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The ability to generalize from the known to the unknown is central to learning and
inference. Two experiments explore the relationship between how a property is explained
and how that property is generalized to novel species and artifacts. The experiments
contrast the consequences of explaining a property mechanistically, by appeal to parts
and processes, with the consequences of explaining the property functionally, by appeal
to functions and goals. The findings suggest that properties that are explained functionally
are more likely to be generalized on the basis of shared functions, with a weaker
relationship between mechanistic explanations and generalization on the basis of shared
parts and processes. The influence of explanation type on generalization holds even
though all participants are provided with the same mechanistic and functional information,
and whether an explanation type is freely generated (Experiment 1), experimentally
provided (Experiment 2), or experimentally induced (Experiment 2). The experiments also
demonstrate that explanations and generalizations of a particular type (mechanistic or
functional) can be experimentally induced by providing sample explanations of that type,
with a comparable effect when the sample explanations come from the same domain
or from a different domains. These results suggest that explanations serve as a guide
to generalization, and contribute to a growing body of work supporting the value of
distinguishing mechanistic and functional explanations.
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INTRODUCTION
Suppose you learn that a particular species of mushroom con-
tains a fatal toxin. Which other species of mushroom are likely to
contain fatal toxins? One strategy for generalizing from known to
novel cases is to consider why a property holds in the known case,
and to determine whether those reasons extend to novel cases.
For example, if you explain the mushroom’s toxin as the prod-
uct of a particular metabolic process, you might be inclined to
judge other mushrooms sharing that metabolic process as sim-
ilarly poisonous. If you instead explain the toxin as a biological
adaptation to deter fungivores, you might be inclined to judge
other mushrooms facing similar predators as poisonous.

In this paper we explore the hypothesis that explanations
can guide the generalization of properties from known to novel
cases. Explanations typically relate what’s being explained (the
explanandum) to more general patterns or regularities (Wellman
and Liu, 2007; Williams and Lombrozo, 2010, 2013; Lombrozo,
2012), and in so doing highlight aspects of the explanandum that
are likely to generalize to new cases (Lombrozo and Carey, 2006).
For example, in explaining a mushroom’s toxin by appeal to local
predators, one (implicitly) invokes a specific relationship between
that toxin and those predators, and also more general relation-
ships between predation and defense, or even between ecological
conditions and biological traits more generally. These explanatory
patterns can inform how a property is generalized by influencing

which prior beliefs are consulted, and which aspects of the known
and novel cases are deemed relevant to whether a given property
of the first applies to the second.

At a broad level, different kinds of explanations could cor-
respond to different higher-order generalizations, or abstract
“templates” for generalizations of different kinds. Here we con-
sider mechanistic explanations, which explain by appeal to parts
or processes, and functional explanations, which explain by appeal
to functions or goals. Explaining a mushroom’s toxin as the
product of a particular metabolic process would thus qualify
as mechanistic, while explaining the toxin as a biological adap-
tation to deter fungivores would qualify as functional. As we
elaborate below, some scholars have proposed that mechanistic
and functional explanations reflect different “stances” or “modes
of construal” (Dennett, 1989; Keil, 1995), which makes them
especially promising candidates as explanations that pick out dif-
ferent ways in which one might think about, and subsequently
generalize, aspects of the explanandum.

In the two experiments that follow, we present participants
with novel biological organisms or artifacts, along with infor-
mation about the proximate causes and functions of one of its
features. We then solicit, provide, or prime an explanation of a
particular type (mechanistic and/or functional) and examine sub-
sequent patterns of property generalization to other items with
that feature. Using this basic task, we can investigate the extent
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to which different kinds of explanations guide generalization, as
well as several related issues. These related issues include the role
of explanations vs. general causal knowledge in guiding general-
ization, whether different bases for generalization compete, and
whether explanatory modes can be primed within and across
domains. In the remainder of the introduction, we explain these
issues in greater detail.

EXPLANATION AND PROPERTY GENERALIZATION
Beginning with the influential work of Carey (1985) and
Osherson et al. (1990), cognitive scientists have studied property
generalization as a window into inductive reasoning. A con-
sistent finding is that property generalization is influenced by
the similarity of the categories involved. For example, if porcini
mushrooms are judged more similar to chanterelles than to shi-
takes, a property of porcini mushrooms should be extended to
chanterelles over shitakes. However, the property being general-
ized influences which similarity relationships are relevant. This is
nicely demonstrated in a study by Heit and Rubinstein (1994),
in which participants were presented with a generalization task
involving animals that were either anatomically similar–such as
whales and bears–or behaviorally similar–such as whales and
tuna. They found that the property being generalized determined
whether anatomical or behavioral similarity was used to guide
generalizations. When generalizing across anatomically similar
animals (from bears to whales), an anatomical property (such as
having a liver with two chambers that act as one) supported a
stronger generalization than a behavioral property (such as travel-
ing in a zig-zag trajectory). When generalizing across behaviorally
similar animals (from tuna to whales), judgments followed the
opposite pattern. Based on these findings, Heit and Rubinstein
(1994) suggested that prior knowledge is “used dynamically to
focus on certain features when similarity is evaluated” (p. 420).

Explaining why a category has a given property may be
a mechanism by which prior beliefs are invoked to constrain
the similarity relations guiding generalization (Lombrozo, 2006,
2012; Vasilyeva and Coley, 2013; Williams and Lombrozo, 2013).
Support for this proposal comes from studies by Sloman (1994)
and Rehder (2006). Sloman provided participants with an ini-
tial claim (such as: many secretaries “have a hard time financing
a house” or “have bad backs”), and asked them to evaluate a
related claim (such as: many furniture movers “have a hard time
financing a house” or “have bad backs”). Critically, the proper-
ties involved were varied such that the provided and evaluated
claims sometimes supported a common explanation (moderate
income for trouble financing a house), and sometimes supported
different explanations (a sedentary job vs. heavy lifting for back
problems). Sloman found that claims were assigned a higher
probability when they were conditioned on a statement with a
common explanation than when they were conditioned on a
statement with a competing explanation, suggesting that explana-
tions guided generalization. Rehder (2006) employed a property
generalization task similar to Sloman (1994), but generated novel
categories with properties that participants would not have prior
knowledge to explain. Rehder found that when participants were
provided with an explanation for the property being general-
ized, they generalized the property to new items that shared that

explanation, overriding effects of overall similarity. These findings
suggest that explanations are spontaneously consulted in property
generalization when participants possess relevant prior beliefs
(Sloman, 1994), and inform judgments when provided (Rehder,
2006).

