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Sonification refers to a process by which data are converted into sound, providing an audi-
tory alternative to visual display. Currently, the prevalent method for diagnosing seizures
in epilepsy is by visually reading a patient’s electroencephalogram (EEG). However, sonifi-
cation of the EEG data provides certain advantages due to the nature of human auditory
perception. We hypothesized that human listeners will be able to identify seizures from
EEGs using the auditory modality alone, and that accuracy of seizure identification will
increase after a short training session. Here, we describe an algorithm that we have used
to sonify EEGs of both seizure and non-seizure activity, followed by a training study in
which subjects listened to short clips of sonified EEGs and determined whether each clip
was of seizure or normal activity, both before and after a short training session. Results
show that before training subjects performed at chance level in differentiating seizures
from non-seizures, but there was a significant improvement of accuracy after the train-
ing session. After training, subjects successfully distinguished seizures from non-seizures
using the auditory modality alone. Further analyses using signal detection theory demon-
strated improvement in sensitivity and reduction in response bias as a result of training.
This study demonstrates the potential of sonified EEGs to be used for the detection of
seizures. Future studies will attempt to increase accuracy using novel training and soni-
fication modifications, with the goals of managing, predicting, and ultimately controlling
seizures using sonification as a possible biofeedback-based intervention for epilepsy.

Keywords: epilepsy, music, seizure, signal detection theory, learning, psychophysics, signal processing, sound
design

INTRODUCTION
Since, Hans Berger recorded the first human brainwaves in 1924,
electroencephalography (EEG) has established itself as one of
the most useful non-invasive methods for clinical and scientific
investigations of the brain. EEG offers high temporal resolu-
tion in investigating how electrical activity of the brain relates
to cognition, sleep, emotion, and various neuropathologies such
as dementia and epilepsy. Data from an electroencephalogram are
typically represented visually, with time and voltage fluctuations
on the x- and y-axes, respectively. In this study, we seek first to
represent EEGs from normal and pathological brain rhythms in
the auditory modality. Having defined a simple sonification algo-
rithm for EEGs, we show that naïve human listeners can learn to
distinguish epileptic seizures from normal brain rhythms using
audition alone.

Sonification, in the case of EEG, refers to a process of data-
driven sound composition that aims to make certain characteris-
tics of the EEG waveform perceptible (Kramer, 1994). Techniques
are being developed for both on-line and offline applications, in
the scientific and artistic disciplines (Väljamäe et al., 2013). Sonifi-
cation is being tested for a wide range of uses including monitoring
of biological signals (Glen, 2010), diagnostic work (particularly in
cases of epileptic seizure) (Khamis et al., 2012), auditory feed-
back of motion (Cheng et al., 2013), neurofeedback (McCreadie
et al., 2012), and musical composition (Arslan et al., 2005). Here,

we present a simple EEG-to-sound mapping algorithm and inves-
tigate its potential in monitoring EEGs by determining whether
a non-expert population can use these sonifications to detect a
seizure, based purely on basic musical comprehension skills. These
results will inform the design of seizure monitoring algorithms
that rely on abnormal electrical activity in the brain.

ADVANTAGES OF EEG SONIFICATION
One might ask what the utility of sonified EEG might be, when
compared to the existing standard of visual EEG assessments.
Sonification may have unique advantages for monitoring physi-
ological rhythms due to the nature of human auditory perception.
Compared to visual perception of EEG data, auditory perception –
specifically music perception – may be more suitable for biofeed-
back therapeutic approaches for three reasons. Firstly, musical
sounds and seizure EEGs both have strong frequency patterns;
this correspondence offers a natural mapping system in translating
EEGs to music. For example, pitch control, volume, and duration
of a tone can be determined by any combination of parameters
from the EEG data (Kramer, 1994).

