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INTRODUCTION
Sleep spindles are short bursts of sleep
EEG activity in the range of 11–15 Hz,
reflecting central nervous system integrity
and considered to promote sleep conti-
nuity, learning and memory consolidation
processes. This contribution comments on
the automated detection of sleep spin-
dles and their intracranial sources, as well
as on experimental and clinical studies
for the characterization of spindles and
their sources, and the study of their func-
tional significance. Supporting literature is
provided wherever appropriate, although
comprehensive review is out of the scope
of this opinion paper.

AUTOMATED DETECTION OF SLEEP
SPINDLES
DETECTION METHODS
Visual EEG analysis heuristics, such as
counting the number of peaks of the EEG
signal within a time window, or count-
ing the number of successive EEG waves
having a specific amplitude and period
within that window, can be utilized for
spindle detection, provided relatively high
sampling rates beyond the Nyquist cri-
terion are chosen, e.g., 250 Hz (Principe
and Smith, 1986; Ktonas, 1996). However,
appropriate EEG pre-filtering with wide-
band (low-Q) bandpass filters (Shirakawa
et al., 1987) may be necessary. Techniques
which are based on human pattern recog-
nition can present problems because there
is no explicit definition for a sleep spindle.

Spindle morphology may vary between the
so-called “fast” and “slow” spindles, across
subjects, with age and health condition
(Nicolas et al., 2001; Ktonas et al., 2009).
Appropriate initialization procedures in
the detection system, such as adaptively
adjusting amplitude or frequency param-
eters per subject, may help (Ray et al.,
2010). Expert system-based approaches,
incorporating complex domain knowl-
edge, might be able to address these
problems.

Spindle detection can be based on spec-
tral analysis implemented via the Fast
Fourier transform (FFT). Such techniques,
although simple to implement, exhibit
problems of FFT-based spectral analysis:
inability to detect short (“phasic”) EEG
events, unless the time window of the anal-
ysis is short as well (which may result
in problems of frequency resolution), and
difficulty in distinguishing between dif-
fuse “background” activity in the spindle
frequency band and well-defined spindles.
These problems can be addressed by using
time-frequency analysis techniques (e.g.,
wavelets) as well as matching pursuit pro-
cedures (which can be viewed as a gen-
eralization of wavelet analysis), although
questions still remain as to the “best”
mother wavelet or number and kind of
atoms to use.

The above methods rely on the a
priori knowledge of some electrographic
characteristics defining the sleep spin-
dle. The artificial neural network (ANN)

approach for detection may not depend
on any such explicit knowledge (e.g.,
Ventouras et al., 2005). However, the
generalization capability of ANN-based
methods, which cannot be evaluated ana-
lytically (as in an expert system-based
method), is not “guaranteed” and it
depends in a quite non-linear way on
the structure of the ANN architecture
and on the training data. Combinations
of possibly more than one ANN systems
as pre-processors allowing any “spindle-
like” waveform to be further evaluated,
followed by a knowledge-based system
mimicking an expert (or a consensus
of experts) for more elaborate analysis,
appear to be promising approaches.

A successful detection system exhibits
mostly true positive spindle detections
(TPs) and very few false positive spindle
detections (FPs). We define TP perfor-
mance (TPP) as follows: (the number of
TPs)/(the number of spindles detected by
the visual scorers). If possible, the visu-
ally detected spindles should reflect the
consensus of several scorers. Visual scor-
ing is still the “gold standard” to compare
automated detection systems to, despite
the fact that experts often make mistakes,
may be biased using ill-defined proce-
dures, and may not be always consistent.
We define FP performance (FPP) as fol-
lows: (the number of FPs)/(the sum of FPs
and TPs). TPP and FPP figures should be
provided for testing data, which should be
separate from training data. Both training
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and testing data should contain records
of several subjects, of various ages and
pathologies, as sleep spindle morphol-
ogy may vary as a function of age and
pathology. In addition, the data should
contain EEG epochs exhibiting various
kinds of recording artifacts, such as move-
ment and muscle (EMG) activity, since
automated detection systems should be
capable of analyzing routine sleep EEG
records obtained in an artifact-prone clini-
cal environment. Therefore, artifact detec-
tion or rejection capabilities should be
incorporated into detection systems.

