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The capacity for semantic memory—the ability to acquire and store knowledge of the
world—is highly developed in the human brain. In particular, semantic memory assimilated
through an auditory route may be a uniquely human capacity. One method of obtaining
neurobiological insight into memory mechanisms is through the study of experts. In
this work, we study a group of Hindu Vedic priests, whose religious training requires
the memorization of vast tracts of scriptural texts through an oral tradition, recalled
spontaneously during a lifetime of subsequent spiritual practice. We demonstrate focal
increases of cortical thickness in regions of the left prefrontal lobe and right temporal
lobe in Vedic priests, in comparison to a group of matched controls. The findings are
relevant to current hypotheses regarding cognitive processes underlying storage and recall
of long-term declarative memory.
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INTRODUCTION
Identifying the neuroanatomical correlates of skill acquisition in
special populations remains a fruitful strategy in cognitive science
research (Zatorre et al., 2012; Gu and Kanai, 2014). The iconic
London taxi driver study (Maguire et al., 2000), for example,
highlighted the role of the right posterior hippocampus in human
spatial memory. There is now a large literature on the neuroimag-
ing of human learning (Poeppel and Krause, 2008; Fields, 2011)
that parallels the evolving conceptualization of brain memory sys-
tems (Eustache and Desgranges, 2008; Squire and Wixted, 2011;
Maguire, 2014). In general, imaging of cognition attempts to con-
nect a putative brain region or network to the cortical function
under study, using metrics defined by structural MRI (e.g., gray
matter volume, white matter tract density), functional-metabolic
methods (e.g., functional MRI (fMRI) activations, positron emis-
sion tomography maps), or connectivity analysis of dynamic
data (e.g., resting state fMRI, electroencephalography). When
these modalities are used in combination, concordance of the
results may be used to strengthen the biological hypotheses under
consideration (Hermundstad et al., 2013; Fauvel et al., 2014).
Nevertheless, structural (“fixed”) brain change related to cogni-
tive activity implies reorganization of local neural architecture
over a much longer time scale than, for instance, task-associated
fMRI-detected blood flow change. Thus, structural imaging may
be applied to probe cognition in populations with particular
expertise—those who repeatedly recruit specific cortical areas
over time scales of weeks, months or years (Maguire et al., 2000;
Gaser and Schlaug, 2003; Jancke et al., 2009; Halwani et al., 2011).

In this work, we demonstrate discrete foci of increased cor-
tical thickness in a group of Hindu Vedic priests in comparison

to matched controls. Vedic priests are a unique and highly-
specialized cohort whose scriptural education mandates extraor-
dinary memory training over several years. We were interested
in identifying structural correlates of such cognitive activity. We
hypothesized that alterations in gray matter thickness would be
observed in cortical regions participating in the encoding, storage
and retrieval of verbal semantic and prosodic material.

METHODS
Eleven male right-handed Vedic priests in the age range 21–45
years (mean 33.3) consented to the study. All were in perfect
health, on no medications, and had no previous history of signifi-
cant illness. Eleven healthy male right-handed volunteers, all with
college degrees and matched for age (mean 32.6 years, range 24–
50), served as the control group. Priests had received 8–12 years of
training (mean 9.45), starting at age 5–18 (median 10). All were in
active priestly practice; the median number of years elapsed from
the time of completion of training was 11 (range 5–30).

Magnetic resonance imaging (MRI) volumes (3T Philips
Intera scanner, 8-channel head coil, SENSE acquisition, T1-
weighted magnetization-prepared turbo field echo sequence,
inversion time 1141.5 ms, shot interval 3000 ms, acquisition
bandwidth 177 Hz/pixel, TR/TE = 8.4/3.9 ms; flip angle = 8◦;
matrix size = 256 × 256; field-of-view = 240 mm; slice thick-
ness = 1.0 mm) were acquired from each subject in a single
imaging session.

