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INTRODUCTION
It has been proposed that one of the
causes of stuttering is a deficit in brain
timing networks (Alm, 2004; Ludlow and
Loucks, 2004; Etchell et al., 2014). In stut-
tering, there appear to be structural and
functional abnormalities in brain areas
(such as the basal ganglia and supplemen-
tary motor area) that provide the sub-
strate for internal timing (the ability to
time movements without an external cue;
Alm, 2010; Etchell et al., 2014). There are
also structural and functional abnormal-
ities in areas (such the cerebellum and
premotor cortex) linked to external tim-
ing (the ability to time movements with
an external cue), which are thought to
represent compensatory plastic changes in
stuttering (De Nil et al., 2008; Watkins
et al., 2008; Lu et al., 2012). Currently,
it remains unknown whether such deficits
in internal timing mechanisms in stutter-
ing may be manifest in any measurable
neural marker. One possible candidate is
oscillatory activity in the beta frequency
band.

THE BETA BAND AND INTERNAL TIMING
Neural oscillations in the beta frequency
band (15–30 Hz) are classically related to
motor activity (see Kilavik et al., 2013
for review): decreasing in power prior
to movement and then rebounding once
the movement has finished (Pfurtscheller,
1981). Recently there has been consider-
able interest in the role beta oscillations
might play in the brain’s ability to rep-
resent temporal information because the
observed associations between beta band
power modulations and the timing of
auditory beats (Arnal, 2012; Arnal et al.,

2014). These investigations are only in
their infancy but have already produced
some intriguing observations. For exam-
ple, Fujioka et al. (2012) used magnetoen-
cephalography (MEG) to measure beta
oscillations while subjects passively lis-
tened to sounds at regular (390, 585, and
780 ms) and irregular intervals (varying
between 390 and 780 ms). Whereas the
slope of the decrease in beta power after
the onset of sounds was identical across
conditions, the rising slope of beta power
was maximal prior to the onset of the
next expected sound for the regular but
not the irregular conditions. The authors
concluded that modulations in beta oscil-
latory activity represented an internal-
ization of predictable intervals between
sounds. More recently, Cirelli et al. (2014)
replicated these results in an electroen-
cephalography (EEG) study showing a
similar pattern of anticipatory beta activity
across multiple temporal intervals. Arnal
(2012) contends that the beta modulation
observed in the Fujioka et al. (2012) study
may reflect the motor system generating
efference copy signals at the tempo of stim-
ulation. Empirical support for this predic-
tion comes from recent work by Arnal et al.
(2014) who showed that correctly judg-
ing whether or not a target tone had been
delayed in time was associated with greater
cortical beta power before the target tone.

There is good evidence to suggest that
beta oscillations in the cortex reflect oscil-
latory activity originating in subcorti-
cal structures. Much of our knowledge
of beta oscillatory activity in subcorti-
cal regions comes from studies in ani-
mals or humans with deep brain implants
to treat Parkinson’s disease (e.g., Levy

et al., 2000) because it is not routinely
possible to make such invasive record-
ings in healthy adults. Nevertheless, the
pattern of beta desynchronization and
resynchronization observed in the cortex
during and subsequent to movement can
also be observed in the basal ganglia of
humans (Brittain and Brown, 2014) and
macaques (Courtemanche et al., 2003).
MEG experiments indicate the basal gan-
glia and cortical regions are connected
via functional loops (see Jenkinson and
Brown, 2011) further suggesting there is
a relationship between beta oscillations at
different levels of the brain. Consistent
with this line of reasoning, Klostermann
et al. (2007) reported that in humans,
beta band power recorded from the basal
ganglia (using depth electrodes) and the
scalp (using EEG) during a cued choice
reaction time task was correlated in phase
and amplitude (measured by magnitude-
squared coherence). Likewise, it has been
demonstrated experimentally that the cor-
tex and the subthalamic nucleus exhibit
beta band amplitude and phase coherence,
and it is hypothesized that such an inter-
action relies on the striatum (Hirschmann
et al., 2011).