Secondly, our ears are constantly open, unlike our eyes, and
thus the ear acts as a more natural constant monitor that does
not require foveation to function. In conjunction with this abil-
ity, human beings are surprisingly adept at focusing on important
aural information even in noisy environment (e.g., the cocktail
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party effect, Arons, 1992). Studies have demonstrated that subjects
can perform faster and more accurately at complex monitor-
ing of physiological data when the data were presented sonically
rather than by visual display (Fitch and Kramer, 1994; Barrass and
Kramer, 1999; Watson and Sanderson, 2004). The authors suggest
that this advantage of the auditory system can be explained by the
fact that auditory recognition of objects occurs simultaneously in
multiple parallel streams, in contrast to the visual system, which
processes multiple objects serially. Sonification of EEG would pri-
oritize temporal cues and thus allow persons to detect changes in
parallel streams of activity as they occur.

Thirdly, people may find listening to music (especially as gen-
erated by their own neural activity) more motivating than visually
monitoring their EEGs. The enjoyment of listening to esthetically
pleasing sonifications might be an important factor in developing
therapeutic uses and in improving the relationship patients have
with EEG technology. A pleasant esthetic experience for potential
end users of sonification technology is important for clinical util-
ity and should thus be central to our goal. Taken together, while
sonification does not add new information per se, the advantages
to sonifying EEG lie in its user interface and increased usability:
e.g., sonifying EEG may direct the user’s attention to features of
the EEG that are not as readily available to the eye, and thus future
users, who may be epilepsy patients themselves or their caregivers
rather than trained experts in reading EEG, might be able to detect
seizures with minimal training. Sonification may also increase the
options available for future biofeedback interventions.

EARLY USES OF EEG SONIFICATION IN SOUND DESIGN
Perhaps due to these natural characteristics of the auditory system
as a data monitor, electroencephalography has also been revolu-
tionary in the field of experimental music and sound design. Alvin
Lucier’s piece “Music for Solo Performer” (1965) is the first well-
documented instance of using an EEG for sonification purposes.
His composition used two electrodes, attached to Lucier’s tem-
ples, to transmit electrical activity (most notably alpha waves) to
microphones placed inside various percussive instruments. The
amplified frequencies recorded from the electrodes then caused
the instruments to resonate at those same frequencies. This trans-
formation from the electrical waveform of the brain to the acoustic
waves produced by a drum’s membrane occurred in real-time and
represents one of the earliest successful sonification techniques. By
modifying his own state of alertness, Lucier was able to modulate
the level of energy in the alpha band, thus changing the levels of
sound output. Thus, Lucier used his own music composition as an
early biofeedback system.

Since Lucier’s “Music for a Solo Performer,” many composers
have broadened the scope and output of similar explorations, look-
ing into making more controlled and tonal sonifications of brain
waves as recorded by EEG. Pulling from work done by Dr. R.
Furth and E. A. Bevers in the 1940s, Bakerich and Scully filed a
patent in 1971 for the “electroencephalophone,” which they origi-
nally described as a device that can “enable the user to listen to his
own brain-wave generation” (1971). In the same decade, Pauline
Oliveros and David Rosenboom became seminal figures in exper-
imental music composition by using the electroencephalophone,
and other EEG-based forms of synthesis, in their compositions for

sonification purposes, yielding works such as Rosenboom’s“Brain-
wave Music” (1976) and “On Being Invisible” (1977). Our hope is
to draw on this history of ingenuity in experimental music to craft
an elegant new system for the conversion of the brain’s electrical
potentials into sound, for the purpose of creating positive clinical
and esthetic outcomes.

APPROACHES IN EEG-TO-SOUND PARAMETER MAPPING
The processes of sonification depend crucially not only on the type
of data input but also on the data-to-sound mapping process. If
the pertinent data can easily be rendered as a simple variable/time
graph such as the typical EEG time-voltage readings, then the sig-
nal should be easily translatable into sound. If, however, the data
lend itself to simple audification or sonification that adheres to the
general acoustic wave formula by displaying some form of peri-
odicity in its sequence, then one must consider how much of the
recorded data are significant and how much can be considered
noise. In these cases, an algorithm that includes filtering of irrel-
evant noise and/or specific periodicities is necessary for optimal
sonification (Hermann and Hunt, 2011).