Deciding on “optimum” TPP and FPP
figures is not straightforward. Satisfactory
TPP and FPP figures should relate to the
use of the automated system. For example,
if the system is to be used for automated
sleep staging in routine sleep EEG analysis,
it may not be necessary to detect each and
every sleep spindle, but enough of them so
that a 30-s EEG epoch can be accurately
assessed as sleep stage 2 (Rechtschaffen
and Kales, 1968). However, in order not
to misinterpret as sleep stage 2 other sleep
stages where no spindles are expected, a
“relatively good” FPP (say, less than 20%)
may be appropriate. In cases where not
missing spindles is of paramount impor-
tance, as in sleep EEG records of patients
with neurological or psychiatric disorders
where there is a paucity of spindles (e.g.,
dementia, schizophrenia), increasing TPP
and decreasing FPP may be necessary.
This could apply, for example, to clinical
studies on the effect of pharmacotherapy
in schizophrenia, where effects on tha-
lamic centers involved in sleep spindle
generation are investigated (Ferrarelli and
Tononi, 2011). Assuming that high TPP
and low FPP figures might necessitate a
complicated system structure, it should be
of interest to develop systems exhibiting
some kind of modularity, whereby TPP
and FPP could be altered depending on
the use.

EXPERIMENTAL AND CLINICAL STUDIES
A reliable detection system can contribute
to the effective and accurate quantifica-
tion of sleep spindle occurrence patterns,
either through spindle counts or spindle
density figures (i.e., spindle number/time
window of observation). It can also aid
in topographical studies of “slow” and
“fast” spindles, which should be of interest

(Zeitlhofer et al., 1997), as well as con-
tribute in tracking the propagation of
sleep spindles across the scalp, for the
study of sleep spindle dynamics (O’Reilly
and Nielsen, 2014). In some cases, the
spindle sequence pattern (e.g., how inter-
spindle time intervals are distributed in
time) might be of importance (Ktonas
et al., 2000), especially if spindle genera-
tion mechanisms are being studied. There
is evidence that sleep spindles are gener-
ated through the interaction of cortico-
thalamo-cortical neuronal networks, and
that the so-called Slow Wave Oscillation
(SWO), a cortical EEG rhythm of fre-
quency content less than 1 Hz, serves as
a “pacemaker” for the thalamic reticular
nucleus to generate spindles (Steriade and
Amzica, 1998). Studying sequence pat-
terns in inter-spindle time intervals can
provide information about SWO intra-
frequency dynamics which may relate to
cortical processes of interest, such as learn-
ing and memory consolidation (Molle
et al., 2011).

Systems should provide the capabil-
ity of extracting specific electrographic
parameters from the detected spindles,
such as mean amplitude, intra-spindle fre-
quency and spindle length, which may
relate to EEG generating mechanisms
possibly affected by an experimental pro-
cedure (e.g., sleep deprivation, pharma-
cotherapy) or a neurological/psychiatric
disorder. Accordingly, any changes in spin-
dle mean amplitude may relate to changes
in cortical processes, while changes in
intra-spindle frequency and spindle length
may relate to changes in thalamic or
thalamo-cortical processes (Steriade and
Amzica, 1998). Given their electrographic
shape, sleep spindles could be viewed
as amplitude-modulated and frequency-
modulated (AM/FM) signals. Therefore,
methodology for the analysis of ana-
lytic signals (e.g., Hilbert transforms) as
well as time-frequency analysis techniques
provide the opportunity of extracting
parameters related to the instantaneous
envelope and instantaneous frequency
of spindles, allowing the possibility to
study pathological processes that might
affect such parameters, as, for exam-
ple, in schizophrenia, dementia and cog-
nitive dysfunction (Ktonas et al., 2009;
Ferrarelli and Tononi, 2011; Carvalho
et al., 2014).

ESTIMATION OF INTRACRANIAL
CURRENT SOURCES FOR SLEEP
SPINDLES
ESTIMATION METHODS
The non-invasive estimation of intracra-
nial current sources for sleep spindles can
be achieved by solving the inverse bio-
electromagnetic problem, based on scalp
EEG or MEG (magnetoencephalography)
measurements. The sources are usually
modeled as current dipoles. In the equiv-
alent current dipole (ECD) approach,
the number, location, amplitude and ori-
entation of dipoles are to be deter-
mined. A set of dipoles is selected
which best conforms to an optimization
criterion.

