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Along with the development of distributed EEG source modeling methods, basic
approaches to local brain activity (LBA-) neurofeedback (NF) have been suggested.
Meanwhile several attempts using LORETA and sLORETA have been published. This
article specifically reports on “EEG-based LBA-feedback training” developed by Bauer
et al. (2011). Local brain activity-feedback has the advantage over other sLORETA-based
approaches in the way that feedback is exclusively controlled by EEG-generating sources
within a selected cortical region of training (ROT): feedback is suspended if there is no
source. In this way the influence of sources in the vicinity of the ROT is excluded. First
applications have yielded promising results: aiming to enhance activity in left hemispheric
linguistic areas, five experimental subjects increased significantly the feedback rate
whereas five controls receiving sham feedback did not, both after 13 training runs (U-test,
p < 0.01). Preliminary results of another study that aims to document effects of LBA-
feedback training of the Anterior Cingulate Cortex (ACC) and Dorso-Lateral Prefrontal
Cortex (DLPFC) by fMRI revealed more local ACC-activity after successful training (Radke
et al., 2014).
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INTRODUCTION
Due to the volume conduction genesis of scalp-EEG signals,
single- or few-channel EEG-recordings barely convey sufficient
information to trace their spatial origin inside the brain. Classical
neurofeedback (NF), which typically uses such EEG-recording is,
therefore, also spatially unspecific. As a consequence, the “how
and where” of changes due to classical NF training in the trainees’
brain is quite uncontrolled and may also vary from person to
person, which might reduce the efficacy of NF training.

PROPOSED SOLUTIONS
Concerning improvement of the spatial specificity of NF training,
several options have been proposed and partly evaluated during
the last two decades. All utilize links between the feedback signal
and information from spatially restricted brain areas.

Aiming for high spatial resolution, real time functional mag-
netic resonance tomography (rtfMRT) was explored by Yoo and
Jolesz (2002) and implemented as NF procedures by Posse et al.
(2003), Weiskopf et al. (2003) and deCharms et al. (2004). In the
ensuing years, the basic usability of rtfMRT-NF was demonstrated
in several applications—see Sitaram et al. (2011) and Weiskopf
(2012). Near infrared spectroscopy (NIRS), another blood oxygen
level dependent (BOLD) technique capable of capturing informa-
tion on focal cortical activity, has also repeatedly been proposed
for brain-computer-interface (BCI) applications and recently uti-
lized in NF procedures (Mihara et al., 2012; Kober et al., 2014).
Compared with rtfMRT-NF, NIRS-NF is cost-effective and offers

higher portability and usability although it lacks sensitivity to
subcortical sources.

In the same period, electromagnetic tomographic techniques
have been suggested. LORETA neurofeedback (LNFB)—also
referred to as tomographic NF (tNF)—was the first application
of this kind, developed by M. Congedo and published in 2004
(Congedo et al., 2004). It is based on LORETA, an inverse solution
technique developed by Pascual-Marqui et al. (1994) for localizing
sources of multi-channel time or frequency domain EEG/MEG
signals within the cortical gray matter volume using a three
shell spherical head model. With this procedure the feedback
signal is directly linked to the current density (CD) of voxels
selected from the solution space as region of training (ROT).
Electroencephalogram frequency domain LNFB, as proposed by
Congedo et al. (2004), was used, with varying degrees of success
in studies by Cannon et al. who investigated its behavioral and
cognitive effects and impact on EEG characteristics (Cannon
et al., 2006, 2007, 2008, 2009, 2014). Interestingly, the more
advanced method “sLORETA”, also developed by Pascual-Marqui
(2002) was applied only recently in a tNF-study of 13 children
with ADHD by Liechti et al. (2012) (partly also in Maurizio et al.,
2014). Aiming to evaluate the therapeutic efficacy of tNF, this
study used theta-beta frequency as well as slow cortical potential
(SCP) signal components and a single voxel within the anterior
cingulate cortex (ACC) as “ROT”. Although no learning in the
ACC was observed, this study is quite informative about tNF and
more general aspects of NF.
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It needs to be emphasized, however, that in all these EEG-based
tNF-studies, the spatial specificity of the feedback is still a matter
of debate. The (s)LORETA algorithm localizes generating sources
by approximating a smooth 3D intra-cortical CD distribution
which corresponds to a given EEG/MEG topography. That leads
to overlapping current densities from neighboring voxels i.e., to
spatial blurring. Consequently, stronger current densities in voxels
adjacent to the ROT affect those within the ROT.

