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Recent functional magnetic resonance imaging (fMRI) studies have shown that
functional networks can be extracted even from resting state data, the so called
“Resting State independent Networks” (RS-independent-Ns) by applying independent
component analysis (ICA). However, compared to fMRI, electroencephalography (EEG)
and magnetoencephalography (MEG) have much higher temporal resolution and provide
a direct estimation of cortical activity. To date, MEG studies have applied ICA for separate
frequency bands only, disregarding cross-frequency couplings. In this study, we aimed to
detect EEG-RS-independent-Ns and their interactions in all frequency bands. We applied
exact low resolution brain electromagnetic tomography-ICA (eLORETA-ICA) to resting-
state EEG data in 80 healthy subjects using five frequency bands (delta, theta, alpha, beta
and gamma band) and found five RS-independent-Ns in alpha, beta and gamma frequency
bands. Next, taking into account previous neuroimaging findings, five RS-independent-Ns
were identified: (1) the visual network in alpha frequency band, (2) dual-process of visual
perception network, characterized by a negative correlation between the right ventral visual
pathway (VVP) in alpha and beta frequency bands and left posterior dorsal visual pathway
(DVP) in alpha frequency band, (3) self-referential processing network, characterized by
a negative correlation between the medial prefrontal cortex (mPFC) in beta frequency
band and right temporoparietal junction (TPJ) in alpha frequency band, (4) dual-process
of memory perception network, functionally related to a negative correlation between the
left VVP and the precuneus in alpha frequency band; and (5) sensorimotor network in beta
and gamma frequency bands. We selected eLORETA-ICA which has many advantages
over the other network visualization methods and overall findings indicate that eLORETA-
ICA with EEG data can identify five RS-independent-Ns in their intrinsic frequency bands,
and correct correlations within RS-independent-Ns.
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INTRODUCTION
The brain intrinsically interacts between distant regions, building
cortical networks during motor and cognitive tasks. Interestingly,
one network enhances its activity in no-task resting state. In
particular, the so called default mode network (DMN) is known to
be active during resting and attenuates during task performance.
However, recent findings suggest that the DMN is also involved
in internally focused processes such as self-referential thoughts,
envisioning one’s future and autobiographical memory retrieval
(Raichle et al., 2001; Buckner et al., 2008). Furthermore, it has
been reported that several cortical networks cooperate with each
other positively or negatively during performance of complex

cognitive tasks (Spreng and Schacter, 2012). These functional
networks have been investigated by lesional and anatomical
studies and during functional tasks with functional magnetic
resonance imaging (fMRI), which measures regional cerebral
blood flow (rCBF) changes. However, one mathematical method
called independent component analysis (ICA) have received
growing attention (Bell and Sejnowski, 1995; Hyvärinen and
Oja, 2000). ICA is a mathematical decomposing method which
separates mixture of signals like electroencephalography (EEG),
magnetoencephalography (MEG) and fMRI data into a set of
statistical independent components (ICs) that are artifact signals
and physiological signals. In addition, it should be noted that
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using ICA these task positive or negative functional networks
can be extracted from “resting state” fMRI data and MEG data
(Beckmann et al., 2005; Allen et al., 2011; Brookes et al., 2011).
These led to the concept of “Resting State independent Network”
(RS-independent-N). Also, there are some other methods used
for the discovery of interactions in the brain which are seed-
based correlation analyses. These analyses has extracted Resting
State correlated Networks (RS-correlated-Ns) from resting state
fMRI data or MEG data (Biswal et al., 1995; Vincent et al.,
2008; Brookes et al., 2011; Raichle, 2011; Hipp et al., 2012).
In this way, ICA and seed-based correlation analyses with
fMRI data has identified several RS-independent-Ns and RS-
correlated-Ns, including the basal ganglia network, auditory
network, sensorimotor network, visual network, DMN, ventral
and dorsal visual pathway (VVP and DVP), and the frontal
network (Biswal et al., 1995; Allen et al., 2011; Joel et al., 2011;
Raichle, 2011; Meyer et al., 2013). However, correlation analysis
has a problem of an implicit assumption of Gaussianity of the
signal where fMRI signals are approximately Gaussian (Hlinka
et al., 2011) but EEG and MEG signals are non-Gaussian (Stam,
2005). Thus, RS-correlated-Ns derived from correlation analysis
of EEG and MEG data are not independent with each other
in a precise sense because of non- Gaussianity of EEG and
MEG data (Hyvärinen and Oja, 2000; Stam, 2005). In addition,
correlation analyses emphasize the special role of some pre-
selected brain region. However, unlike the seed-based methods,
ICA is appropriate for the discovery of distributed networks,
giving equal importance to all brain voxels (Joel et al., 2011).
Furthermore, ICA can remove artifacts such as electromyogram
or base line shift by separating out artifact components (Custo
et al., 2014).