All scans were manually reviewed to identify excessive move-
ment, gradient non-linearity and B1 field inhomogeneity artifact.
Data processing was carried out in FREESURFER v5.3.0 (Dale
et al., 1999; Fischl et al., 1999). The software generates a surface
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representation of the cortex as a meshwork of vertices from the
high-resolution anatomical MRI volume, delineating the gray-
white interface and measuring the distance across the cortical
mantle (i.e., cortical thickness) at each vertex point. These pro-
cessing steps yielded measures of total cortical gray matter volume
(TCGMV) and mean cortical thickness of the left and right hemi-
spheres (MCTL, MCTR respectively) for each subject. Group
comparisons between priests and non-priests of TCV and MCT
were carried out with independent-samples t-tests. Cortical thick-
ness was visualized by mapping vertex-wise thickness values on to
individual cortical surfaces, with group comparison performed
with a processing stream implicit in FREESURFER. Thickness
data from all subjects were sampled to FREESURFER’s common
fsaverage space and smoothed with a symmetric Gaussian kernel
of full-width half-maximum (FWHM) 10 mm. Statistically sig-
nificant regional thickness differences between the groups were
investigated with a general linear model of the effect of profes-
sion (i.e., priest vs. non-priest) at each surface vertex. Correction
for multiple comparisons was performed by a cluster-based
method (Hagler et al., 2006) that generates random clusters from
smoothed maps of Gaussian noise with cluster size limits gener-
ated through a Monte Carlo simulation. The process was iterated
10,000 times; clusters in the real data were compared with the ran-
dom distribution and those with cluster-wise p-value (CWP) <

0.05 retained. Finally, the retained clusters were resampled in the
reverse direction from fsaverage onto all 22 individual surfaces to
obtain subject-wise summary statistics of the group significance
maps.

The study was approved by the Institutional Review Board of
the University of Texas Health Science Center-Houston.

RESULTS
TCGMV and MCTL/R raw data for all 22 subjects appear in
Table 1. There were no significant differences in TCGMV, MCTL,
and MCTR between the priest and non-priest group (Student’s
t-test for independent samples, p = 0.32, t statistic = 1.036,
d.o.f = 10; p = 0.61, t statistic = −0.529, d.o.f = 10; p = 0.75,
t statistic = −0.3288, d.o.f = 10, respectively).

There were two statistically significant clusters of focal corti-
cal thickening in the priest group compared to the control group
(Figures 1A–D). The first was in the left orbitofrontal cortex
including the anterior portion of the gyrus rectus and medial
orbital gyrus (Brodmann areas 10/11/14, cluster size 460 mm2,
MNI coordinates at peak vertex = [−9.5, 52.6, −21.8], p <

0.001 at peak vertex, cluster-wise p = 0.027 corrected for multiple
comparisons). The second was over the right inferior tempo-
ral gyrus and middle temporal gyrus, straddling the inferior
temporal sulcus (Brodmann areas 20/21, cluster size 601 mm2,
MNI coordinates at peak vertex = [53.0, −17.5, −28.4],
p < 0.001 at peak vertex, cluster-wise p = 0.008 corrected for
multiple comparisons). The mean thicknesses of these two
areas in individual subjects are listed in Table 1; significantly
higher values in the priest group are suggested on even casual
inspection.

There were no significant clusters in the opposite sense, i.e.,
focal areas of significant relative cortical thinning in the priest
group.

DISCUSSION
This work was motivated by the singular characteristics of our
study population. Vedic priests are required to master spiritual
textual material (extracts from the Vedas and their ancillary texts),
most of which were composed prior to the invention of writing
(Scharfe, 2002). The core of Vedic education is rote memorization
of scriptural hymns in the classical Sanskrit language, stanza-by-
stanza, by oral discourse from teacher to student. This method of
instruction has remarkably stayed true to its origin in the early
Vedic period (∼1000 BC) (Altekar, 1944). Scripture memoriza-
tion is achieved by repeated recitation of short hymn segments set
to a characteristic cadence and melodic contour (Howard, 1986).
During a full-time apprenticeship lasting 8–12 years (spanning
childhood through early adulthood), a prospective Vedic priest
may memorize in excess of 10,000 stanzas in this fashion (at 32
syllables per stanza, the material in written form typically occu-
pies over a thousand printed pages; uninterrupted recitation of it
all at normal articulatory speeds—200 stanzas per hour—would
take over two continuous days and nights). To our knowledge,
the assimilation of auditory-verbal material of this quantity in a
specialized cohort is unsurpassed. Such an exceptional cognitive
achievement, we surmised, would be reflected in differences in
brain structure between priests and normal subjects.

