., the time spent on con-
sidering a certain attribute) influences choice probabilities and
mean response times. In the first example, we assume just two
attributes with parameters δ1 = 0.2, γ1 = 0.03, δ2 = 0.04, γ2 =
0.003, both attributes favor alternative A, the first one more
strongly than the second one2. The attributes are considered only
once (L = 2), with order k1 = 1, k2 = 2. The first attribute is
considered for time t1 = τn1, where n1 is a random variable
Tat described above with given expectation N. For the second

2Note that when looking only at the numerical values of the drift parameter
δ1 = 0.2 and the decision criterion θA = 10 and assuming that the attention
times t1 to the first attribute are large enough it would suggest mean response
times in the range TA ≈ 50 (and very small pB). However, since γ1 = 0.03 it
leads to a negative effective drift δ1 − γ1X(t) if X(t) comes close θA, and the
mean response times become much longer. This also demonstrates the effect
of the parameter γk, and a difference between Ornstein-Uhlenbeck process
and Wiener process based models.

attribute we compare two situations: (1) We assume an infinitely
long decision horizon t2 = ∞, and (2) we determine a finite
time horizon t2 = τn2 by choosing n2 = n1 + Tat which is also
Tat distributed with the same expected value N. These two sit-
uations are depicted in Figures 4, 5. The graphs show choice
probabilities and mean response times as functions of the expec-
tation τE(Tat) of the real attention times. Lines of different color
represent different distributions. Distributions with a small vari-
ance, such as the Poisson distribution, the binomial distribution,
and the uniform distribution with M ≈ √

N produce results
indistinguishable from the deterministic case. This holds for all
tested situations shown below. This means, small uncertainties
in attention time spans do not influence the observable choice
frequencies and mean response times. However, as the variance
of the attention times grows, we see quantitative and qualitative
changes. Compared to the deterministic attention time situation,
the geometric distribution differs most, and the uniform distri-
butions with M = N/2 = 150 (Unif.1) and M = N − 1 = 299
(Unif.2) are intermediate. Moreover, there is expectedly a big dif-
ference for small mean attention times between finite and infinite
decision horizons. Most importantly, for the former case it pre-
dicts a probability p0 > 0 of not deciding within the available time
t2. We claim that for many situations, where an infinite time hori-
zon does not represent reality well enough, our finite schedule
model might be more appealing. This aspect will be pursued in
further research.

Figures 6, 7 show similar simulation results for the situation
of considering first an attribute favoring B (δ1 = −0.1, γ1 = 0)

FIGURE 4 | Choice probabilities (A,C) and mean response times (B,D) as

functions of the expected attention time E (t1) = 10. . . 500 paid to the

first attribute for different distribution types. The attribute considered first
for a random time t1 strongly favors alternative A, followed by a second

attribute which only weakly favors A but is considered indefinitely. Note that
graphs for distribution types with small variance are almost indistinguishable
from the graph corresponding to deterministically fixed t1 (variance 0) and
therefore are omitted here.
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FIGURE 5 | Same as in Figure 4 but now the second attribute is

also considered for a random finite time t2 − t1 whose distribution

is the same as for t1 [in particular, E (t2 − t1) = E (t1)]. (A) and (B)

show the choice probabilities for choosing alternative A and B,
respectively. (C) shows the probability p0 of not reaching a decision

which naturally decays if the expected attribute attention time grows.
(D) and (E) show the expected mean response times for choosing
alternative A and B, respectively, as functions of the expected attention
time E(t1) = 10 . . . 500 paid to the first attribute for different distribution
types.

followed by an attribute more strongly favoring A (δ2 = 0.2, γ2 =
0.03). As expected, the results look now different, however, the
main conclusions from the previous example concerning the
influence of the randomness type for attention times and the dif-
ferences for finite vs. infinite time horizons remain the same. Most
importantly here, the model predicts a preference reversal (i.e.,
choice probabilities from below 0.5 to above 0.5) as a function of
attention time when one attribute is in favor of choosing alterna-
tive A and the other in favor of choosing alternative B. Parameter
studies, as in Diederich (1997), will be pursued further elsewhere.

To complete the picture, we show a three-attribute example
(K = 3) in Figure 8. The chosen attribute parameters are now
δ1 = 0.04, γ1 = 0.003, δ2 = −0.1, γ2 = 0, δ3 = 0.2, γ3 = 0.03,
i.e., a weakly in favor of A, in favor of B, and strongly in favor
of A sequence of attributes. Attention times for the first two
attributes are chosen independently from each other but with
the same distribution with fixed mean value; the last attribute is
considered indefinitely.