Unlike fMRI, which measures hemodynamic changes that
occur in response to cortical activity, neurophysiological
techniques, such as EEG and MEG measure cortical
electrical/magnetic activity directly and noninvasively with a
high temporal resolution (1–2 ms) (Canuet et al., 2011). Thus,
EEG has been widely used in clinical practice to support clinical
diagnosis and management of neuropsychiatric diseases such as
epilepsy, disturbance of consciousness and dementia, and also
in neuroscience to investigate cortical electrical activities and
functions (Ishii et al., 1999; Canuet et al., 2011; Kurimoto et al.,
2012; Aoki et al., 2013a,b).

Recent findings of EEG and MEG analyses indicate that
electromagnetic oscillatory activity of the functional networks
varies its frequency from lower sensory areas to higher-order
control areas. For instance, intra-cortical investigations using
depth electrodes with syllable auditory task reported that cortical
electrical activity of auditory area changed from evoked activity
(phase-locked to the stimulus) to induced activity (non-phase-
locked to the stimulus) and also its frequency changed from theta
and low gamma to beta and high gamma, as activity shifted from
primary auditory cortices to associative auditory cortex (Morillon
et al., 2012). Another MEG study using a visuospatial attentional
task found that the cortical electrical activity of the DVP changed
from alpha evoked activity to beta induced activity as it shifted
from early visual areas to prefrontal control areas (Siegel et al.,
2008). And recent fMRI and MEG studies using decomposing

methods have repeatedly shown that these functional networks
can also be seen during resting state with changing its power
of activity (Smith et al., 2009; Grady et al., 2010; Brookes
et al., 2011). From these accumulating evidences, we can assume
that RS-independent-Ns are associated with several frequency
bands of electromagnetic activity depending on the function
subserved by the different cortical regions. In support of this
notion, a simultaneous fMRI and EEG study showed that blood
oxygenation level dependent (BOLD) signals of RS-independent-
Ns correlated with EEG waveforms in several frequency bands
(Mantini et al., 2007). In addition, Jonmohamadi et al. (2014)
and Mantini et al. (2011) showed that ICA decomposition of
EEG and MEG data becomes more correct in localization and
more robust to artifacts when applied after source reconstruction.
Taken together, in order to visualize RS-independent-Ns across
several frequency bands, we consider appropriate to apply ICA
to cortical electrical activity reconstructed from EEG or MEG
data, analyzing all frequency bands. To our knowledge, there is
one previous EEG-RS-independent-N study. However, ICA was
applied to scalp recorded EEG data in the time domain, followed
by a second step using a sLORETA source reconstruction on
the ICA-scalp topographies; in contrast, we apply ICA directly
to the reconstructed cortical electrical activity by eLORETA in
the frequency domain. And the results of cortical electrical
distributions of ICs were rather different from known functional
networks (Chen et al., 2013). Also there is a few previous MEG-
RS-independent-N studies. In their studies, ICA was applied
to cortical electrical activity reconstructed from MEG data,
however, in separate frequency bands, disregarding possible
cross-frequency coupling. Furthermore, sample sizes of these
studies were small (Brookes et al., 2011, 2012; Luckhoo et al.,
2012).