One way in which the present studies differ from this prior
work is in considering cases for which multiple explanations for a
property are concurrently true, such as the mechanistic and func-
tional explanations for the mushroom’s toxin offered above. Such
cases can help us isolate the role of explanations, in particular,
from causal beliefs more generally. To illustrate this point con-
cretely, consider an example from Rehder (2006, Experiment 3).
Some participants learned about “kehoe ants” along with several
of their features, such as whether they possess thick blood or a
slow digestive system. They were then asked whether properties
of an original ant would hold of novel exemplars that shared few
features or many features. Critically, some of the properties were
presented with causal explanations that linked them to one of
the features. For example, participants might learn that the ant
“is immobile in cold weather,” and that “the immobility in cold
weather is caused by the thick blood.” When provided with this
explanation linking immobility to thick blood, participants gen-
eralized the property of immobility to other ants that also had
thick blood, with very little influence of the number of addi-
tional features that were also shared (i.e., of global similarity).
Thus, effects of explanation were demonstrated by comparing
participants who received different causal information: some of
them were told that immobility is caused by thick blood, others
were not. In the present experiments, all participants receive the
same information about causal relationships between features. As
a result, the current experiments isolate effects of explanation
that operate beyond the causal relationships those explanations
presuppose.

MECHANISTIC AND FUNCTIONAL EXPLANATIONS AS DISTINCT
EXPLANATORY MODES
Both philosophers and psychologists have suggested that the
distinction between mechanistic and functional explanations
is a deep one (Dennett, 1989; Keil, 1995; see also Aristotle,
Metaphysics). For example, Keil argues that mechanistic and func-
tional explanations reflect innate “modes of construal” (1995),
while Dennett argues for the existence of distinct stances, among
them a design stance featuring functional reasoning, and a phys-
ical stance involving more mechanical reasoning. Despite these
intriguing suggestions, only a handful of studies have exam-
ined the cognitive bases and consequences of different kinds of
explanation. These studies have found that functional and mech-
anistic explanations are both understood causally (Lombrozo
and Carey, 2006), and that functional explanations are often
preferred (Kelemen, 1999; Lombrozo et al., 2007; Kelemen and
Rosset, 2009). In particular, Kelemen (1999) argues that children
and adults are “promiscuously teleological,” finding functional
explanations especially compelling because we evolved as social
animals for whom intentional, goal-based reasoning was essential
and pervasive.

Recent studies have also found that explanation type can influ-
ence performance on basic cognitive tasks, such as categorization
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(Lombrozo, 2009) and causal attribution (Lombrozo, 2010).
To illustrate, consider Lombrozo (2009), in which participants
learned about novel categories such as “holings,” a kind of flower
with brom compounds in their stems, causing them to lean over
as they grow, in turn allowing their pollen to be spread by field
mice. Participants were asked why holings bend over, which could
be explained mechanistically (by appeal to brom compounds) or
functionally (by appeal to pollination). The kind of explanation
participants provided predicted later judgments about category
membership. Specifically, participants learned about two mystery
flowers, one with brom compounds and the other with a bend-
ing stem, and were asked which was more likely to be a holing.
Participants who provided a mechanistic explanation privileged
causally prior features, replicating previous effects of “causal sta-
tus” (Ahn, 1998), while participants who provided functional
explanations did the reverse. These findings suggest that mech-
anistic and functional explanations have consequences for rea-
soning that could extend to property generalization. They also
suggest that people can invoke explanatory knowledge flexibly to
guide reasoning.

In the experiments that follow, we investigate two questions
about the relationship between mechanistic and functional rea-
soning. First, we measure baseline preferences for providing one
kind of explanation or another, as well as baseline tendencies
to generalize according to shared mechanisms or shared func-
tions. These preferences potentially bear on the idea that teleo-
functional reasoning reflects a cognitive default (Kelemen, 1999)
or that functional features can be especially diagnostic of cat-
egory membership (Lombrozo and Rehder, 2012), on the one
hand, or that (proximate) causes are more conceptually central
than effects, on the other (Ahn, 1998; Cimpian and Markman,
2009). However, because it’s not possible to generate explana-
tions that are matched in all respects except for being mechanistic
vs. functional, we caution against overly strong interpretations of
any baseline preferences–instead, we think it’s more meaningful
to consider whether mechanistic and functional explanations are
differentially predictive of corresponding patterns in generaliza-
tion. To the extent that each explanation type reflects a “stance” or
“mode of construal,” one might expect explanations of that type
to predict corresponding generalizations. That is, we can investi-
gate whether providing or receiving a mechanistic explanations is
predictive of generalization on the basis of common proximate
causes, and whether providing or receiving a functional expla-
nation is predictive of generalization on the basis of common
functions.

Second, we consider whether different bases for generaliza-
tion are in competition. In other words, does generalizing on the
basis of common proximate causes tend to preclude generalizing
on the basis of common functions, and vice versa? If different
stances or modes of construal compete with each other, one might
expect greater reasoning of one type to predict reduced reason-
ing on the basis of the alternative. On the other hand, if both
kinds of reasoning are reinforcing or can operate in parallel, one
would not expect to see this kind of competition. Investigating a
related question, Heussen (2010) found that functional explana-
tions were discounted in favor of mechanistic explanations, but
only for artifacts. This provides some evidence that explanations

of different types can compete, but it remains an open question
whether this kind of competition is more widespread, extending
to generalization and to the biological domain.

DOMAIN DIFFERENCES IN MECHANISTIC AND FUNCTIONAL
REASONING
While research on property generalization has tended to neglect
domain as a factor that could influence judgments, a variety
of researchers have suggested that mechanistic and functional
explanations are more or less privileged in different domains.
For example, Atran (1995) suggests that functional reasoning is
native to a “living thing” module, while Kelemen (1999) suggests
that teleo-functional reasoning is fundamentally linked to goal-
directed action, but “promiscuously” extended to other domains.
Keil (1995) suggests that functional reasoning is not innately tied
to any particular domain, but is privileged within folk biology
early in development. Finally, Lombrozo and Carey (2006) sug-
gest that functional explanations are related to causal assumptions
that crosscut domains. However, they also suggest that functional
explanations will seem more appropriate when they fit a general
and familiar schema, and some domains, such as folk biology,
may furnish such schemas more readily than others. All of these
views support a role for both mechanistic and functional explana-
tions for biological organisms and for artifacts–the two domains
explored here–but raise the possibility that the relative impor-
tance of the two explanation types could differ across domains
and influence property generalization, or that the “type” of func-
tional reasoning induced by functional explanations could differ
across domains.