4.2. DEPENDENCE ON ATTRIBUTE ORDER
The proposed sequential decision model is sensitive to the order
in which the attributes are consider. If we consider in the afore-
mentioned second two-attribute example the attribute in favor of
A first, and then the attribute in favor of B we get very different
patterns as shown in Figure 9 compared to Figure 6. A similar
effect is true for the above K = 3 example. In Figure 10, the

attribute in favor of B is now the last one; the graphs need
to be compared with Figure 8. One interesting pattern can be
observed. If the evidence for choosing one alternative decreases
in the sequence of attribute consideration then the model pre-
dicts faster choice response times for the more frequently chosen
alternative—a typical pattern observed in response time analy-
sis. However, if the evidence increases in the sequence of attribute
consideration then the model predicts faster choice response
times for the less frequently chosen alternative which has been
called fast error, as shown in Figure 11 compared to Figure 4.
Simply by changing the order of attribute processing the model
predicts a complex pattern of choice response times and choice
probabilities.

So far, all examples shown are with a fixed, determinis-
tic attribute order with no repetitions (semi-random schedule,
L = K). The evaluation of fully random time and order schedules
requires larger L, and will be presented elsewhere.

5. CONCLUDING REMARKS
The proposed multiattribute attention switching (MAAS) model
can predict a very complex choice probability/(mean) choice
response time pattern. It may appear too flexible to be testable.
However, this is not the case. If two attributes both favor alter-
native, A say, and the first attribute that is considered provides
more evidence for choosing A than the second (δ1 > δ2), then
the model predicts always shorter response times for the more
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FIGURE 6 | Choice probabilities (A,C) and mean response times (B,D)

for a decision situation where an attribute favoring alternative B is

considered first for a random time t1, followed by a second attribute

strongly favoring A but considered indefinitely. We show graphs of

choice probabilities and mean response times as functions of the expected
attention time E(t1) = 10 . . . 500 paid to the first attribute for different
distribution types. Again, graphs for distribution types with small variance
are indistinguishable from each other.

FIGURE 7 | Same as in Figure 6 but now the second attribute is

also considered for a random finite time t2 − t1 whose distribution

is the same as for t1. (A), (B), and (C) show the choice probabilities

for choosing alternatives A, B and none, respectively. (D) and (E)

show the mean response times for choosing alternatives A and B,
respectively.
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FIGURE 8 | Choice probabilities (A,C) and mean response times (B,D) for

a decision model with three attributes. An attribute weakly favoring
alternative A is considered first for a random time t1, followed by a second
attribute favoring B considered for a random time t2 − t1, while the last
attribute (strongly favoring A) is considered indefinitely. The random attention

times t1 and t2 − t1 for the first two attributes are independently chosen from
the same distribution. We show graphs of choice probabilities and mean
response times as functions of the expected attention time
E(t1) = E(t2 − t1) = 10. . . 500 for different distribution types. Again, small
variance distributions yield almost identical results.

FIGURE 9 | Same as in Figure 6 but with a different attribute order: First

the attribute strongly in favor of A is considered for a finite random time

t1, then the attribute favoring B is considered indefinitely long. (A) and

(C) show the choice probabilities for choosing alternatives A and B
respectively. (B) and (D) show the mean response times for choosing
alternatives A and B, respectively.

frequently chosen alternative, here A, regardless of the assumed
underlying attention time distribution. If the order of processing
these attributes is reversed, i.e., the attribute that favors alternative
A less is considered first (δ2 > δ1), then the model always

predicts faster responses for the less frequently chosen alterna-
tive, here B, again regardless of the assumed underlying attention
time distribution. A single stage process can only account for
this pattern by assuming variability in starting positions and
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FIGURE 10 | Same as in Figure 8 but with a different attribute order: First

the two attributes in favor of A (strong followed by weak) are

considered for finite random periods of time, then the attribute favoring

B is considered indefinitely long. (A) and (C) show the choice probabilities
for choosing alternatives A and B, respectively. (B) and (D) show the mean
response times for choosing alternatives A and B, respectively.

FIGURE 11 | Same as in Figure 4 but with a different attribute order: The

attribute considered first for a random time t1 weakly favors alternative

A, followed by a second attribute which strongly favors A but is

considered indefinitely. (A) and (C) show the choice probabilities for
choosing alternatives A and B respectively. (B) and (D) show the mean
response times for choosing alternatives A and B, respectively.
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variability in drift rates, i.e., a statistical means where the drift
rate itself is a random variable. It is difficult experimentally to
disentangle the variability stemming from the stochastic process
itself and the variability from the distribution of different drift
rates. As Jones and Dzhafarov (2013) pointed out, the predictions
of various sequential sampling models rest upon the assump-
tions made about the assumed probability distributions. This is
not the case here. The model is falsifiable without assuming spe-
cific distributions. Rather than relying on statistical mechanisms
to ensure an observed response patterns we rely on assump-
tions about cognitive processes such as attention switching and
salience. The specific attention time distribution used for an
application may be related to the experimental paradigm. For
instance, when tracking eye movements, the sequence of attribute
consideration and the switching times are directly observable, and
a deterministic or a uniform distribution with a small variance
is advisable. When all attributes are shown simultaneously, like
in complex objects, and attention may shift at any moment in
time a geometric distribution or a uniform distribution with a
large variance may describe the situation better. Testing the model
rigorously will be pursued in the future.
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