The ability of the human auditory system to distinguish mul-
tiple voices and instruments from background noise make it
well adapted to processing sonified EEG. Methods to sonify EEG
data remain relatively unique as some have devised means but
no method has shown extreme utility compared to any other.
Over the past 10 years, new techniques such as parametric orches-
tral sonification have arisen that allow for the use of multiple
channels of data to be sonified from EEG (Hinterberger and
Baier, 2005). These approaches to processing multiparametric
data allow for experimentation with parameter mapping, where
the researcher can match different parameters of the EEG wave-
form with auditory parameters, such as pitch, duration, and
volume. This level of control surpasses basic audification and
allows for composition of novel musical scores from EEG data.
Hinterberger and Baier (2005) have demonstrated that this tech-
nology can be used in real time, using a sample of 0–40 Hz
divided into six frequency bands (namely alpha, beta, gamma,
theta, and delta) assigned to individual voices in a musical instru-
ment digital interface (MIDI) device. Subjects were able to control
these voices and produce music in real time through a brain–
computer interface. Musical compositions, created using similar
techniques, have the potential to support clinical applications. In
the case of applications toward epilepsy, these parameter map-
ping techniques may form the basis of monitoring systems that
inform caregivers of partial seizures that might otherwise go
undetected.

In fact, research is already beginning to show that sonifi-
cations are successful at representing important EEG data for
diagnostic purposes. Khamis et al. (2012) showed that with lim-
ited training, non-experts were able to recognize temporal lobe
seizures using audified EEG at a rate comparable to expert tech-
nicians using visual displays of the EEG waveform. Khamis’s
sonification process required compression of EEG signals over
time, and the frequencies were limited to 1–10 Hz range prior to
time-compression. Using this algorithm, the authors successfully
demonstrated the relative ease of detecting seizures from audified
EEG by non-experts with minimal training. However, due to the
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time-compression inherent in their sonification algorithm, this
technique poses challenges for real-time sonification.

In contrast to the time-compressed sonifications of Khamis
et al., experiments by Baier et al. (2007) have demonstrated the
potential of sonified EEG for diagnosis of epileptic seizure in
real-time using a process of sonification that does not require
compression. Their technique of event-based sonification works
on the principle of suppressing background noise and highlight-
ing both normal and pathological rhythms. Identifying epileptic
rhythms was accomplished by exploiting amplitude of the wave-
form and inter-maxima intervals to trigger specific sonic elements
such as volume, tone duration, and the number of harmonics.
This technique relies on stereotyped EEG rhythms and may not
to be used from patient to patient without adjustment. Despite
this drawback, this work demonstrates that on-line use of EEG
sonification is possible and can exploit the diagnostic advantages
demonstrated by Khamis et al. (2012).

While certain EEG parameters are used for sonification by
almost all researchers in the field, some groups have developed
complex parameter analysis that happens before the data are fed
into the sonification algorithm. One universal parameter is the
time-frequency dimension, and different projects have found dif-
ferent ways to manipulate this parameter. For example, some
research has utilized a sliding-window technique, where data are
analyzed in increments of several milliseconds or seconds (Arslan
et al., 2005). Although this technique helps remove unwanted
artifacts, it introduces latency into the system, thus reducing effec-
tiveness for real-time sonification. Another dimension used in
sonification is signal amplitude. As the amplitude of EEG sig-
nals corresponds to the firing rates of neurons, this parameter
is vital in sonifying ictal brain activity, which manifests itself in
increased firing rate (Blumenfeld, 2003). Because of the high level
of background noise during normal brain activity, measures must
be taken to attenuate this noise if a system attempts to diagnose an
epileptic seizure. Noise may include intense spiking caused by jaw
clenching or head moving, along with other artifacts. For exam-
ple, some groups have found success by linking extreme maxima
and maxima values to separate noise from target activity (Väl-
jamäe et al., 2013). Aside from the time-frequency dimension and
amplitude dimension, various groups have used high-level pro-
cessing of EEG data pre-sonification. These processes include,
but are not limited to, quadratic distance in the feature space
(McCreadie et al., 2012), Gaussian kernel based on a normal
distribution (Hermann et al., 2008), and calculation of time-
domain parameters (Hjorth parameters, Miranda and Brouse,
2005).