In the Distributed Source Model
(DSM) approach no restrictions are
imposed on the number of sources
to be computed. Optimization tech-
niques are adopted for solving this highly
under-determined problem, incorporat-
ing mathematically and/or biophysically
inspired restrictions, but without cer-
tainty that no distribution other than the
selected one could be closer to the real
underlying distribution. Low-Resolution
Electromagnetic Tomography (LORETA)
is a DSM method selecting the solu-
tion which minimizes the Laplacian of
the depth-weighted sources. Based on
the assumption that contiguous neu-
ronal assemblies have correlated activity,
LORETA provides solutions that might be
“over-smoothed.” Since anatomically con-
tiguous areas can be functionally distinct,
concurrent activity in such contiguous
areas must be dealt with attention when
inspecting the results of LORETA. Other
DSM methods, like dynamic SPM (dSPM)
and standardized LORETA (sLORETA),
compute statistical scores indicating loca-
tions where activity would occur with
low error probability, therefore creat-
ing statistical parametric maps which
can provide more focused loci of activ-
ity than LORETA. Taking into account
the rather diffuse distribution of spin-
dle cortical activity, DSM methods seem
more appropriate for spindle source esti-
mation than ECD methods, since ECD
methods limit the number of sources that
can be investigated and, in order to per-
form adequately, the number of sources
must be inferred a priori (Michel et al.,
2004).
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EXPERIMENTAL AND CLINICAL STUDIES
Source estimation techniques can be used
to elucidate plausible neural generation
mechanisms for sleep spindles and, in par-
ticular, the electrogenesis of “slow” and
“fast” spindles. LORETA based on EEG
has provided indications that fast (slow)
spindle source activity is located poste-
riorly (anteriorly) in the cortex (Durka
et al., 2005; Ventouras et al., 2010). Studies
based on MEG data (Manshanden et al.,
2002; Urakami, 2008) have found that four
source areas, located in parieto-central and
fronto-central cortical regions, bilaterally,
adequately explain most of the variation
in spindles, although indications for con-
sidering both slow and fast spindle source
activity as a single event were provided
using MEG data (Gomenyuk et al., 2009).
However, the inversion of simultaneous
EEG and MEG recordings (Dehghani
et al., 2010) has found that there are signif-
icant differences between sources derived
from EEG and those derived from MEG.

Although there is some degree of simi-
larity among the source areas detected by
the various studies, there is a need for pro-
viding a comparative analysis of a compre-
hensive set of inversion methods applied
to an extensive set of data because of
the different principles on which the var-
ious methods operate. Along these lines,
the concurrent recording of EEG and
MEG should be pursued. Similarly, sev-
eral studies have used concurrent EEG and
fMRI recordings, investigating the fMRI-
obtained brain activation during sleep
spindles (Caporro et al., 2012). EEG/MEG
modalities are generally restrained to cor-
tical imaging. However, the generators of
spindles are thought to be thalamic and,
therefore, not accessible to EEG/MEG.
Concurrent EEG and fMRI recordings
can provide information on “spindle-
coincident” activation in sub-cortical for-
mations, such as the thalamus. Therefore,
the limitations of the bioelectromagnetic
inverse problem methodologies can be
surpassed, providing indications for rela-
tions of “slow” and “fast” spindles to tha-
lamic and cortical activity (Schabus et al.,
2007). Consequently, such studies should
be actively pursued and are expected to
significantly elucidate spindle generation
mechanisms.

Application of inversion techniques in
patient populations should be encouraged,

as in investigating the cortex involvement
in the asymmetry of spindles after hemi-
spheric stroke (Urakami, 2009) and the
generation of spindles in temporal lobe
epilepsy (Del Felice et al., 2013). A topic
that has not yet been addressed concerns
the extraction of parameters related to
the phenomenology of intracranial cur-
rent sources. Accordingly, it might be of
interest to compute measures of current
source spread and intensity as a function
of time (along the duration of a spin-
dle). Such approaches could help in dif-
ferentiating healthy controls from patient
populations, and in differentiating among
various patient populations as well.

SUMMARY
This contribution provided comments on
methodological issues related to the auto-
mated identification and characterization
of sleep spindles and their intracranial
sources, and to the understanding of their
functional significance. Specific guide-
lines were presented for the computer-
based detection and analysis of spindles
and their intracranial sources, as well
as for related experimental and clinical
studies.
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