It is well-established that the medial temporal lobes in humans
are critical to the formation of long-term explicit (declarative)
memory (Squire and Wixted, 2011). Following an initial period
of consolidation (Squire and Bayley, 2007), memories disengage
from the hippocampus and distribute themselves over multiple
neocortical locations. The continuing role of the hippocam-
pus in the retrieval (Winocur et al., 2010) and reconsolidation
(Tronson and Taylor, 2007) of remote memory is under debate,
though long-term memories of purely semantic nature are con-
sidered hippocampus-independent (Levy et al., 2004; Winocur
and Moscovitch, 2011). The sites of neocortical storage appear to
be those that were initially deployed the processing of the memory
(Squire and Wixted, 2011); indeed, the process of recall of multi-
sensory experience reactivates the very areas that were activated
during encoding (Danker and Anderson, 2010). On this basis,
we expected significant structural changes in priest brain areas
important for verbal semantic encoding and retrieval—the lan-
guage dominant prefrontal cortex, according to the hemispheric
asymmetry and retrieval activation model (HERA) (Tulving et al.,
1994; Habib et al., 2003). Further, due to the importance of
tone and meter to process of Vedic scriptural memorization, we
surmised that auditory areas in the language non-dominant tem-
poral lobe might show thickness changes as well (Peretz and
Zatorre, 2005). Due to the right-handedness of all our sub-
jects, we viewed the left hemisphere as language-dominant in all
individuals, a strong but not unreasonable assumption (Knecht
et al., 2000). Finally, given the long-term semantic nature of
the learned material, we hypothesized that hippocampal changes
would be absent. Our observations were broadly consistent with
these expectations.

Several functional imaging studies have confirmed the HERA
model, establishing that the prefrontal cortex participates in
memory formation, with the type of memory (verbal or non-
verbal) determining the laterality (left or right, respectively) of
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Table 1 | Total cortical gray matter volume, left and right mean cortical thickness, and thickness data of significant clusters for all 22 subjects.

Total cortical gray Mean cortical Mean cortical Mean thickness of left Mean thickness of right

matter volume thickness (left) thickness orbitofrontal inferior temporal

(mm3) (mm3) (right) (mm3) cluster (mm3) cluster (mm3)

P
ri

e
s
ts

Priest #1 507846 2.86 2.85 2.344 3.443

Priest #2 493644 2.87 2.84 2.758 3.373

Priest #3 448277 2.91 2.91 2.825 3.626

Priest #4 426674 2.92 2.93 2.644 3.548

Priest #5 577298 2.85 2.88 2.652 3.339

Priest #6 516813 3.03 3.00 2.849 3.463

Priest #7 561255 2.95 2.97 2.651 3.427

Priest #8 588349 3.02 3.03 3.082 3.504

Priest #9 527582 2.79 2.84 2.727 3.698

Priest #10 594427 3.05 3.07 2.668 3.466

Priest #11 512645 2.98 2.98 2.759 3.913

Mean 523164 2.932 2.938 2.723 3.527

STDEV 54684 0.083 0.081 0.179 0.165

N
o

rm
a
ls

NS #1 593345 2.90 2.91 2.252 3.168

NS #2 570486 3.03 3.08 2.349 3.214

NS #3 637342 2.99 2.99 2.123 2.792

NS #4 502778 2.84 2.86 2.118 2.564

NS #5 528817 2.86 2.88 2.254 2.788

NS #6 581388 2.88 2.89 2.584 3.323

NS #7 542612 2.89 2.89 2.658 2.947

NS #8 452104 2.99 2.98 2.338 2.994

NS #9 557929 2.87 2.87 2.2 3.062

NS #10 573722 2.86 2.88 2.773 3.228

NS #11 509266 2.96 2.92 2.245 2.982

Mean 549980 2.915 2.927 2.354 3.005

STDEV 50511 0.0651 0.0658 0.220 0.2270

There were no systematic differences between the two groups for the first three measures. The priest group however exhibited appreciably larger mean thickness

in the two cluster locations that were confirmed statistically significant (underlined bold numbers; see text). STDEV, standard deviation; NS, normal (control) subject.

activation (Tulving et al., 1994; Kapur et al., 1995; Nyberg et al.,
1996; Buckner et al., 1999). Controlled retrieval of long-term
verbal memory engages prefrontal cortex (Danker et al., 2008),
with the frontal pole and ventro-inferior prefrontal cortex acti-
vated in a material-specific manner in both working memory
and long-term memory paradigms (Braver et al., 2001). One
view of the organization of the prefrontal cortex is of a dorsal-
ventral and rostro-caudal hierarchy, with the more rostral and
ventral areas concerned with increasingly higher-order retrieval
coordinative tasks, such as controlling retrieval in accordance to
context, or integrating retrieval across large time scales (Race
et al., 2009). The left frontal thickening seen in our priest popu-
lation was entirely ventral, extending rostrally to the frontal pole.
Thus, these findings were consistent with the habitual use of the
brain areas involved in verbal encoding and controlled, context-
dependent retrieval. Interestingly, there is evidence from a study
of musical memory (Platel, 2005) that prefrontal fMRI activation
in an experiment testing retrieval of semantic musical memory

(as opposed to episodic musical memory) is orbitofrontal and
medial frontal in location (rather than ventro-lateral). The for-
mer location is more concordant with our results, and may relate
to the peculiarity of the verbal semantic processing in Vedic
training—its association with meter and tone.