In summary, current EEG sonification applications can be
placed on continuum from functional to esthetic (Väljamäe et al.,
2013). While our work certainly lies on the former side, we would
like to make our sonifications esthetically pleasing as well, for
two main reasons. First, if an EEG sonification system is to be
implemented in a public setting (e.g., a hospital or nursing home),
sonifications that are dissonant and cacophonous could be unde-
sirable. Second, creating sonifications that sound pleasing may
help non-experts hear fluctuations that correspond to seizures;
the more strange and unfamiliar our sonifications are, the harder

it will be for someone to hear important developments in the
sonified score. Thus, while the clinical outcome of seizure detec-
tion is undoubtedly the central goal of the present research, the
creation of esthetically pleasing sonifications will serve the clin-
ical goal, as sonifications will be far easier to use as a clinical
device over extended periods of time if they sound pleasing, i.e., if
they adhere to perceptual and cognitive principles that underpin
our appreciation of music [see Lerdahl (1992)]. Thus, our aim is
to develop, and test, an algorithm for real-time EEG sonification
that provides an esthetically pleasing perceptual experience, while
being functionally diagnostic of seizures by a listener with minimal
training.

GOALS OF THE PRESENT STUDY
In the present study, we asked whether human listeners with
no specialized knowledge of epilepsy, and no previous training
in seizure detection, could identify seizures using the auditory
modality alone. We presented sonified EEG recordings to a group
of naïve listeners in a pre-post-training paradigm. We aimed
to test average, non-trained subjects rather than trained experts
(1) to eliminate the variable of how much experience the sub-
ject has had with using EEG or with seizures and epilepsy, and
(2) to see if these non-experts could, given minimal instruc-
tion, learn to detect seizures quickly, possibly quicker than if
they were learning to detect seizures visually. First, the sub-
jects listened to EEG sonifications of both normal EEG pat-
terns and patterns that correspond to ictal activity. After each
trial, the subjects must decide whether the sonification that they
just heard corresponds to normal or ictal activity in a two-
alternative forced choice test. Then, subjects will receive a short
training session on recognizing the auditory patterns that cor-
respond to seizure activity, after which the subjects will take a
test similar to the one administered before training. We expect
that the ability to differentiate between ictal and baseline pat-
terns of activity will be strengthened by the training session.
Performing the pre-training test will help assess the efficacy of
the training session, and provide the opportunity to determine
what other factors (e.g., musical background, pitch-discrimination
ability) might affect the ability to discriminate changes in EEG
sonifications.

Our experiment differs from Khamis et al. (2012) in two impor-
tant ways: (1) we use a sonification algorithm that does not require
compression of EEG data, and (2) we use a very short training
procedure to determine the shortest possible amount of train-
ing needed to perform above-chance levels of seizure detection.
By not being restricted to compressed data, our sonification algo-
rithm can be implemented for real-time analysis. Considering that
seizure diagnosis is time-sensitive, the ability to sonify EEG data
in real-time is not only desirable but also vital to the original goal
of sonification.

To summarize, we predict that by listening to sonified EEGs
generated by our sonification algorithm, human listeners will
be able to identify seizures from baseline, non-seizure activ-
ity using the auditory modality alone, and that accuracy of
seizure identification from will increase after a short training
session.
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MATERIALS AND METHODS
EEG DATABASE
The electroencephalography data used for this study were accessed
through the Children’s Hospital Boston-Massachusetts Institute
of Technology (CHB-MIT) Scalp EEG Database (Shoeb, 2009).
The EEGs were recorded from pediatric epilepsy patients with
intractable seizures. Recordings in the database came from 22 sub-
jects, 5 males, ages 3–22; and 17 females, ages 1.5–19. All EEG
data were recorded at 256 Hz, with 16-bit resolution, and spanned
values from −800 to 800 mV. Data from both ictal and normal
activity were downloaded as European data format (EDF) files,
and 10 s sections of data were converted into individual text files
in MATLAB.