We thus explore two questions involving the role of domain in
mechanistic and functional reasoning. First, we measure baseline
preferences for different kinds of explanations and generalizations
across domains. According to different proposals, functional rea-
soning is most natural for artifacts, for biological kinds, or is
equivalent across these two domains. Again, however, we caution
against a strong interpretation of baseline preferences. It’s diffi-
cult to generalize beyond our stimulus materials: a handful of
items is hardly representative of an entire domain, so “domain”
differences could simply reflect the properties of our items. We
therefore place greater weight on our second question, which
concerns the extent to which “functional reasoning” is domain
general vs. domain specific. Put differently, is functional reason-
ing about artifacts basically the same as functional reasoning
about biological organisms? Or does each domain have a propri-
etary form of functional reasoning, such that cross-domain cases
of functional reasoning are only weakly or analogically related?
To ask these questions, we investigate–in Experiment 2–whether
people can be primed to adopt a particular explanatory mode,
and if so whether such priming is more effective (or only effective)
within a given domain vs. a case that crosses domains.

OVERVIEW OF EXPERIMENTS
In sum, previous studies support the proposal that expla-
nations inform property generalization, and that the differ-
ence between mechanistic and functional explanations is cog-
nitively significant. However, previous research has not investi-
gated whether explanations of different types predict subsequent
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generalization, how a property is generalized when more than one
explanation is available, whether mechanistic and functional gen-
eralization are in competition, or whether explanatory modes can
be experimentally induced within or across domains. To explore
these issues, two experiments examined the relationship between
the type of explanation offered for a property (mechanistic or
functional) and how that property is generalized (according to
common mechanisms or common functions) when the expla-
nation type is freely generated (Experiment 1), experimentally
provided (Experiment 2), or experimentally induced by a same-
domain or cross-domain prime (Experiment 2).

EXPERIMENT 1: SPONTANEOUS EXPLANATIONS PREDICT
PATTERNS OF GENERALIZATION
In Experiment 1 participants learned about a novel category from
the domain of biological kinds (e.g., a plant called a narp) or arti-
facts (e.g., a kind of garment called a draham). They were then
asked to explain a feature of that category (e.g., a speckled pattern
for narps; thick cloth for drahams), and to generalize properties
of the feature (e.g., high contrast for the pattern on narps; a tight
weave for the cloth used for drahams) to novel categories that
shared common mechanisms or common functions.

The experiment tests the hypotheses that participants who
explain features mechanistically will generalize properties to items
with a shared mechanism more readily than those who do not
provide mechanistic explanations, and that participants who
explain features functionally will generalize properties to items
with a shared function more readily than those who do not
provide functional explanations. The experiment also allows us
to investigate whether mechanistic and functional generalization
compete, and to measure baseline preferences for explanation and
generalization types across domains.

METHODS FOR EXPERIMENT 1
Participants
Two-hundred-fifty-two workers on Amazon Mechanical Turk
(155 male, 97 female; Age: M = 30, SD = 9) completed the
task in exchange for monetary compensation. All participants
provided informed consent, following a human subjects pro-
tocol approved by UC Berkeley’s Institutional Review Board.
Participation was restricted to workers with IP addresses within
the United States, a HIT approval ratings of 95% or higher, and at
least 50 previously-approved HITs. An additional 36 participants
were excluded for leaving numerical responses or explanations
blank (2) or for failing an instructional manipulation check (34)
that was modeled on Oppenheimer et al. (2009) and presented
after the main task; it required participants to read instructions
closely in order to pass.

Materials and procedure
Participants learned about a novel biological kind or artifact
with a feature that was generated by a proximate cause and that
supported a function. Below is a sample item (see Table 1 for
additional stimuli):

A narp is a kind of plant with a speckled pattern. Biologists have
discovered that in narps, the speckled pattern is caused by the XP2

gene. Having a speckled pattern attracts butterflies, which play a
role in pollination.

Participants were then asked to explain why category mem-
bers typically have the target property (e.g., “In a sentence, why
do narps have a speckled pattern?”). This question is deliber-
ately ambiguous between a request for a mechanistic explanation
(“Because of the XP2 gene”) and a request for a functional
explanation (“Because it attracts butterflies for pollination”); par-
ticipants could provide either explanation, both explanations, or
neither explanation.

Participants then learned about two additional novel artifacts
or organisms, where one shared the same proximate cause and
target feature as the original item, but had a different func-
tion, and the other shared the same target feature and function,
but had a different proximate cause. The introduction of each
new category was followed by three generalization judgments.
Participants learned about a property of the target feature in
the initial category, and were asked to determine the probabil-
ity that the new categories likewise shared that property. Ratings
were made on a 9-point scale, with the first point labeled “very
unlikely,” the final point “very likely,” and the midpoint “nei-
ther likely nor unlikely.” Below are sample questions for the narp
category:

Tomas are another kind of plant with a speckled pattern. The
speckled pattern in tomas is caused by the XP2 gene, as it is in
narps, but its function is different: it is to provide camouflage.

Suppose you find out that the speckled pattern of narps is very
dense. How likely do you think it is that the speckled pattern of
tomas is also very dense?

Suppose you find out that the speckled pattern of narps is very
high in contrast. How likely do you think it is that the speckled
pattern of tomas is also very high in contrast?

Suppose you find out that the speckled pattern of narps is red-
dish. How likely do you think it is that the speckled pattern of
tomas is also reddish?

Laks are another kind of plant with a speckled pattern. The speck-
led pattern in laks is caused by a different gene, the YZL gene, but
the speckled pattern has the function of attracting butterflies for
pollination, as it does for narps.

Suppose you find out that the speckled pattern of narps is very
dense. How likely do you think it is that the speckled pattern of
laks is also very dense?

Suppose you find out that the speckled pattern of narps is very
high in contrast. How likely do you think it is that the speckled
pattern of laks is also very high in contrast?

Suppose you find out that the speckled pattern of narps is red-
dish. How likely do you think it is that the speckled pattern of laks
is also reddish?

The two novel categories and their corresponding generalization
questions were presented in a random order for each partici-
pant. Each participant completed the task for a single category,
either biological or artifact, making domain a between-subjects
factor with two levels. There were four possible base categories
for each domain. Participants were randomly assigned to one of
these possible categories.
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Table 1 | Stimulus materials for Experiments 1 and 2.