The relationship between cortical and
subcortical beta oscillations, together with
the fact that beta oscillations in the
motor and auditory cortices are related
to internal timing (Fujioka et al., 2012),
suggests that beta oscillations in the stria-
tum might also be related to internal
timing. Accordingly, Bartolo et al. (2014)
examined the role of beta oscillations in
timing by recording local field poten-
tials from microelectrodes implanted in
the putamen of healthy macaques during
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a synchronization and continuation task.
This task requires that the macaques tap
in time with a beat (the synchronization
phase) and that they continue to tap once
the beat has been removed (the continua-
tion phase). Whereas the synchronization
phase is an index of external timing (due to
the presence of an external stimulus), the
continuation phase is an index of internal
timing (due to the absence of an external
stimulus; Teki, 2014). The main finding
from the Bartolo et al. (2014) study was
that beta activity was strongly biased to the
continuation phase as opposed to the syn-
chronization phase of the task indicating
that putamenal beta oscillations are tuned
to internal rather than external timing of
movement.

There is evidence that beta oscilla-
tions can be recorded from the striatum
during self-paced movements in humans.
Intracranial recordings from the putamen
of an epileptic patient showed that beta
power peaks near the onset of self-paced
bimanual finger extensions (Sochurkova
and Rektor, 2003). While not focusing
directly on beta oscillations, there is evi-
dence from functional neuroimaging to
implicate the striatum in internal timing
in healthy adults. For example, Grahn and
Rowe (2013) demonstrated that the puta-
men responds to the detection of regu-
larity rather than the detection of beats,
suggesting that it is involved in internally
paced movement rather than simply the
detection of the presence or absence of a
beat. The basal ganglia are also more active
during subjective judgments of temporal
intervals relative to judgments of exter-
nally timed intervals (Coull et al., 2013)
and the putamen shows greater activity
during continuation tapping but not syn-
chronization tapping as compared to rest
(Rao et al., 1997). Interestingly, individuals
with bilateral lesions to the basal ganglia
perform poorly on the continuation but
not the synchronization phase of a rhyth-
mic tapping task (Coslett et al., 2010).
Such evidence suggests that the putamen
is essential for internal timing.

THE BETA BAND AND STUTTERING
What are the implications of these results
in the context of stuttering? If indeed
stuttering is a disorder of internal tim-
ing (Alm, 2004; Etchell et al., 2014), and
if beta oscillations in the basal ganglia

are involved in internal timing (Bartolo
et al., 2014) and/or the cortex (Fujioka
et al., 2012; Cirelli et al., 2014) then it fol-
lows that stuttering could be a disorder
caused by striatal abnormalities that result
in abnormal beta power. More specifically,
stuttering could be a disorder in which
beta power is hypoactive or where the
relationship between cortical and subcor-
tical beta power is unstable. That there
are exaggerated beta band responses in
adults who stutter (AWS; Rastatter et al.,
1998) and reduced beta band responses in
children who stutter (CWS; Özge et al.,
2004) provides some evidence for this
contention.

The suggestion that stuttering is a
disorder caused by abnormalities of the
striatum is consistent with neuroimaging
studies of CWS. Investigating differences
in brain structure and function of CWS is
valuable because they have had much less
time to react to stuttering as compared to
AWS. Due to the young age of the pop-
ulation, any differences observed between
CWS and children who do not stutter
(CWDS), are more likely to reflect anoma-
lies related to the cause of stuttering rather
than consequences of stuttering (see for
review Chang and Zhu, 2013; Etchell et al.,
2014; Sowman et al., 2014). The striatum
is involved in the articulatory control of
speech at different rates (Wildgruber et al.,
2001; Riecker et al., 2005, 2006) and in
speech rhythm (Fujii and Wan, 2014) and
research shows CWS exhibit reduced lev-
els of connectivity between the putamen
and several cortical structures including
the supplementary motor area, superior
temporal gyrus and inferior frontal gyrus
(Chang and Zhu, 2013). CWS also have
less gray matter in the left putamen (Beal
et al., 2013) than CWDS. Interestingly one
study reported CWS exhibit reduced levels
of beta band activity at rest in the cortex
compared to CWDS (Özge et al., 2004).