CONVERSION
EEG data were downloaded in EDF from the CHB-MIT Scalp EEG
database, which contained information concerning the record-
ings of the patient including whether the recording contained a
seizure, when during the recording the seizure began and ended
(in seconds), a listing of all the EEG channels, and the sam-
pling rate (256 Hz) and the total length of the recording. We
used 58 files containing seizure and baseline episodes of EEG
recordings from 16 patients. For each patient, four EEG record-
ings were used, two non-seizure and two seizure. For each EEG
recording, the Fz-Cz channel was selected as it was closest to Cz,
which was listed as the most common electrode position used for
sonification purposes (Hinterberger and Baier, 2005). Within the
Fz-Cz channel recording, we isolated a 10-s epoch of EEG data
that contained a seizure of at least 20 s (for the files that con-
tained seizures), and a temporally matched 10 s epoch of EEG
data that contained no seizure (for the files that contained no
seizures), while avoiding pre-ictal epochs in the seizure EEGs, and
epochs in the non-seizure EEGs that contained obvious EEG arti-
facts such as those resulting from movement. This resulted in
10 s clips of sonifications corresponding to 2560 points of data
at the sampling rate of 256 Hz. EDF files were read using Mat-
lab r2014a and the script edfread (http://www.mathworks.com/
matlabcentral/fileexchange/31900-edfread). A Matlab script was
then written to read the EDF files, select a 2560 value sequence
and write those values, in order, in a new text file. The format of
the text file was determined so that the COLL object in Max/MSP
6.1 could sequence the values. Each seizure sonification was cre-
ated from a text file based off of data 10 s (2560 samples) into the
seizure such that the initial stages of the seizure were not used for
sonification purposes.

SONIFICATION
Each text file from MATLAB contained an array of 2560 indexed
millivolt value that corresponded to that 10 s segment. These text
files were then imported into Max/MSP for sonification. We con-
structed an algorithm within Max/MSP for assigning note values
to the imported data points using various objects already avail-
able within the Max software. The sonification algorithm read
every 20th data point in each set, effectively reducing the sample
rate to 12.8 Hz, with the results resembling that of a low-pass fil-
ter. Examples of the pre- and post-downsampled data are shown

in Figure 1B. The numerical data were then scaled linearly to
values between 1 and 40 using the “scale” object in Max. These
data were then fit to the nearest respective integer scale degree
value that corresponded to a major pentatonic scale in the key
of C. To do this, the scale degrees corresponding to the C major
pentatonic scale up to degree= 40 (i.e., 0, 2, 4, 7, 9, 12, 14, 16,
. . ., 40) were mapped out in a separate list, and the scaled data
points were then compared to this list of values. A value of, say,
2, would remain a value of 2 because it matches the scale degree,
but a value of 11 would be rounded up and outputted as 12 to
match a value in the list of scale degrees. These degree values,
now fit to (or “snapped” to) a scale, were then sent as MIDI data,
to Logic Pro 9.1.8. Velocity values of MIDI notes were then ran-
domized between 85 and 127 for amplitude variation. The midi
notes were then played by Native Instruments Massive® wavetable
software synthesizer, using a preset patch named “Old and Far
Away.” This patch was a combination of three low-pass-filtered
sine- and saw-wave oscillators triggered with fast attack and release
times. Ten-second sonified segments were saved as 24 bit, 44.1 kHz
audio interchange file format (AIFF) lossless audio files. Figure 1
illustrates the sonification pipeline. Examples of seizure and non-
seizure audio files are provided on mindlab.research.wesleyan.edu
(Figure 1).

EXPERIMENTAL DESIGN
In order to assess the ability of subjects to detect seizures both
before and after training, this experiment was composed of three
separate blocks. During the first block, subjects would listen to
13 seizure and 13 non-seizure sonifications, and, for each audio
file, report whether they thought the sonification corresponded
to a seizure or non-seizure. Next, the subjects would undergo
a brief training session, during which subjects would listen to
six pre-designated training files, three corresponding to seizure
activity, and three corresponding to baseline activity. While lis-
tening to the randomly presented training files, subjects would
be informed as to the identity of the audio files (i.e., seizure or
non-seizure), such that the subjects learn to differentiate seizure
sonifications from non-seizure sonifications based on audible
characteristics. After this training period, subjects would undergo
a testing block identical to the first testing block, albeit with a
novel set of 26 recordings (13 seizure and 13 non-seizure). This
pre-post design allows for the comparison of detection success
both before and after training. The order of audio files within
each block was randomized for each new participant. In-house
code written in Max/MSP was used to conduct the experiment
and record behavioral data.