Domain Category description Generalized properties

Biological organisms A narp is a kind of plant with a speckled pattern. Biologists have discovered that in narps,
the speckled pattern is caused by the XP2 gene. Having a speckled pattern attracts
butterflies, which play a role in pollination.

Dense pattern
High-contrast pattern
Reddish pattern

A slive is a kind of mammal with a furry tail. According to scientists, the fur on slives’ tails
develops as a result of exposure to UV light. Having a furry tail also serves an important
function: it helps keep the tail warm.

Rough tail fur
Dense tail fur
Multi-colored tail fur

A brollig is a kind of reptile with stripes. In brolligs, the stripes are caused by minerals in
the reptile’s diet. Having stripes also has an important function: it helps brolligs hide from
predators.

Thin stripes
Jagged stripes
Dark-colored stripes

A flivvet is a kind of bird with blue eyes. Biologists know that in flivvets, the eyecolor
results from a pigment called the P7 pigment. Having blue eyes helps the birds absorb
sunlight to produce essential vitamins.

Almost violet in color
Very small
Detect polarized light

Artifacts A draham is a kind of garment made from thick cloth. The cloth is thick because it is
woven on a special, double loom. The thickness serves an important function: it protects
the wearer from rough underbrush.

Tight weave
Multiple colors
Heavy cloth

A stranton is a kind of device with a translucent exterior. The translucence is caused by a
compound called polycleristyrene. Having a translucent exterior is important, because it
allows internal parts to be solar-powered.

Thin exterior
Shiny exterior
Scratch-resistant

A blig is a kind of paintbrush with firm bristles. The bristles are firm because they are
treated with a pigment called P7. Having firm bristles is important because bligs are used
to paint inside fine cracks in wood.

Stretchy bristles
Transparent bristles
Thick bristles

A zimb is a kind of lamp with a red LED inside. The LED is red because it is created with
polyrensedis, a red dye. Having a red LED is important because it can then be used to
attract a kind of firefly that responds to red light.

Pale color
Yellowish from afar
Larger than usual LED

RESULTS AND DISCUSSION FOR EXPERIMENT 1
We first report analyzes concerning generated explanations, then
those concerning generalization judgments, and finally consider
their relationship.

Generated explanations
Participants’ explanations were coded for whether they included a
mechanistic explanation and whether they included a functional
explanation (see Table 2). An initial coder coded all explanations
blind to condition; a second coder coded 25% blind to condition,
yielding 100% agreement. Overall, participants provided mecha-
nistic explanations more often for biological organisms (61 of 126
explanation) than for artifacts (30 of 126), χ2

(1, N = 252) = 16.53,

p < 0.001, but the proportion of functional explanations did not
differ significantly across domains: 102 of 126 explanations for
artifacts vs. 91 of 126 for biological organisms, χ2

(1, N = 252) =
2.68, p = 0.102. In both domains, participants were more likely
to provide functional explanations than mechanistic explanations
(ps < 0.001).

Property generalizations
Patterns of generalization were analyzed by first averaging the
three generalization ratings to the item with a shared function,
creating a function generalization score, and averaging the three
generalization ratings to the item with a shared mechanism,
creating a mechanism generalization score. We then considered

Table 2 | Explanation coding in Experiment 1.

Explanation type Biological organisms Artifacts

Mechanistic only 0.27 0.19
Functional only 0.52 0.76
Both 0.21 0.05
Neither 0.00 0.00

The proportion of explanations of each type is indicated as a function of domain.

function generalization score and mechanism generalization
score as two levels of the within-subjects variable generalization
score type. Thus, generalization scores were analyzed in a mixed
ANOVA with domain (2: biological organisms, artifacts) as a
between-subjects factor and generalization score type (2: func-
tion generalization score, mechanism generalization score) as a
within-subjects factor.

This analysis revealed a significant main effect of domain,
F(1, 250) = 37.81, p < 0.001, η2

p = 0.13, with greater generaliza-
tion overall to artifacts (M = 6.26, SD = 1.32) than to biological
kinds (M = 5.33, SD = 1.06), as well as a significant interac-
tion between domain and generalization score, F(1, 250) = 5.58,
p = 0.02, η2

p = 0.02. For biological organisms, a paired-samples
t-test revealed greater generalization to items with shared func-
tions (M = 5.61, SD = 1.66) than to those with shared mech-
anisms (M = 5.06, SD = 1.71), t(125) = −2.33, p = 0.02. For
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artifacts, there was not a significant difference between general-
ization ratings to items with shared functions (M = 6.17, SD =
1.73) vs. those with shared mechanisms (M = 6.35, SD = 1.72),
t(125) = − 0.90, p = 0.37.

Finally, to investigate whether there was competition between
generalization on the basis of common mechanisms and gen-
eralization on the basis of common functions, we computed
a correlation between mechanism and function generalization
scores. The correlation was not significant, r = 0.046, p = 0.470,
suggesting that finding one type of generalization plausible did
not result in reduced plausibility for the alternative.

Property generalization as a function of explanation type
To test for the predicted relationships between explanation type
and generalization (see Table 3), we conducted regression ana-
lyzes. First, we considered whether providing a functional expla-
nation (0 = no, 1 = yes) predicted function generalization
scores, with domain (1 = biological, 2 = artifact) and an inter-
action term as additional predictors. The interaction term was
not significant (p = 0.68) and was dropped from the model.
The resulting model revealed both functional explanation genera-
tion (B = 0.902, SE = 0.247, β = 0.223, p < 0.001) and domain
(B = 0.487, SE = 0.209, β = 0.142, p = 0.021) as significant pre-
dictors, R = 0.277: participants were more likely to generalize
properties to objects with shared functions if they generated func-
tional explanations in response to the prompt, and when the
objects were artifacts as opposed to biological organisms.

We next considered whether providing a mechanistic expla-
nation (0 = no, 1 = yes) predicted mechanism generalization
scores, with domain (1 = biological, 2 = artifact) and an inter-
action term as additional predictors. Once again the interaction
term was not significant (p = 0.148) and was dropped. The result
was a model with domain as a significant predictor (B = 1.371,
SE = 0.223, β = 0.375, p < 0.001), but not mechanistic explana-
tion generation (B = 0.334, SE = 0.232, β = 0.088, p = 0.151),
R = 0.363: participants were more likely to generalize properties
to objects with shared mechanisms when the objects were artifacts
as opposed to biological organisms, with no significant effect of
whether they generated a mechanistic explanation in response to
the prompt.