An attempt to reduce these consequences has been addressed
and discussed by Congedo (2006). In that paper two fil-
ters in combination with sLORETA are described and tested
on simulated data; one, a spatial filter, reduces the influence
of spatial blurring in the ROI, the other filter acts on the
input signal, enhancing the signal-to-noise ratio (SNR). How-
ever, to our knowledge, no reports on NF-applications of this
particular approach have appeared in the literature to date,
and Cannon et al. have used the LORETA-based procedure
published in 2004 (Congedo et al., 2004) up to 2014. An
a posteriori elimination of spatial blurring effects by partial
correlation analyses on selected ROIs as suggested by Cannon
et al. (2009) is inapplicable for controlling the NF learning
process directly and also needs to be questioned critically: e.g.,
correlations in this context are inherently taken as causally
determined, which is not assured with LORETA derived CD
data sets.

Beamformer spatial filters have evolved with MEG- and BCI-
research. A beamformer consists of weights for each electrode
with which the scalp signal distribution is spatially filtered to
achieve an estimate of the source power at a specific location in
the cortex. By constructing beamformers for each location, less
blurry 3D estimates of the source power throughout the cerebral
cortex can be compiled and generator localization is achievable
by identifying local maxima (Van Veen et al., 1997; Green and
McDonald, 2009; Grosse-Wentrup et al., 2009).

New approaches for solving the EEG/MEG inverse problem
continue to appear in this field e.g., with the aim of identifying
and modeling multiple sources of different spatial extent. Haufe
et al. (2011), for example, propose a decomposition of the CD into
a small number of spatial basis fields; a real-time version, however,
is not yet available.

Apart from the spatial blurring issue, it should be borne
in mind that only restricted information on the ongoing
3-dimensional neural activity pattern within the cortex is acces-
sible via Scalp potential topographies (SPTs). With respect to
this real activity pattern, estimates yield dispersed and over-
lapping sources in the solution space and it is reasonable
to exploit only the local maxima of the estimated activity.
Local Brain Activity (LBA-) feedback training was developed
with these limitations in mind: EEG topographies are ana-
lyzed online by sLORETA and, crucially, feedback is strictly
related to generating sources that have their center i.e., local
CD maximum, located within the preselected ROT (Bauer et al.,
2011).

THE EEG-BASED LBA-FEEDBACK TRAINING: THE PRINCIPLE
Neurofeedback aims to initiate and maintain instrumental learn-
ing. This requires correct and consistent reward during the

ongoing training—LBA-feedback enforces that. Scalp potential
topographies are generated in most cases by several sources and
possible weaker sources within the ROT should not be missed for
feedback. Taking these facts into account “simultaneous multiple
sources (SMS-) LORETA” was developed as the core procedure
of LBA-feedback. It identifies all generator loci i.e., all local
maxima, in sLORETA-derived CD solutions automatically and
rapidly utilizing individual electrode coordinates projected on a
3-shell realistic head model (Pllana and Bauer, 2008, 2011).