Also, ICA of EEG data has been widely used for various
purposes, such as artifact rejection by separating out artifact
components (Custo et al., 2014) and examination of the EEG
resting states (infra-slow EEG fluctuations and EEG microstates).
For instance, Hiltunen et al. (2014), found correlations between
the filtered ICA time series (using ultra-low frequencies) of the
EEG with BOLD time series in specific fMRI RS-independent-
Ns. And Yuan et al. (2012), performing ICA on EEG microstates
to decompose into ICs (independent microstates), found that
each fMRI RS-independent-N was characterized by one to a
combination of several independent microstates.

Exact low resolution brain electromagnetic tomography
(eLORETA) is a linear inverse solution method that can
reconstruct cortical electrical activity with correct localization
from the scalp EEG data (Pascual-Marqui et al., 2011; Aoki
et al., 2013a). The implementation of ICA in the eLORETA
software with EEG data allows for decomposition of cortical
electrical activity which is non-Gaussian into ICs in different
frequency bands (Pascual-Marqui and Biscay-Lirio, 2011). Other
decomposing methods (e.g., principal component analysis or
correlation analysis) with EEG data cannot strictly to do so
(Bell and Sejnowski, 1997; Hyvärinen and Oja, 2000; Mantini
et al., 2011). Furthermore, electromagnetic tomography-ICA
(eLORETA-ICA) uses all frequency information of EEG data in
analysis. In this study, we selected eLORETA-ICA which has many
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advantages over the other network visualization methods as we
explained above and applied it to EEG data to obtain complete
set of EEG-RS-independent-Ns across several frequency bands for
the first time.

METHODS
SUBJECTS
We recruited 306 healthy elderly subjects who had no history
of neurological or psychiatric disorders. Elderly subjects over 60
years old underwent clinical tests to ensure that memory and
other cognitive functions were within normal limits (MMSE >
24, CDR = 0). From the participants, 146 subjects were healthy
volunteers, and the remaining 160 subjects were ascertained from
an epidemiological study among inhabitants in Tone, Ibaraki,
Japan. This study was approved by the Ethics Committee of Osaka
University Hospital and followed the Declaration of Helsinki.
Written informed consent was obtained from the subjects.

EEG RECORDING AND DATA ACQUISITION
Subjects underwent EEG recordings in a resting state, eyes closed
condition for about 5 min. Subjects were instructed to keep
their eyes closed while staying awake during the recordings.
Spontaneous cortical electrical activity was recorded with a
19-channel EEG system (EEG-1000/EEG-1200, Nihon Kohden,
Inc., Tokyo, Japan), filtered through a 0.53–120 Hz band-pass
filter, and sampled at 500 Hz. EEG was recorded with the
electrodes positioned according to the International 10–20 system
(i.e., Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, T6, Fz, Cz, Pz) using a linked ears reference. Electrode
impedances were kept below 5 kΩ. For each subject, 120-s
artifact-free, resting-awake segments were manually selected
by visual inspection using Neuroworkbench software (Nihon
Kohden, Inc., Tokyo, Japan).

EEG-SOURCE RECONSTRUCTION METHOD
We used eLORETA (exact low resolution brain electromagnetic
tomography) to compute the cortical electrical distribution
from the scalp electrical potentials measured at the electrode
sites (Pascual-Marqui et al., 2011). The eLORETA method is a
weighted minimum norm inverse solution, where the weights
are unique and endow the inverse solution with the property of
exact localization for any point source in the brain. Thus, due
to the principles of linearity and superposition, any arbitrary
distribution will be correctly localized, albeit with low spatial
resolution. In the current eLORETA version, the solution space
consists of 6239 cortical gray matter voxels at 5 mm spatial
resolution, in a realistic head model (Fuchs et al., 2002), using
the MNI152 template (Mazziotta et al., 2001). The LORETA
method has been previously used and validated with real human
data during diverse sensory stimulation and in neuropsychiatric
patients (Dierks et al., 2000; Vitacco et al., 2002; Pascual-Marqui
et al., 2011; Aoki et al., 2013a). A further property of eLORETA is
that it has correct localization even in the presence of structured
noise (Pascual-Marqui et al., 2011). In this sense, eLORETA is
an improvement over previously related versions of LORETA
(Pascual-Marqui et al., 1994) and sLORETA (Pascual-Marqui,
2002). eLORETA images of spectral density were computed for

five frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), and gamma (30–60 Hz) (Canuet et al.,
2012).