Distribution of responses
To get a better sense for how having generated a functional expla-
nation related to the distribution of function generalization scores
across participants (i.e., the predicted result for which we found
support), we additionally classified participants into nine groups
based on their function generalization score, effectively truncat-
ing the score to one digit (so, for instance, scores greater than
or equal to 1, but less than 2, were coded as “1”). Figure 1
plots the resulting distribution as a function of whether or not
participants generated a functional explanation in response to
the prompt, and suggests that the effect of explanation type on
generalization was not restricted to a small subset of partici-
pants. Because we did not find an interaction between having
generated a functional explanation and domain when it came
to predicting function generalization scores, we collapsed across
domain.

Summary of findings
In sum, Experiment 1 partially confirmed our key predictions:
generating a functional explanation predicted the extent to
which participants generalized properties to items with shared

FIGURE 1 | For Experiment 1, the distribution of function

generalization scores as a function of whether or not the participant

generated a functional explanation in response to the ambiguous

explanation prompt.

Table 3 | Generalization ratings in Experiment 1.

Mean ratings Biological organisms Artifacts

No (N = 35) Yes (N = 91) No (N = 24) Yes (N = 102)

FUNCTIONAL EXPLANATION GENERATED?

Mechanism generalization score 5.62 (1.39) 4.82 (1.77) 6.26 (1.42) 6.37 (1.79)

Function generalization score 4.97 (1.54) 5.83 (1.66) 5.35 (1.57) 6.37 (1.72)

No (N = 65) Yes (N = 61) No (N = 96) Yes (N = 30)

MECHANISTIC EXPLANATION GENERATED?

Mechanism generalization score 4.80 (1.78) 5.34 (1.60) 6.34 (1.81) 6.39 (1.43)

Function generalization score 5.99 (1.52) 5.19 (1.71) 6.39 (1.71) 5.49 (1.65)

Average generalization ratings (on 1–9 scale) are indicated as a function of domain, with separate means for those participants who did and did not generate

explanations of each type in response to the ambiguous explanation prompt. The means are followed in parentheses by standard deviations.
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functions, and this relationship did not differ across domains.
However, we did not find a significant relationship between hav-
ing generated a mechanistic explanation and generalizing to items
with shared mechanisms. We also found no evidence for compe-
tition between generalization on the basis of shared mechanisms
and of shared functions.

Experiment 1 additionally found that participants had a higher
baseline tendency to provide functional explanations than mech-
anistic explanations across both domains, with a matching ten-
dency to generalize more to items with shared functions over
shared mechanisms, but only for biological organisms. The exper-
iment also revealed greater generalization overall to artifacts than
to biological organisms. We return to these findings in the general
discussion.

EXPERIMENT 2: PROMPTED EXPLANATIONS INFLUENCE
PATTERNS OF GENERALIZATION
While the findings from Experiment 1 support the hypothesis
that explanation guides generalization, the correlational design
of the experiment prevents causal conclusions from being drawn.
It could be that explanation type influenced generalization, but
it is also possible that intuitions about generalization influenced
explanation, or that both explanations and generalizations had a
common cause. Experiment 2 aims to examine the causal rela-
tionship between explanation type and generalization by exper-
imentally manipulating the kind of explanation a participant
considers and soliciting subsequent generalization judgments. If
the way a property is explained has a causal impact on how
it is generalized, then relative to participants experimentally
induced to consider mechanistic explanations, participants exper-
imentally induced to consider functional explanations should
be more likely to generalize properties on the basis of shared
functions and less likely to generalize properties on the basis of
shared mechanisms, mirroring and extending the findings from
Experiment 1.

Experiment 2 induces participants to consider a particu-
lar kind of explanation in two ways. In the initial “prim-
ing phase” of the experiment, participants receive the same
mechanistic and functional information about a novel cat-
egory as that provided in Experiment 1, but one explana-
tion is subsequently privileged [e.g., “So now you know why
narps have a speckled pattern: narps have a speckled pattern
because of the XP2 gene (to attract butterflies)”]. Generalization
judgments are then solicited for the categories introduced in
the priming phase to investigate whether experimentally priv-
ileging a particular explanation has the predicted effect on
generalization.

The priming phase is followed by a generation phase in which
participants learn about two novel categories and are prompted
to generate their own explanations for their properties. Although
the categories in the generation phase are distinct from those in
the priming phase, this design allows us to investigate whether
the priming phase effectively induces or “primes” a particular
explanation type, leading to explanations and generalizations
that are more consistent with that type in the generation phase.
By varying whether the two categories in the priming phase
and in the generation phase come from the same domain or

from different domains, we can additionally investigate whether
explanatory modes are proprietary to domains—that is, for
example, whether the kind of “functional reasoning” that might
occur for artifacts is related to that which occurs for biological
organisms.

METHODS FOR EXPERIMENT 2
Participants
Four-hundred-eighty-four workers on Amazon Mechanical Turk
(270 male, 210 female, 4 other/unspecified; Age: M = 32, SD =
10) completed the task in exchange for monetary compensa-
tion. All participants provided informed consent, following a
human subjects protocol approved by UC Berkeley’s Institutional
Review Board. Participation was restricted to workers with IP
addresses within the United States, a HIT approval ratings of
95% or higher, and at least 50 previously-approved HITs. An
additional 224 participants were excluded from analyzes due to
an experimenter error in the stimulus materials (49), for leaving
numerical responses or explanations blank (128), or for failing an
instructional manipulation check (47).

Materials and procedure
The stimuli from Experiment 1 were used in Experiment 2, with
the following changes to the procedure. Instead of seeing a sin-
gle category, each participant was presented with four. For the
first two categories presented in the “priming phase,” explana-
tions were provided rather than prompted. The answers were
both mechanistic for participants in the mechanistic prime condi-
tion, and both functional for participants in the functional prime
condition. For example:

A narp is a kind of plant with a speckled pattern. Biologists have
discovered that in narps, the speckled pattern is caused by the XP2
gene. Having a speckled pattern attracts butterflies, which play a
role in pollination.

[mechanistic prime] So now you know why narps have a speck-
led pattern: narps have a speckled pattern because of the XP2
gene.

[functional prime] So now you know why narps have a speckled
pattern: narps have a speckled pattern to attract butterflies.

After each category in the priming phase, novel items were
introduced and generalization judgments were solicited as in
Experiment 1.