SUBJECTS
Fifty-two participants from an Introductory Psychology class
at Wesleyan University participated in return for course credit.
Approval for the participation of human subjects in this exper-
iment was granted by the Psychology Ethics Board of Wesleyan
University. Of these 52 subjects, 43 subjects (mean age 19.02, SD:
1.472; 25 females) provided usable data that were included in our
analysis. Partial and total loss of data files, due to incorrect saving
procedures, resulted in exclusion of eight participants not included
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FIGURE 1 |The sonification process. (A) Flowchart of sonification process, showing seizure and non-seizure EEGs, and their respective sonified scores,
(B) Example of a 10-s seizure EEG epoch before and after down-sampling, (C) Example spectrograms of sonified EEGs: one seizure and one non-seizure.

in the final analysis. The nineth excluded participant did not com-
plete the task because a personal history of seizures rendered the
subject ineligible. Subjects provided basic demographic informa-
tion via a survey administered prior to testing. The survey solicited

data regarding past musical experience and training, as well as his-
tory of mental illness and/or cognitive impairment, and language
skills. All subjects reported having normal hearing. Participants
completed a pitch-discrimination test, the Montreal Battery for
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Evaluation of Amusia (MBEA), the Harvard Beat Assessment Test
(HBAT), the Shipley Institute Living Scale for non-verbal IQ, and
the Interpersonal Reactivity Index survey. These data were kept for
analysis of possible correlations between specific attribute/abilities
and performance on the task.

STIMULI
For the experimental interface, we used an iMac computer with
Sennheiser HD280 Pro headphones and Max/MSP software. Fifty-
eight audio clips were generated from sonified EEGs. These
included 13 seizures and 13 baseline rhythms for pre-training test-
ing, another 3 seizures and 3 baseline rhythms for training, and
another 13 seizures and 13 baseline rhythms for the post-training
test. The audio clips were created in Logic Pro 9.1.8, as detailed in
the Section “sonification” above. Subjects were allowed to set the
volume to a level, they considered comfortable.

PROCEDURE
The experiment comprised of three phases: pre-test, training, and
post-test.

Pre-test
For the first testing block, participants were required to listen to
the entire 10 s audio clip before entering either an S keystroke,
to indicate seizure, or a K keystroke, to indicate non-seizure. After
entering each response, participants would then press the spacebar
to proceed to the next trial. After 26 trials of the first testing block
were completed, the pre-test phase concluded and the participant
moved on to the training phase.

Training
The training consisted of six trials, three of which were seizures
and three were non-seizures. The training interface was designed
to be consistent with the appearance of the testing blocks; how-
ever, during the training, the participant was informed visually
via text on the screen whether the currently presented audio
was derived from seizure or non-seizure EEG activity (“This is a
seizure” or “This is not a seizure”) Participants proceeded through
trials after hearing each 10 s audio clip by pressing the space bar as
in the previous block. After the six presentations were complete,
participants were informed via on-screen prompt that the train-
ing was complete, and the participant moved on to the post-test
phase.

Post-test
The third and last block was identical in design to the first block,
consisting of 26 new sound presentations, 13 of which were
seizures, and 13 were non-seizures. Task instructions were the
same as the pre-test. Once the 26 trials were completed, the data
automatically saved to text files within Max/MSP.

The order of test trials was randomized for each participant.
Each stimulus was presented only once and participants were not
allowed to repeat individual trials or blocks.

DATA ANALYSIS
All data were imported from text files to Excel and SPSS for analy-
sis. We used one- and two-sample t -tests with the conventional

alpha levels of p= 0.05 to determine the significance of the accu-
racy of both testing blocks. Additionally, signal detection theory
was used to assess changes in discriminability from pre-training
to post-training.

RESULTS
Before training, mean accuracy in correctly categorized sonifica-
tions was 53.1% (SD= 0.17). This was not significantly higher
than chance level [t (42)= 1.177, p= 0.25, one-sample t -test
against chance level of 50%]. After training, subjects’ mean
accuracy was 63.4% (SD= 0.13). This performance was signifi-
cantly above chance [t (42)= 6.607, p < 0.001, one-sample t -test
against chance level of 50%]. In addition, the difference in aver-
age accuracy before and after training was highly significant
[t (42)= 3.553, p < 0.001, two-sample t -test; Cohen’s d = 0.963]
(Figure 2).