FUNCTIONAL ICA
In most of the resting state network (RSN) literature, ICA is the
method most widely used for the discovery of sets of regions
that work together as networks. There are numerous different
processing strategies that are being used in the RS-independent-
N literature, as reviewed by Calhoun (Calhoun et al., 2009).
For instance, in typical fMRI group studies for the discovery of
RS-independent-Ns, the time series images for each subject are
first heavily pre-processed (see Calhoun et al., 2009 for details),
and then all subjects’ time series images are concatenated. This
produces a matrix, where one dimension consists of “space” (i.e.,
the brain voxels), and the other dimension consists of time.
Finally, an ICA algorithm is applied to this matrix, which will
produce a set of spatial components (i.e., images), where each
“component image” consists of a so-called “network”. In order
to interpret a network image, one must threshold its values
appropriately, displaying the brain regions that have highest
loadings. This post-processing is achieved by z-transforming the
component network image, and using an empirical threshold, as
in for example (McKeown et al., 1998; Calhoun et al., 2004; Kelly
et al., 2010; Agcaoglu et al., 2014). In this way, each network image
will display areas whose activities are tightly linked (i.e., they work
together as a network).

In contrast to relatively slow hemodynamic images, high
time resolution images of electrical neuronal activity can be
computed using eLORETA applied to EEG recordings. In an
implicit manner, these images contain an additional dimension
of frequency. Whereas fMRI images have their spectrum
concentrated below 0.1 Hz, EEG contain a wealth of differential
functional information in the classical range from 2 to 60 Hz.
In order to take into account this additional dimension of
information, the classical ICA as applied in fMRI was generalized.
All the technical details can be found in Pascual-Marqui and
Biscay-Lirio (2011).

For the sake of completeness, a brief description follows.
The EEG recording of each subject is first transformed to the
frequency domain, using the discrete Fourier transform. This will
produce a set of cross-spectral EEG matrices, for each frequency
of interest, such as those described above. This information is then
used for calculating the spectral density for each cortical voxel
and for each frequency band, using the methodology described
in detail in Frei et al. (2001). With this initial procedure, each
subject contributes five eLORETA images of cortical spectral
density (one for each frequency band: delta, theta, alpha, beta,
and gamma). From the point of view of mathematics, these data
correspond to a “function” of space (cortical voxel) and frequency.
In the next step, the data from each subject is concatenated, thus
producing a matrix where one dimension corresponds to the
different subjects, and the other dimension corresponds jointly to
space-frequency. This approach is common in a relatively young
field of statistics known as functional data analysis (Ramsay and
Silverman, 2005). When ICs analysis is applied to this matrix, a
more general form of networks are discovered, and the method
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FIGURE 1 | eLORETA-ICA component 4 (IC4). IC4 corresponds to the occipital visual network in alpha frequency band. In the color–coded maps, red and blue
colors represent power increase and decrease with increasing IC coefficient, respectively.

is described as functional ICA, given its origin in the field of
functional data analysis. Each functional network consists of a
set of five images, one for each frequency, because space and
frequency and all their possible interactions are now jointly
expressed. In contrast to a classical fMRI network image which
corresponds to brain regions that “work” together over time, an
EEG-eLORETA based functional network corresponds to brain
regions and frequencies that “work” together across a population
of subjects. This allows not only for the discovery of regions
that work together, but also for the discovery of cross-frequency
coupling.

In this paper, the number of ICs (networks) is estimated
by sphericity test (Bartlett, 1954). In the eLORETA-ICA
algorithm, ICs were obtained by maximizing the independence
between components which was measured by non-Gaussianity.
In particular, non-Gaussianity was calculated by fourth-order
cumulant (Cardoso, 1989; Cichocki and Amari, 2002). Then, ICs
were ranked according to total EEG power and color coded with
a z-score threshold of 3.0, in complete analogy to the methods
used in practice in fMRI-ICA networks (as explained in detail
above). In the color–coded maps, red and blue colors represent
power increase and decrease with increasing IC coefficient which
indicates activity of IC, respectively.