For the next two categories in the “generation phase,” par-
ticipants provided explanations in response to an ambiguous
why-question, as in Experiment 1. For instance, participants who
learned about narps in the priming phase might be asked about
brolligs in the generation phase:

A brollig is a kind of reptile with stripes. In brolligs, the stripes are
caused by minerals in the reptile’s diet. Having stripes also has an
important function: it helps brolligs hide from predators.
In a sentence, why do brolligs have stripes?

After each category in the generation phase, novel items were
introduced and generalization judgments were solicited as in
Experiment 1.
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The two categories in the priming phase were always from the
same domain (both biological organisms or artifacts), and the
subsequent two categories in the generation phase were always
from the same domain (both biological organisms or artifacts).
However, the domain could either remain the same or change
across the two phases–it matched for about half of the participants
and did not match for the remainder.

The four categories in each domain were divided into two
sets such that participants either received set A or set B. There
were therefore 16 conditions total to which participants were ran-
domly assigned: 2 (mechanistic or functional prime) × 2 (domain
of provided explanations: biological organisms or artifacts) ×
2 (domain of prompted explanations: biological organisms or
artifacts) × 2 (category set: A or B).

RESULTS AND DISCUSSION FOR EXPERIMENT 2
We first report the data from the first two sets of judgments in
the priming phase (for which explanations were provided), before
considering its impact on explanations and generalizations for the
novel categories in the generation phase (for which explanations
were prompted from participants).

Generalization ratings in priming phase
Mechanism and function generalization scores were computed as
in Experiment 1, with the scores averaged across the two target
categories to create a single pair of scores for the priming phase
(see Table 5). These scores were analyzed as two levels of a within-
subjects factor (generalization score type: function generalization
score, mechanism generalization score) in a mixed ANOVA with
priming explanation type (2: mechanistic, functional) and prim-
ing explanation domain (2: biological organisms, artifacts) as
between-subjects factors.

This analysis revealed the predicted interaction between gen-
eralization score type and priming explanation type, F(1, 480) =
9.78, p = 0.002, η2

p = 0.02. Participants generalized proper-
ties more to items with shared functions when functional
explanations were primed (M = 6.07, SD = 1.36) than when
mechanistic explanations were primed (M = 5.69, SD = 1.37),
t(482) = −3.054, p = 0.002, r = 0.14. There was not a significant
difference in generalization to properties with shared mecha-
nisms in response to priming explanation type (functional: M =
5.57, SD = 1.46; mechanistic: M = 5.67, SD = 1.37), p = 0.44.
These findings mirror those for Experiment 1, with an impact of
explanation type on function but not mechanism generalization
scores, but for experimentally provided rather than freely chosen
explanation types. To visually represent this result, Figure 2 plots
the distribution of function generalization scores (discretized
as in Experiment 1) as a function of experimental condition.
Cumulative density functions (CDFs) were also plotted for each
condition, and visual inspection suggested a uniform shift consis-
tent with a difference in means for the whole distribution and not
only for a subsample.

There were several additional significant effects of the mixed
ANOVA: a main effect of generalization score type, F(1, 480) =
12.026, p = 0.001, η2

p = 0.024, a main effect of domain,

F(1, 480) = 82.014, p < 0.001, η2
p = 0.146, and an interaction

between these, F(1, 480) = 19.874, p < 0.001, η2
p = 0.040. Overall,

FIGURE 2 | For Experiment 2, the distribution of function

generalization scores from the priming phase as a function of whether

the participant was provided with functional explanations or

mechanistic explanations.

there was greater property generalization to artifacts than to bio-
logical organisms, and to items with a shared function over items
with a shared mechanism, but this difference was greater for
biological organisms than for artifacts (see Table 5). These find-
ings again mirror those from Experiment 1, where there was
greater generalization to artifacts than to biological organisms,
and greater generalization to items with shared functions than
to items with shared mechanisms, but only significantly so for
biological organisms.

Finally, to investigate whether there was competition between
generalization on the basis of common mechanisms and gen-
eralization on the basis of common functions, we computed
a correlation between mechanism and function generalization
scores as in Experiment 1. The correlation was significant, r =
0.210, p < 0.001, but positive. That is, generalization on one basis
was associated with greater generalization on the other, again
contrary to the idea that mechanistic and functional bases for
generalization reflect competing modes of reasoning.

Explanations generated in generation phase
To analyze the effects of the explanation primes on the two
prompted explanations, all explanations were coded as in
Experiment 1 (see Table 4). An initial coder coded all explana-
tions blind to condition; a second coder coded 25% blind to
condition, yielding 99.5% agreement, with the single disagree-
ment resolved in favor of the first coder. With two prompted
explanations, each participant could have a mechanistic expla-
nation score between 0 and 2 and a functional explanation score
between 0 and 2.

Mechanistic explanation score was analyzed as the dependent
variable in an ANOVA with priming explanation type (2: mech-
anistic, functional), prompted explanation domain (2: biologi-
cal organisms, artifacts), and whether the priming explanation
matched the prompted explanations in domain (2: same domain,
different domain) as independent variables. This analysis revealed
a main effect of priming explanation type, F(1, 476) = 16.43,
p < 0.001, η2

p = 0.03, and a main effect of prompted explanation

domain, F(1, 476) = 13.68, p < 0.001, η2
p = 0.03. Participants

were more likely to provide mechanistic explanations when the
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explanation prime was mechanistic (M = 1.00, SD = 0.90) than
when it was functional (M = 0.68, SD = 0.86), and when the
prompted explanations concerned biological organisms (M =
0.99, SD = 0.93) than when they concerned artifacts (M = 0.70,
SD = 0.83). Notably, there was not a significant interaction
between priming explanation type and domain match (p = 0.12),
suggesting that the effect of priming explanation type was not
stronger for same-domain than cross-domain cases.

An equivalent analysis with functional explanation score as
the dependent variable revealed a single significant main effect
of priming explanation type, F(1, 476) = 13.58, p < 0.001, η2

p =
0.03. Participants were more likely to provide functional expla-
nations when the explanation prime was functional (M = 1.51,
SD = 0.77) than when it was mechanistic (M = 1.23, SD =
0.89). Again, the interaction between priming explanation type
and domain match was not significant (p = 0.37).

As in Experiment 1, participants were more likely to provide
functional explanations than mechanistic explanations in both
domains (ps < 0.01).

Generalization ratings in generation phase
Participants’ generalization ratings for the final two categories–
for which explanations were prompted–were combined into a
pair of mechanism and function generalization scores for analysis
of generalizations in the generation phase, as they were for
generalizations in the priming phase (see Table 5).