Signal detection theory was used to characterize sensitivity and
bias before and after training. On average, subjects showed a hit
rate of 50% (SD= 24%) and a false-alarm rate of 44% (SD= 18%)
before training. After training, the hit rate increased to 63.5%
(SD= 17%) and the false-alarm rate was 38% (SD= 18%). The
increase in hit rate was statistically significant as shown by a
two-tailed t -test [t (42)= 3.6, p < 0.001]. d ′ measures of sensi-
tivity were calculated for pre- and post-training blocks. Mean d ′

value pre-training was 0.184 (SD= 0.95) whereas mean d ′ post-
training was 0.751 (SD= 0.75), significantly above-chance level of
0. The difference between these values is statistically significant
[t (42)= 3,6, p < 0.01, Cohen’s d = 0.744].

The measure of response bias (C) was used to compare the
response criteria adopted by subjects before and after train-
ing. Subjects showed a mean positive C of 0.11 (SD= 0.34)
before training, which was slightly but significantly above
chance [one-sample t -test against chance level of 0: t (42)= 2.06,
p= 0.046], confirming a slight response bias toward identi-
fying most sounds as seizures. However, after training, sub-
jects showed a mean C of 0.017 (SD= 0.26), not different
from chance level of 0 [t (42)= 0.41, n.s.], suggesting a reduc-
tion in response bias (Cohen’s d =−0.439). Taken together,
these data show that with a brief training session, subjects
learned to discriminate between seizure and non-seizure sonifi-
cations with increased accuracy, greater sensitivity, and reduced
response bias.

The data collected in the surveys and preliminary tests were
correlated with the recorded accuracy in both blocks as well as
the difference between training blocks. No significant correlations
were found.

DISCUSSION
In this study, we defined an algorithm for sonifying seizure and
non-seizure EEGs and showed that with a small amount of train-
ing, a non-expert population can detect the difference between
seizure and non-seizure sonifications with above-chance accu-
racy. Prior to training, the seizure and non-seizure sonifications
were not easily differentiable based on audible features, given that
subjects did not perform better than chance on the first block.
After a very short training session, however, subjects performed
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FIGURE 2 | Results of brief training on seizure identification from
sonified EEGs. (A) Proportion correct of seizure identification pre- and
post-training, showing improvement after training. (B) d -Prime values of the

same responses, showing improvement in sensitivity. (C) Criterion values of
the same data, showing reduction in bias. *p < 0.05; **p < 0.01. Error bars
reflect between-subject standard error.

significantly higher than chance, with the mean accuracy rising
from 53.1 to 63.4%. The d ′ values, indicating the sensitivity index,
demonstrate that significant improvement in successful discrim-
ination between seizures and non-seizures occurred after brief
training. The 10.3% accuracy increase from block 1 to block 2,
while statistically significant, is not a high enough level of seizure
identification required for the successful future application of
sonification technology. However, future experiments will manip-
ulate factors including, but not limited to, length of training, sound
design, and training parameters.

Some variables were not controlled for in this experiment. For
example, the subject pool was composed of university students of
a particular age group, and this pool does not represent the broad
range of people that would potentially use this technology. In addi-
tion, the amount of subjects’ prior knowledge on epilepsy, EEG, or
neuroscience in general was not assessed, although subjects were
screened for personal histories of neurological disorder. All sub-
jects were taking an introductory psychology course at the time of
participation, and were unlikely to have encountered knowledge
on epilepsy from their coursework thus far. Nevertheless, some
subjects may have had some familiarity with the neurological cor-
relates of epilepsy, and therefore, possibly better able to detect
seizure sonifications from non-seizure sonifications, than others.

In addition, unaccounted-for errors may have occurred during
the course of experimentation. For instance, subjects may have
pressed the incorrect keystroke due to confusion, which leads to a
mismatch between intended and recorded response. Also, due to
technical errors, the experiment program did not save input values

for 8 of the 52 subjects, and these subjects were not included in
statistical analysis.