RESULTS
Artifact-free 120-s epochs were obtained in 80 out of 306 healthy
subjects. The age distribution of the 80 healthy subjects (57
men and 23 women) was as follows: 18–29 years (25 men
and 2 women), 30–49 years (15 men and 4 women), 50–69
years (14 men and 11 women) and 70–87 years (3 men and 6
women) (44 ± 20 (mean ± standard deviation)). The median
of MMSE scores over 60 years old was 30 (interquartile range;
29–30). It can be seen an overall male predominance, which
may reflect a bias of our healthy volunteers, and the female
predominance in the 70–87 years group, which may reflect a
delay of age-related cognitive decline in female. The number of
ICs estimated by the sphericity test was 12.0. Subsequently, we

applied eLORETA-ICA as the number of components varied from
11 to 13. Then, 11 ICs were most consistent with physiological
assumption that is topography and frequency of some known
networks and artifacts such as electromyogram is at frontal or
temporal cortex in gamma frequency band, therefore we selected
11 as the number of components. Next, we identified, based
on spatial distributions of power and frequency ranges, IC4,
IC5, IC6, IC9 and IC10 as RS-independent-Ns (Figures 1–5);
IC1, IC2, IC3, IC7, IC8 and IC11 as artifacts of frontal and
temporal electromyogram or frontal and occipital baseline shifts
(Figure 6).

When identifying the different ICs derived from our analyses,
we found that IC4 corresponded to the occipital visual network
in alpha frequency band (Figure 1). IC5 consisted of the right
VVP, corresponding to the right occipitotemporal cortex and
the right ventral prefrontal cortex (vPFC), and the left posterior
DVP. The right VVP linked right occipitotemporal cortex in
alpha frequency band to the right vPFC in beta frequency
band. The left posterior DVP, comprised the ipsilateral posterior
occipito-parietal cortex, caudal intraparietal sulcus (cIPS) and
posterior end of middle temporal gyrus (MT+) in alpha frequency
band, which correlated negatively with the areas of the right
VVP (Figure 2). IC6 was formed by the medial PFC (mPFC)
in beta frequency band and the right temporoparietal junction
(TPJ) in alpha frequency band, which showed negative correlation
(Figure 3). IC9 comprised the precuneus in alpha frequency
band and the left VVP in alpha frequency band, which also
showed negative correlation (Figure 4). IC10 comprised the
medial postcentral regions (Brodmann area 5 and 7 (BA 5–7))
in beta frequency band and the pre supplementary motor area
(pre-SMA) in gamma frequency band, which showed positive
correlation (Figure 5).

DISCUSSION
In this study, using eLORETA-ICA, we could identify five RS-
independent-Ns corresponding to (1) the occipital visual network
in alpha frequency band (IC4), (2) the right VVP in alpha and
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FIGURE 2 | eLORETA-ICA component 5 (IC5). Left IC5 regions (the
left posterior occipito-parietal cortex, caudal intraparietal sulcus (caudal
IPS) and middle temporal + (MT+)) corresponds to left posterior dorsal
visual pathway (DVP). Right IC5 regions (the right occipitotemporal
cortex, temporoparietal junction (TPJ), parahippocampal gyrus,

fusiform gyrus and ventral prefrontal cortex (vPFC)) corresponds to
right ventral visual pathway (VVP). The right VVP links right
occipitotemporal cortex in alpha frequency band to the right vPFC in
beta frequency band. The left posterior DVP correlates negatively with
the areas of the right VVP.

beta frequency bands and left posterior DVP in alpha frequency
band (IC5), (3) the mPFC in beta frequency band and right TPJ
in alpha frequency band (IC6), (4) the precuneus and left VVP
in alpha frequency band (IC9); and (5) the medial postcentral
regions in beta frequency band and the pre-SMA in gamma
frequency band (IC10).

INDEPENDENT COMPONENT 4
IC4 was found at the occipital cortex in alpha frequency band
(Figure 1). It is well known that the occipital cortex is involved
in visual perception processing. Consistent with this fact and
with our result, previous neurophysiological studies found that
visual processing related activity in the occipital regions occurred
in the alpha frequency band. In particular, alpha oscillation in
the occipital regions is enhanced during no expectation of visual

stimulus and is reduced during expectation and presentation of
visual stimulus (Klimesch et al., 1998).