Generalization score type was a within-subjects factor in a
mixed ANOVA with primed explanation type (2: mechanistic

Table 4 | Explanation coding in Experiment 2.

Explanation type Mechanism prime Function prime

Biological Artifacts Biological Artifacts

organisms prompted organisms prompted

prompted prompted

Mechanistic only 0.42 0.28 0.28 0.21

Functional only 0.41 0.60 0.58 0.72

Both 0.17 0.10 0.13 0.07

Neither 0.00 0.00 0.00 0.00

The proportions of explanations of each type are indicated as a function of expla-

nation type in the priming phase and the domain of prompted explanations in

the generation phase.

prime, functional prime), domain of prompted explanations
(2: biological organisms, artifacts), and whether the priming
explanations matched the prompted explanations in domain (2:
same domain, different domain) as independent variables. This
analysis revealed the predicted interaction between generaliza-
tion score type and primed explanation type, F(1, 476) = 4.29,
p = 0.04, η2

p = 0.01. Participants generalized marginally more to
items with shared mechanisms when mechanistic explanations
were primed (M = 5.71, SD = 1.41) than when functional expla-
nations were primed (M = 5.46, SD = 1.39), p = 0.05, with
the opposite (non-significant) pattern of generalization to items
with shared functions when functional explanations were primed
(M = 5.97, SD = 1.34) vs. mechanistic explanations (M = 5.85,
SD = 1.22), p = 0.32 (see Figure 3).

There were several additional significant effects. There was a
main effect of generalization score type, F(1, 476) = 15.79, p <

0.001, η2
p = 0.03, with greater generalization to items with shared

functions (M = 5.97, SD = 1.34) than to those with shared
mechanisms (M = 5.46, SD = 1.39). There was also a main effect
of prompted explanation domain, F(1, 476) = 36.39, p < 0.001,
η2

p = 0.07, which was qualified by interactions with generaliza-

tion score, F(1, 476) = 31.06, p < 0.001, η2
p = 0.06, with domain

match, F(1, 476) = 6.52, p = 0.01, η2
p = 0.01, and with both of

these in a three-way interaction, F(1, 476) = 6.13, p = 0.01, η2
p =

0.01. While generalization to items with a shared function was not
influenced by prompted explanation domain or by domain match
(ps > 0.80), generalization to items with a shared mechanism was
greater for artifacts (M = 6.06, SD = 1.20) than for biological
organisms (M = 5.10, SD = 1.43), F(1, 480) = 66.25, p < 0.001,
η2

p = 0.12, with a larger difference when the domain of the prim-
ing explanations matched that of the prompted explanations,
F(1, 480) = 12.24, p = 0.001, η2

p = 0.03. Notably, there was not
a significant interaction between priming explanation type and
domain match, p = 0.15, suggesting that the effect of the expla-
nation type prime was not detectably stronger for same-domain
than cross-domain cases.

Finally, we computed a correlation between mechanism and
function generalization scores. The correlation was not signifi-
cant, r = −0.042, p = 0.362.

Summary of key findings
In sum, Experiment 2 partially confirmed our key prediction
that an experimentally privileged explanation type would influ-
ence subsequent generalization. The findings for the priming

Table 5 | Generalization ratings in Experiment 2.

Mean ratings Priming phase Generation phase

Mechanistic prime Functional prime Mechanistic prime Functional prime

Bio Art Bio Art Bio Art Bio Art

Mechanism generalization score 5.11 (1.35) 6.22 (1.16) 4.93 (1.37) 6.17 (1.28) 5.13 (1.37) 6.26 (1.20) 5.06 (1.49) 5.85 (1.17)

Function generalization score 5.45 (1.24) 5.93 (1.45) 5.82 (1.32) 6.30 (1.36) 5.83 (1.32) 5.88 (1.11) 5.97 (1.41) 5.96 (1.27)

Average generalization ratings (on 1–9 scale) are indicated as a function of explanation condition and domain, with different scores for the priming phase (explanations

provided) and the generation phase (explanations prompted). Note that scores for the generation phase are indicated as a function of prime type (an experimental

manipulation), not as a function of the explanation type participants generated themselves. The means are followed in parentheses by standard deviations.

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 700 | 9

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lombrozo and Gwynne Explanation and inference

FIGURE 3 | For Experiment 2, the distribution of (A) function

generalization scores and (B) mechanism generalization scores from

the generation phase as a function of whether the participant was

provided with functional explanations or mechanistic explanations in

the priming phase.

phase mirrored those for Experiment 1, with explanation type
successfully predicting generalization to items with shared func-
tions, but not to items with shared mechanisms. The findings for
the generation phase revealed the predicted interaction between
explanation prime type and generalization type, with weak but
directionally-appropriate effects for generalizations to both items
with shared functions and to those with shared mechanisms.

Experiment 2 went beyond Experiment 1 in establishing a
causal relationship between explanation and generalization, but
also in demonstrating the potential to prime an explanatory
mode. Priming mechanistic explanations increased the propor-
tion of mechanistic explanations subsequently provided, and
priming functional explanations increased the proportion of
functional explanations subsequently provided. The impact of
prime type also extended to generalization judgments, and there
was no evidence for stronger effects of priming within-domain
than across-domain, suggesting some psychological reality to
explanatory modes that are not proprietary to domains. However,
given that the absence of a stronger effect for same-domain cases
is a null result, it would be especially worthwhile to revisit this
question with larger samples and more sensitive measures. It is
also worth acknowledging more general difficulties in drawing
conclusions from null results.

Finally, Experiment 2 also replicated Experiment 1 in finding
no evidence that “mechanistic generalization” is in competition
with “functional generalization,” and in documenting a higher

baseline tendency to generate functional explanations in both
domains and to generate mechanistic explanations for biologi-
cal organisms more often than for artifacts. Both experiments
also revealed common trends in generalization, with a greater
baseline tendency to generalize to items with shared functions
over shared mechanisms (especially for biological organisms),
and to generalize properties more to artifacts than to biological
organisms.