One identified source of error was the use of an incorrectly
labeled audio file in the training patch. When the experiment was
completed, it was determined that one of the seizure files, used for
training, was sourced from a section of EEG that may not have
included a full seizure. This file has been replaced in the latest
version of our experiment design. It should be noted that, despite
this ambiguity, the training was still successful. We can surmise that
had this error been detected sooner, or if it had never occurred at
all, the accuracy post-training would only have been increased.

In future studies, we hope to improve and refine the sonifica-
tion algorithm and its execution. We purposely crafted a simple
method to allow development, once we learned more about how
subjects responded. Currently, the note is influenced by the wave-
form and volume is determined by the currently randomized
velocity parameter of the MIDI note and could easily be mapped
to a relevant parameter of the waveform. There are two separate
approaches that can complement one another differently depend-
ing on implementation. The first approach is the way the data
are translated into a MIDI signal and how much information the
MIDI signal contains. Note value, velocity, duration of the note,
and other CC values can be mapped into each note base on dif-
ferent parameters. On the synthesis side, we can decide how to
route all the MIDI information such that the velocity of a note
could correspond to the frequency of a filter, the dry/wet ratio of
an effect signal, or volume, in its most simple application. The rel-
ative or absolute value of the point in the algorithm could also
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map velocity, reverb, phasing, and other sound characteristics.
Further velocity or other MIDI messages could communicate the
relative amplitude or change in amplitude or frequency envelope
information. In addition, more waveform analysis could be imple-
mented so that rather than regularly sending notes at the rate of
polling (12.8 Hz), notes would be triggered only whenever a peak
or trough occurs. Alternatively, a function to eliminate redun-
dant notes series could eliminate uneventful data such that our
sonification algorithm consistently causes the intervallic leaping
behavior, we have seen. This would mean that extraneous data of
normal activity would largely result in very few to no sounds and
the sounds would be discrete blips rather than trains of temporally
sequenced notes. When seizure activity occurs, the range of values
would cause a series of intervals to play. Lastly, future manipula-
tions with the timbre of our instrument may help illustrate the
motion of the signal in an obvious way while playing a series of
rapid notes with no distinct attack rather than notes, which have
a attack such as our current instrument.

Another important area of development is to move toward the
goal of a real-time system, i.e., shortening the time delay between
the EEG recording and sound playback. We are currently using
offline-collected data because of its availability and its validated
distinction between seizure and non-seizure categories of EEGs.
However, our sonification system is designed to enable a transition
toward real-time use as it functions without use of time compres-
sion. Furthermore, the sonification algorithm, written in readily
available software packages (Max/MSP and Logic Pro), generates
sounds in real time as it is reading the EEG data, rendering it
flexible toward real-time sonification and platform independence.

Another set of possible modifications to the current experiment
involves enhancing or modifying the training period. Whether
through visual aids, increased exposure, or repetition of train-
ing, the key to successful training will be a balance between
maximizing the utility of esthetic interpretation and perfecting
a training paradigm for the system. It is our intention that this
work will culminate in the creation of pipeline between sonifica-
tion and EEG recording technologies, allowing for a truly real-time
device that may be usable for biofeedback/neurofeedback-based
interventions.

CONCLUSION
In this experiment, we explored the possibility of sonifying elec-
troencephalogram data for the purpose of seizure detection. By
developing a pipeline for data importing and sonification, we
constructed an audible representation of cortical electrical activ-
ity from seizure and non-seizure EEGs and showed that naïve
listeners, independent of musical training, were able to learn to
discriminate between baseline and seizure EEG rhythms. Partic-
ipants performed at chance rates prior to training, but after a
brief (1 min) training session, participants improved significantly
in both accuracy and sensitivity. These results are concurrent
with similar studies and advances in the field of sonified EEG
recordings. Further studies will focus on refining the sonification
algorithm to optimize auditory analysis for clinical applications.
It is our hope that this research will help to create an EEG sonifi-
cation device that could be useful in a noisy clinical environment,

as an alternative to visual EEG monitoring, or in a home envi-
ronment, to allow for mobile monitoring by non-expert care-
givers, as well as future biofeedback/neurofeedback-based inter-
ventions.
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