INDEPENDENT COMPONENT 5
IC5 was found at the right occipitotemporal cortex in alpha
frequency band and at the right vPFC in beta frequency band with
left posterior occipito-parietal cortex, cIPS and MT+ in alpha
frequency band (Figure 2). Left IC5 regions (the left posterior
occipito-parietal cortex, cIPS and MT+) corresponds to left
posterior DVP and right IC5 regions (the right occipitotemporal
cortex, TPJ, parahippocampal gyrus, fusiform gyrus and vPFC)
corresponds to right VVP. DVP is a functional network involved
in automatic visual guidance of spatial movements. Within this
network cIPS and MT+ is linked to action-relevant features of
objects such as shape and orientation from visual information
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FIGURE 3 | eLORETA-ICA component 6 (IC6). IC6 is formed by the medial PFC (mPFC) in beta frequency band and the right TPJ in alpha frequency band,
which shows negative correlation.

processed in the occipital lobe. Right VVP is a visual recognition
network where visual information that has flowed from the
occipital lobe is compared to visual/spatial memory in right
temporal cortex then identified in right temporal cortex or
right vPFC (Fairhall and Ishai, 2007; Kravitz et al., 2011,
2013; Milner, 2012). Taking into account these findings, IC5
corresponds to a network that activity of the right VVP correlated
negatively with left posterior DVP activity. Previous accumulating
studies revealed that function of DVP is“online” “unconsciously
occurred (automatic)” visual perception of spatial components
to guide spatial movements, while function of VVP is “off-
line” “conscious” visual perception and recognition of feature
components (Kravitz et al., 2011, 2013; Harvey and Rossit,
2012; Milner, 2012). Therefore, we can assume IC5 as dual-
process of visual perception: the left posterior DVP for automatic
visual perception to guide spatial movements and right VVP for

detailed perception and recognition of visual input. Our result of
negative correlation between right VVP and left posterior DVP
is consistent with dual-process of visual perception. In addition,
our result of emergence of VVP only on the right side also
fit with the fact that right dominant engagement of VVP in
visuospatial search and recognition (Corbetta et al., 2005). This
negative correlation was also seen in visuospatial neglect patients,
who injured right VVP area, enhanced left posterior DVP activity
(not whole DVP) at acute stage and attenuated its activity with
clinical recovery (Corbetta et al., 2005; He et al., 2007; Rossit et al.,
2012).

INDEPENDENT COMPONENT 6
IC6 was found at the mPFC in beta frequency band and right TPJ
in alpha frequency band (Figure 3). Medial PFC is anterior hub
of the DMN and right TPJ is a hub of the right VAN (Corbetta
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FIGURE 4 | eLORETA-ICA component 9 (IC9). IC9 comprises the precuneus in alpha frequency band and the left VVP in alpha frequency band, which shows
negative correlation.

and Shulman, 2002; Buckner et al., 2008). Connectivity analysis
of resting fMRI data has showed that mPFC has maximal positive
connectivity with right posterior TPJ (Mars et al., 2012; Kubit and
Jack, 2013). Taking into account these findings, IC6 corresponds
to a network that activity of anterior hub of DMN (mPFC)
positively correlated with that of right VVP. The DMN enhance
its activity in autobiographical memory retrieval (Cabeza et al.,
2004). However autobiographical memory retrieval involves
both self-referential processing and memory retrieval process.
So, Kim (2012), by subtracting fMRI activity in laboratory-based
memory retrieval from autobiographical memory retrieval,
found that self-referential processing was related to mPFC, right
parahippocampal cortex and posterior cingulate cortex (PCC).
So, we can speculate IC6 as self-referential processing. In support
to this notion, there is a case report of a patient with loss of
the sense of self-ownership who also showed hypometabolism
in the right inferior temporal cortex as well as in the right
parietooccipital junction and precentral cortex (Zahn et al., 2008).