The time-domain SMS-LORETA procedure consists of

1. an iteration loop: recorded potential topography > sLORETA
transformation > storage of the maximum current density’s
spatial location > calculation of a forward solution (i.e., surface
potential topography) that corresponds to a standardized source
at this location > cumulative subtraction of this forward solu-
tion from the recorded potential topography > as new input to
sLORETA until the initially recorded potential topography is flat;
and

2. a “spatial” cluster analysis of all stored maximum CD loca-
tions; and

3. the identification of all cluster centers which then are taken as
loci of generating sources with the maximum CD within each
cluster as their corresponding strength—for details see Pllana
and Bauer (2008, 2011).

Screening applications of quasi continuous LBA-feedback
revealed quite infrequent feedback with sometimes long waiting
epochs and turned out to be insufficient to initiate learning.
These observations have led to the current implementation of
LBA-feedback training which is executed in a stepwise task-
/stimulus-linked manner. This strategy also has the advantage
that it allows SNR-enhancement by application of single-trial
evoked potential (EP) estimation. Trainees are presented with
short duration stimuli or tasks (1–8 s) via computer display. To a
greater or lesser extent these involve the ROT-structures. Trainees
are asked to respond to these stimuli/tasks accordingly, and
mentally retain these responses during the presentation period.
EOG- and pre-stimulus-baseline corrected SPTs are extracted
from the ongoing multi-channel EEG at selectable latencies and
SMS-LORETA analyzed. If this analysis identifies a source within
the predefined ROT its strength determines the brightness of a
green feedback signal presented as a narrow frame around the
stimulus/task presentation area. If no source is detected within
the ROT the narrow frame remains or turns gray. This feedback
is updated after each stimulus/task according to the current SMS-
LORETA result. As a crucial additional instruction, trainees are
asked to try to keep this frame green as long and as bright as
possible.

FIRST APPLICATIONS
In order to explore the feasibility of LBA-feedback, a screening
study was performed that investigated if subjects are able to
learn to enhance the activity within left hemispheric linguistic
areas (BA 6,21,22,40,44,45) by means of the task-linked procedure
(Bauer et al., 2011). Ten healthy right-handed subjects partici-
pated in daily training sessions on seven consecutive working days
beginning on Mondays. Five subjects received consistent feedback
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(experimental group; EG) the other five sham feedback (control
group; CG). A session had 2 runs of 120 item presentations
each. Items were sketches of simple actions, each presented on
a computer screen for 3 s with varying inter-stimulus intervals
of 6 +/− 2 s. The subjects’ task was to covertly name the verb
that corresponded to the presented item and, simultaneously,
turn the gray frame around the item presentation area as inten-
sively green as possible as the feedback signal. While each item
was presented, 59-channel DC-EEG signal epochs (equidistant
montage, 125 samples/s, corrected for eye movement artifacts,
referenced to a 500 ms pre-stimulus baseline) were recorded and
immediately analyzed by SMS-LORETA at three latency windows.
Members of the EG received feedback via green frames whenever
generating sources were detected within the ROT. The inten-
sity of the green was proportional to the sum of the strengths
of the identified sources. Green feedback for members of the
CG was randomly presented with varying intensity in 20% of
the items, which corresponded to the average initial feedback
rate of the EG. The second run of the last session was a so-
called “transfer run” i.e., no feedback was shown, but subjects
were informed about this and instructed to behave as they did
during the more recent runs. The aim of this study was to
check whether trainees who receive correct feedback are able to
increase the feedback rate across runs where in controls this rate
does not change. Taking the relative feedback rate per run as
a measure of the NF learning process, we observed an increase
in the EG across the runs but no change or even a decrease
in the CG. The feedback rate increase i.e., the feedback rate
difference between the transfer and the initial run, was signifi-
cantly higher in the EG than in the CG (Mann-Whitney U test;
p < 0.01).