The right temporal lobe cortical thickening in priests may be
understood by considering the processing of acoustic verbal infor-
mation. Numerous functional imaging paradigms have estab-
lished that the spoken word activates the superior temporal gyrus
(STG) bilaterally (Hickok, 2009). According to the “dual stream”
hypothesis (Hickok and Poeppel, 2007), subsequent phonologi-
cal processing then proceeds in a left-dominant “dorsal stream”
comprising the posterior superior temporal lobe, parietal oper-
culum and posterior frontal lobe, and a bilaterally represented
“ventral stream” that projects into anterior and middle temporal
lobe areas. Phonological processing in the left and right ventral
streams is thought to be computationally asymmetric, with the
left hemisphere “sampling” information at a higher rate than the
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FIGURE 1 | Significant thickness clusters displayed over the pial surface

reconstruction of FREESURFER’s average template brain. (A,B) Inferior
and medial views of the left hemisphere, show a single cluster extending
over the medial, ventral and polar orbito-frontal cortex. (C,D) Inferior and
lateral views of the right hemisphere show a larger cluster occupying the

middle inferior temporal neocortex, over the inferior temporal gyrus, the
inferior temporal sulcus and part of the middle temporal gyrus. Key: STG,
superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal
gyrus; FG, fusiform gyrus; PHG, parahippocampal gyrus; SFG, superior frontal
gyrus; GR, gyrus rectus; MOG, medial orbital gyrus.

right hemisphere (Boemio et al., 2005). An alternative view is
that the left hemisphere computes in the time domain, and the
right hemisphere in the frequency domain (Zatorre et al., 2002).
These ideas seek to explain the left-hemispheric dependence of
high-frequency phonological (syllabic) information discrimina-
tion from the right-hemispheric slower frequency (prosodic)
discrimination (Poeppel et al., 2004). Despite computational dif-
ferences, both hemispheres are thought to process phonological
information sufficiently for semantic-lexical access. Assuming
that auditory speech information with strong prosodic content—
as encountered in Vedic training—preferentially engages right
temporal lobe mechanisms, the right temporal neocortex would
be the main repository for those semantic memories (Binder and
Desai, 2011; Squire and Wixted, 2011). On a different point,
there is evidence that setting verbal material to melody and
meter facilitates its memorization (Purnell-Webb and Speelman,
2008), and the strategy of associating text with cadence and
tone may have historically evolved as a cognitive tool in Vedic
education.

It is instructive to compare our results with other structural
imaging observations of human memory. In the study of Maguire
and colleagues (Maguire et al., 2003) a group of 10 individu-
als of exceptional memory ability were compared to a group of
matched controls. No systematic differences between the groups

were found on gray matter volume measurements by voxel-based
morphometry. Instead, the authors found on functional imaging
experiments that the superior ability of exceptional memoriz-
ers was based on novel spatial cognitive strategies. Given the
unequivocal gray matter thickness changes in our priest group,
we conclude that—as hypothesized—the changes seen were not
a reflection of innate talent, but instead were a consequence of
memory training. These conclusions are also supported by the
lack of population bias (Bavelier et al., 2009) in our study: chil-
dren who undergo Vedic training do so as a family tradition in
certain Hindu families and are not chosen for any special abil-
ities beyond a basic capacity for education. All priests in our
cohort also received, as is usual, a few years of normal school-
ing prior to entering Vedic apprenticeship. On the other hand,
our results are highly concordant with a recent study (Engvig
et al., 2010) on the effects of memory training on cortical thick-
ness in a group of upper middle-aged subjects. In this study, 22
healthy subjects were administered an 8-week intensive memory
training program consisting of word list memorization through
a spatial visualization mnemonic method. The latter method—
in effect, a cognitive tool—links the to-be-remembered words
with a spatial route of various landmarks during encoding. At
recollection, the route is remembered, together with the asso-
ciated words. Much as with the link to rhythm and melody,
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the linkage of verbal material to visuospatial imagery has been
shown to facilitate memorization (Lindenberger et al., 1992). The
authors found cortical thickness increase over both orbito-frontal
cortices, the right fusiform gyrus, and the right insula. From dis-
cussion above, we presume the left prefrontal changes were related
to verbal encoding and retrieval, with the homologous changes
on the right due to the strongly visuospatial nature of the encod-
ing and recall process. Interestingly, the right fusiform gyrus
thickness change observed by these authors co-localized precisely
with lesion location in patients with so-called topographic land-
mark amnesia (Aguirre and D’Esposito, 1999), wherein patients
lose the ability to mentally navigate among landmarks, though
they have no difficulty is recognizing the landmarks themselves.
Presumably, the cortical thickening seen in the right fusiform
gyrus by the authors reflected the activity of this cortical area
in binding verbal memory to landmarks and the storage of the
verbal-spatial memory complex. The right insular changes were
less definitive in origin, as the authors themselves imply. Tellingly,
the extent of insular changes did not correlate with memory
score improvements (contrasted to the prefrontal and temporal
lobe changes). The authors speculate that the insular thickening
reflected the role of that region in coordinating between brain
states during the encoding process, and did not directly reflect
processes associated with memory improvement. Our results
(lack of significant insular changes in priests) would support these
conclusions.