If abnormal beta power arising from
the striatum is causally related to stut-
tering, then fluency inducing manipula-
tions should normalize beta power. This
contention is supported by functional neu-
roimaging and electrophysiological stud-
ies. The finding that putamenal beta band
oscillations are biased toward internal tim-
ing (Bartolo et al., 2014), together with
the fact that the putamen responds to reg-
ularity (Grahn and Rowe, 2013) and is

known to exhibit beta band oscillations
(Sochurkova and Rektor, 2003), suggest
that the striatum tracks regular sounds via
modulation of beta activity. An fMRI study
has shown that AWS exhibit less activa-
tion of the basal ganglia during normal
speech compared to rest, but that when
speaking in time with regular sounds, the
level of basal ganglia activation is compa-
rable to adults who do not stutter (AWDS;
Toyomura et al., 2011). Given the positive
relationship between BOLD activity and
beta band responses (Laufs et al., 2003),
the normalization of striatal activity may
perhaps be accompanied by normaliza-
tion of beta band activity. Additionally,
since regular sounds influence cortical beta
power (Fujioka et al., 2012; Cirelli et al.,
2014) and cortical beta is associated with
subcortical beta oscillations (Klostermann
et al., 2007; Jenkinson and Brown, 2011), it
is likely that regular sounds also influence
beta power in subcortical structures. There
is evidence that delayed auditory feedback
(DAF), another fluency inducing mecha-
nism, alleviates cortical beta band abnor-
malities in AWS. Rastatter et al. (1998)
used EEG to show that AWS exhibit hyper-
activity of the beta band in the cortex
when reading aloud. This hyperactivity
was markedly reduced by DAF. In the same
way that a metronome affected the haemo-
dynamic response in cortical and subcorti-
cal structures (Toyomura et al., 2011), DAF
might have also affected beta band oscil-
lations in both cortical and subcortical
structures. Indeed most fluency inducing
mechanisms seem to work by facilitating
coupling between auditory and motor sys-
tems as well as the putamen (Stager et al.,
2004).

It is unclear whether the hyperactiv-
ity of the beta band activity in stutter-
ing (Rastatter et al., 1998) reflects causal
or compensatory mechanisms. Since the
volume of white matter and beta band
amplitude increases with age (Uhlhaas
et al., 2010) and because the density of
the white matter fibers underlying the
motor cortex and superior temporal areas
were negatively correlated with the sever-
ity of stuttering (Cai et al., 2014). It is our
opinion that the hyperactive beta oscilla-
tions in the cortex reported in Rastatter
et al. (1998) may be compensating for
hypoactive beta oscillations in the basal
ganglia. DAF may have normalized the
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beta band oscillations in the basal ganglia
thereby reducing the need for compensa-
tion via hyperactive beta in the cortex. This
idea suggests both AWS and CWS should
exhibit reduced beta band responses in
the putamen when internalizing rhythms.
The fact that fluency-inducing mecha-
nisms reduce the hyperactivity of the beta
band in the cortex has major implications
for stuttering. Firstly, it implies that with-
out regular external stimulation, AWS have
abnormal beta oscillations in the cortex
and possibly the striatum. Secondly, nor-
malizing compensatory hyperactivity in
the cortex as well as temporarily alleviat-
ing stuttering implies that DAF may act
to normalize hypoactive oscillations in the
striatum.

In summary, if stuttering is a disor-
der of internal timing and internal timing
is represented by modulations of oscilla-
tory power within the beta band in the
striatum, then it is likely that the cause
of stuttering is reflected in abnormal beta
band oscillations in the putamen. This is
consistent with the structural and func-
tional abnormalities in CWS (Beal et al.,
2013; Chang and Zhu, 2013), the notion
that beta band oscillations are evident
in the putamen (Sochurkova and Rektor,
2003) and that CWS exhibit beta band
abnormalities (Özge et al., 2004). The
idea that beta oscillations reflect the neu-
ral abnormality causing stuttering is fur-
ther supported by the observation that
fluency-inducing mechanisms normalize
activity in the putamen (Toyomura et al.,
2011) and also beta power in the cor-
tex (Rastatter et al., 1998). Future stud-
ies should thoroughly investigate beta
oscillations in stuttering.
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