First very preliminary results of a recent screening study per-
formed by B. Derntl’s group (RWTH Aachen, Germany) demon-
strate the effect of LBA-feedback training on the behavioral and
neurophysiological level (Radke et al., 2014). Ten right-handed
subjects were asked to enhance the activity in their ACC (ROT:
BA24/32) and another 10 subjects to enhance the activity in their
Dorso-Lateral Prefrontal Cortex (DLPFC) (ROT:BA46). The NF-
training consisted of 10 sessions with two consecutive runs per
day, each consisting of 70 stimuli of a Stroop-test variant, the
“Age-Stroop”. The “Age-Stroop” items were portraits of people of
a range of ages, annotated congruently or incongruently (50/50%)
as “YOUNGER/MIDDLE/OLDER” and were presented for 3 s in
inter-stimulus intervals of 4 +/− 1 s. Trainees had to judge the
person‘s age as younger, middle or older by button press. While
each item was presented, 58-channel DC-EEG epochs (equidis-
tant montage, 125 s/s, corrected for eye movement artifacts and
a 500 ms pre-stimulus baseline) were recorded and immediately
analyzed by SMS-LORETA at three latency windows. In order to
improve localization accuracy, individual head models (IHMs)
were used. Whenever a generating source occurred in the ROT the
gray feedback-frame turned green as a feedback signal, whereas
its intensity corresponded to the strength of the detected source.
This feedback was updated after each item according to the
current outcome. The subjects were instructed to keep this frame
green for as long and as intensely as possible. First results from
the ACC-group (N = 10) showed a significant increase of the

mean feedback-frequency during training (p < 0.05). Functional
magnetic resonance tomography checks with this group before
and after the training using an event-related design and sepa-
rate sequences of Age-Stroop items and Emotional-Stroop items
[portraits of fearful, happy and sad faces, annotated congru-
ently or incongruently (50/50%) as “FEARFUL/HAPPY/SAD”;
portrayed emotions had to be judged] yielded the following
preliminary observations: (1) reaction times to Emotional-Stroop
items were longer after the feedback training; and (2) a voxel-
cluster in the mid-orbital gyrus extending to the ACC showed
more activity with the Age-Stroop after than before the training—
see Figure 1.

DISCUSSION
Although results only exist for these two preliminary studies to
date, it seems clear that EEG-based feedback training of LBA is
feasible. As the first study demonstrates this for a rather large ROT,
the latter confirms it for a quite small area and moreover on a
neurophysiological level using fMRI.

Most NF control studies focus on questions such as “does it
work” or “how well does it work”, but only a few are concerned
with the changes in the trainees’ brain specifically caused by
NF. Therefore, also the specificity and efficacy of a particular
NF protocol are predominantly determined by its therapeutic
outcome described on the behavioral and introspective level, not
by specific changes in particular brain structures—the “where and
how it works” was rarely addressed. How inadequate such efficacy
measures can be became apparent in the Liechti et al. (2012)
study: unsuccessful tNF training (feedback of single voxel current
densities) of ACC activity in children with ADHD was, never-
theless, accompanied by significant clinical improvement. Not
control over ACC activity was efficient, but the training process
on its own appeared to be an effective behavioral and cognitive
treatment at least for ADHD patients. More generally, in case a
consistent localizable and NF-mediated change in brain activity
can be observed, we can assume that the clinical or behavioral
NF outcome may be due to this change. Validation using fMRI
is possible directly with SCP-NF as aimed at by Hinterberger
et al. (2003). With frequency domain NF, fMRI checks allow only
indirect proofs (e.g., Kinreich et al., 2012). In principle, however,
such validations are essential in order to evaluate the extent to
which NF acts directly on the neurophysiological level.

Compared with fMRI, sLORETA has its limits: (1) not all
activity hot spots within the cerebral cortex at a particular time
can be detected; (2) the spatial resolution is predominantly a mat-
ter of implementation and varies between 5–8 mm and; (3) the
accuracy of localization depends on the source configuration, the
precision of the head model used and the adequate capturing of
the SPTs.

Concerning point (1) there is no room for improvement. As
already been mentioned, full information on the 3-dimensional
intra-cortical activity pattern is not accessible via 2-dimensional
SPTs. Similarly, point (2)—resolution—can hardly be improved
because sLORETA yields smooth solutions with attainment and
optimization of source localization.