GENERAL DISCUSSION
Our findings suggest a relationship between how a property
is explained and how it is generalized, whether the explana-
tion is generated freely (Experiment 1), provided experimen-
tally (Experiment 2, priming phase), or induced experimentally
(Experiment 2, generation phase). Across experiments, we find
that functional explanations reliably influence the extent to which
properties are generalized on the basis of shared functions, with
weaker evidence of a comparable relationship between mecha-
nistic explanations and generalizations on the basis of shared
mechanisms. We also find that an explanatory mode can be exper-
imentally induced by providing examples of that explanation
type, and that this induction influences subsequent generaliza-
tions, both within and across domains. These findings suggest
that mechanistic and functional explanations reflect explanatory
schemata that are abstracted beyond individual domains, and that
these schemata play a role in how we generalize from the known
to the unknown. Our findings also suggest that “reasoning mech-
anistically” (as reflected by generalization on the basis of common
parts and processes) does not seem to preclude “reasoning func-
tionally” (as reflected by generalization on the basis of common
functions), and vice versa.

The finding that mechanistic and functional explanations
guide property generalization contributes to existing work
demonstrating a relationship between explanation and general-
ization (Sloman, 1994; Rehder, 2006; Vasilyeva and Coley, 2013).
Unlike previous work, however, the current experiments con-
sidered cases for which participants received causal information
that supported multiple explanations. In such cases, differential
patterns of generalization cannot be accounted for by appeal to
differences in the causal relationships that a reasoner knows or
learns, as this was matched across participants. Instead, the find-
ings suggest that generalizations can be guided by the particular
explanation a reasoner privileges, whether that explanation is
privileged spontaneously or through experimental prompting.

We found a baseline preference for generating functional
explanations over mechanistic explanations, and also for gener-
alizing on the basis of shared functions over shared mechanisms.
These findings are consistent with the idea that teleo-functional
reasoning is a cognitive default (Kelemen, 1999; Kelemen and
Rosset, 2009), or with the idea that people defeasibly prefer func-
tional explanation when there’s a good fit between an object’s
structure and its function (Lombrozo et al., 2007). However, this
could also be a consequence of our stimulus materials rather than
a widespread feature of human cognition. For example, it’s pos-
sible that because our mechanistic explanations often involved
fictional genes or compounds, participants felt that they under-
stood the functional explanations better, and this difference in
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understanding generated a difference in explanatory preferences
and in generalization. While it’s not possible to generate explana-
tions that are identical in all respects except for being functional
or mechanistic, it would nonetheless be worthwhile to pursue
experiments along the lines of those presented here with explana-
tions that have been matched in terms of familiarity, plausibility,
and other dimensions.

Our experiments suggest a more reliable relationship between
functional explanations and “functional generalization” than
between mechanistic explanations and “mechanistic generaliza-
tion.” We did not anticipate this difference, but there are a
few plausible ways in which it might be explained. First, the
difference could result from the potential difference in under-
standing already noted: it could be that the functional expla-
nations generated greater understanding, and that depth of
understanding facilitated generalization. Second, it’s also the case
that proximate parts and processes typically support mecha-
nistic explanations, whereas causal consequences don’t always
support functional explanations. That is, proximate parts and
processes almost always contribute to a mechanistic explanation
for some property, even if they occasionally play a secondary role
as enabling conditions or other subsidiary causes. In contrast,
features can have functional consequences that do not support
functional explanations at all: noses hold up glasses, but we
cannot explain noses by saying they are “for holding glasses”
(Lombrozo and Carey, 2006). As a result, the provision of a
mechanistic explanation could have been essentially redundant
with the mechanistic information provided, while the provision
of a functional explanation was more diagnostic of how the
reasoner was actually representing the explanatory role of the
functional information. Whether either of these ideas hold up to
further scrutiny, the asymmetry between functional and mech-
anistic explanations found in our studies is useful in ruling out
an alternative explanation for the results: that they were merely
the result of the demand characteristics of the tasks. Were this
the case, one would expect parallel effects for both explanation
types.

These experiments are among the first to explore the role
of domain in property generalization, although the results with
respect to domain are somewhat mixed. Both experiments found
greater generalization overall to artifacts than to biological organ-
isms, and this pattern was partially matched by domain dif-
ferences in explanation: functional explanations were produced
more frequently overall for both domains (matching the greater
generalization to items with shared functions), but mechanis-
tic explanations were produced more frequently for biological
organisms than for artifacts, a finding that was not matched
by a corresponding trend in generalization. These results are
broadly consistent with prior work suggesting a privileged sta-
tus for functional explanations in biological domains (e.g., Atran,
1995; Keil, 1995; Heussen, 2010). However, we hesitate to draw
strong conclusions about entire domains on the basis of a hand-
ful of items. Instead, we think the most important findings
concerning domain are that the influence of explanation on gen-
eralization was robust across biological organisms and artifacts,
and that explanatory modes can be induced both within and
across domains.

In concluding, we suggest that generating and evaluating
explanations is an important mechanism by which prior beliefs
are consulted and brought to bear on a given task. While
explanation is surely not the only process that invokes prior
beliefs, it appears to be a particularly powerful one (Lombrozo,
2006; Williams and Lombrozo, 2013; see also Vasilyeva and
Coley, 2013). Research in education, for example, suggests that
prompting learners to generate explanations–even to themselves–
facilitates the integration of the material being explained with
prior beliefs (Chi et al., 1994). Some approaches to learning and
generalization within artificial intelligence also rely on an “expla-
nation” as a way to invoke relevant domain-knowledge (e.g.,
DeJong, 2004; see also Ahn et al., 1992). Understanding the role of
explanation in generalization will require–among other things–
an understanding of which prior beliefs particular explanations
invoke (e.g., Chin-Parker and Bradner, 2010; Landy and Hummel,
2010), why those particular beliefs are invoked, and how those
beliefs constrain generalization.

The distinction between mechanistic and functional modes of
explanation may shed some light on these processes. Explanatory
modes or “stances” are typically posited to explain systematic pat-
terns of explanation and generalization. While the details vary,
mushrooms, computers, and kangaroos can all be reasoned about
“mechanistically,” in terms of causal parts and processes, or “func-
tionally,” in terms of functions and goals. Each mode may involve
a characteristic kind of representation or inference that makes it
useful for particular situations. For example, Lombrozo (2010)
suggests that different aspects of causal structure are privileged
depending on whether a system is construed mechanistically
or functionally. Explanatory modes can thus be conceptualized
as sets of higher-order generalizations that constrain reason-
ing. Depending on which mode is adopted, different aspects of
prior beliefs will be invoked, different kinds of novel beliefs will
be generated, and subsequent patterns of generalization will be
influenced correspondingly. Characterizing the nature of differ-
ent kinds of explanations can thus provide key insights into the
nature of inductive constraints, and the processes by which prior
beliefs guide inference.
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