We comment on a few technical issues. Our choice of
FREESURFER was based on the software’s documented accuracy
in measuring cortical thickness from T1-weighted MRI images
(Fischl and Dale, 2000), and its validation by both histology
(Rosas et al., 2002) and expert manual review (Kuperberg et al.,
2003). We were content to acquire a single T1 volume, rather than
acquiring multiple volumes and averaging as practiced by some
authors. Our strategy was based on FREESURFER’s documented
insensitivity to T1-data redundancy in the absence of scanner and
software upgrades (Han et al., 2006; Jovicich et al., 2009). The
multiple-comparisons testing carried out in FREESURFER is not
a Bonferroni-type p-value correction. Clusters are instead cho-
sen by vertex-wise thresholds that the experimenter specifies (we
specified p < 0.01), comparing cluster sizes with those generated
randomly, and retaining cluster sizes specified through a second
threshold (we chose p < 0.05). Thus, the “multiple comparison”
aspect of the processing is essentially a cluster-wise thresholding
procedure, and the method could fail to pick up small clus-
ters of subthreshold size with high vertex-wise p-values. Our
choice of a small FWHM (10 mm) for raw thickness data smooth-
ing (see Methods) attempted to deal with this caveat. In other
words, we consider our detection of significant clusters accurate
down to a characteristic cluster length dimension of ∼10 mm (or
area ∼100 mm2). Areas of significance much smaller than this
would be neglected in our analysis, though equally we would have
difficulty in ascribing specific functional significance to areas of
such small size in the association cortex.

One weakness of our study was its unimodality: we were
unable to perform additional structural analysis (e.g., white mat-
ter tractography) or any dynamic analyses (e.g., resting state
fMRI connectivity). Another weakness was our modest sample

size. It will be interest to extend our analyses in the future to
a bigger group, specifically exploring structural and functional
connectivity between the areas of increased cortical thickness.
However, we believe our findings are significant for several rea-
sons. Among primates, the capacity for long-term auditory mem-
ory may be uniquely human, and may relate to the human
language ability (Fritz et al., 2005). Thus, our results demonstrate
the first brain morphometric correlates of this skill, when highly
developed. Second, the task-related changes pertained to a rel-
atively narrow cognitive “bandwidth”: the material memorized
by priests was entirely semantic and non-spatial in content, and
largely absorbed through an auditory route. Our results there-
fore pertain to a “pure” cognitive paradigm, and may serve to
benchmark related studies in the future. Third, our results are
concordant with, and inform, an expansive literature in the neu-
roscience of memory, whether from the imaging, neuropsycho-
logical, or neurological lesion-deficit point of view. Particularly
informative is our observation of “verbal” memory being effec-
tively right-lateralized in the temporal lobe in right-handers due
to its association with tone and meter. Finally, we demonstrate
the enduring value of the study of expertise in highlighting brain
mechanisms; and in a unique population never before studied in
this manner.

Longitudinal imaging with more subjects will elucidate the
finer details of cognitive processes involved in the process of
Vedic priesthood training (e.g., the relative roles of the domi-
nant and non-dominant hippocampi as the material is learned),
and changes associated with later stoppage of priestly practice and
aging. A larger study will also enable exploration of the individual
roles of factors such as age of training onset, years of training, and
duration of post-training practice on the imaging changes.
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