Accuracy (point 3), however, is improvable since the head
model can be made more realistic and a sufficient number of
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FIGURE 1 | Stronger BOLD-effect with the Age-Stroop after
LBA-feedback training of the ACC [maximum at 6 24 −10; z = 7.77;
FMRI-image thresholded at T = 4.86; MRT: 3T, TE = 28, TR = 2 s,
34 slices, 3.3 mm3 voxel size] adapted from Radke et al. (2014).

The minor displacement of the BOLD-maximum from the ROT may
result from slightly inaccurate individual ROT-localization—IHMs were
already used, but no localizer EPs. Bottom right: averaged learning
curve of 10 subjects.

electrodes can be applied. Therefore the LBA-feedback procedure
uses already IHMs and session-specific Cartesian coordinates of
58 electrodes.

Individual head models in current use are constructed by
reshaping all parts of the standard BEM-based 3-shell head model
including the Brodmann area (BA) map according to a trainee’s
individual electrode coordinates. Afterwards, the solution space
within the newly shaped cerebral volume is readjusted and the
appropriate lead field matrix recalculated. In this way, individual
voxel-electrode distances are taken into account.

Utilizing localizer procedures to exactly locate ROTs can
additionally improve the spatial accuracy of LBA-feedback
training. For many cortical structures i.e., possible targets
for LBA-feedback training, characteristic EP components are
known which are generated in these structures, e.g., aSSR for
A1 or ERN and FRN for the ACC. Pre-training EP acqui-
sition and subsequent sLORETA source localization of the
appropriate EP-components can indicate the center location

for individual ROT definition. More generally, acquisition of
several localizer EPs together, e.g., from V1, A1, ACC and
DLPFC, may even enable realignment of BA maps within
IHMs.

Since SPTs are the only source of information in this analysis
it is extremely important to capture them accurately. Apply-
ing electrodes on the scalp means sampling in space, where
the same regularities must be observed as in the time domain,
but for spatial frequencies i.e., potential changes over dis-
tances. Studies have shown that about 60 electrodes equally
distributed over the scalp are sufficient to avoid spatial aliasing
(Srinivasan et al., 1998; Luu et al., 2001; Freeman et al., 2003).
The drawback of spatial under-sampling is twofold: (a) higher
spatial frequencies remain undetected; and (b) unidentifiable
spatial aliasing frequencies will be generated, which cannot be
filtered out.

Altogether, the application of IHMs, session-specific electrode
coordinates and appropriate localizer methods makes EEG-based
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LBA- and rtfMRI-feedback comparable, as far as spatial accuracy
is concerned.

With NF applications, in general, deactivation of cortical
structures is also of interest. However, EEG-based LBA-feedback
as described above needs to be explored and evaluated in this
respect—because initiating and pursuing NF-learning of targeted
deactivation via inverse solutions based on time domain EEG
signals is presumably more complex than learning of targeted acti-
vation. Since classical NF is dominated by using EEG frequency
components/bands, frequency-domain LBA-feedback preferably
is intended to become implemented. This way also targeted deac-
tivation at least for some structures is achievable, for example, by
enhancing local alpha activity.

CONCLUSION
With the development and publication of the EEG-based LBA-
feedback procedure, real EEG-based local/targeted brain activity
feedback training is available for the first time. Utilizing knowl-
edge on the functional role of cortical structures and neuronal
networks gathered by social, cognitive and affective neuroscience,
this procedure is particularly suited to enable NF with enhanced
physiological specificity. EEG-based LBA-feedback enables vari-
ous targeted NF applications: in Neurology and neurological reha-
bilitation, as psychiatric/psychological treatments and as training
to expand cognitive and behavioral abilities of healthy humans.
In order to fine-tune all constituents of tNF, however, further
intensive research is necessary.
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