INDEPENDENT COMPONENT 9
IC9 was found at the precuneus and left VVP in alpha
frequency band (Figure 4). The precuneus is dominantly related
to familiarity of the memory (Yonelinas et al., 2005) and
left VVP is memory recognition area whose activation reflects
retrieval and identification of memory (Cabeza, 2008; Ravizza
et al., 2011; Angel et al., 2013). IC9 showed the precuneus was
negatively correlated with left VVP in alpha frequency band.
Consistent with our result, EEG study using sLORETA showed
the same correlation between decreasing alpha power in the
precuneus and increasing alpha power in the left temporal
cortex with WM load during WM retention period in some
healthy subjects (Michels et al., 2008). Dual-process models of
memory recognition have been proposed by many researchers
which suggest memory has two separate systems: familiarity of
the memory (sense of knowing) and recollection (Yonelinas,
2002). In memory retrieval, the precuneus engages in familiarity,
while left VVP regions (left TPJ, parahippocampal cortex and
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FIGURE 5 | eLORETA-ICA component 10 (IC10). IC10 comprises the medial postcentral regions (Brodmann area 5 and 7) in beta frequency band and the pre
supplementary motor area (pre-SMA) in gamma frequency band, which shows positive correlation.

hippocampal formation) engage in episodic memory retrieval
(Yonelinas et al., 2005; Sestieri et al., 2011). Familiarity is a
working memory which is a sense of knowing temporarily
occurred (several tens of seconds) after encoding. That is,
familiarity is “unconsciously occurred (automatic)” “online”
“sensory component” of short-term memory to be manipulated
in multiple cognitive processes (working memory). On the
other hand, episodic memory retrieval is a “conscious” “off-
line” “detailed” perception and recognition of long-term episodic
memory (Baddeley and Hitch, 1974; Huijbers et al., 2010,
2012). Therefore, we can conclude that familiarity and episodic
memory have properties of the DVP and the VVP, respectively
(please refer to the discussion of IC5). In fact, the precuneus
showed strong coherence with DVP by fMRI connectivity analysis

(Huijbers et al., 2012). Taken together, we can speculate that
IC9 reflects dual-process of memory perception: the precuneus
for automatic sensory component of the memory to guide
multiple cognitive processes in memory domain and left VVP
for detailed perception and recognition of episodic memory. Our
results elucidated that similarity of perception and recognition
between vision (IC5) and memory (IC9). Lesion studies also
presented a case of neglect in memory domain analogous to
visuospatial neglect: patients who had bilateral TPJ lesions
showed a deficit in detailed memory retrieval in free recall
(subserved by the left VVP), although they can access to
these memories when guided by probe questions (function
subserved by the precuneus; Berryhill et al., 2007; Cabeza,
2008).
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FIGURE 6 | eLORETA-ICA component 1, 2, 3, 7, 8 and 11 in above
written frequency bands. These components correspond to artifacts of
electromyogram or baseline shifts, based on spatial distributions of power
and frequency ranges.

INDEPENDENT COMPONENT 10
IC10 was found at the medial postcentral regions (BA5–7) in beta
frequency band, and at the pre-SMA in gamma frequency band
(Figure 5). Beta activity in medial sensory regions is known as
Rolandic beta rhythm, which is typically observed in resting state
and suppressed by voluntary movements (Pfurtscheller, 1981).
This beta oscillation is thought as an idling rhythm of sensory
regions (Ritter et al., 2009). From our result, gamma oscillation in
the pre-SMA can also be assumed as idling rhythm of pre-SMA. In
support of this notion, the gamma oscillation in the pre-SMA was
suppressed by voluntary movements (Hosaka et al., 2014). Taking
into account these findings, we identified IC10 as sensorimotor
network.

Overall, topographies of alpha and beta frequency bands is
consistent with their roles: alpha oscillation for inhibition of
the visual pathway (Snyder and Foxe, 2010; Capotosto et al.,
2012; Capilla et al., 2014), beta oscillation in PFC for higher
cognitive functions such as evaluation and prediction (Arnal et al.,
2011; Hanslmayr et al., 2011; Buschman et al., 2012; Aoki et al.,
2013b; Kawasaki and Yamaguchi, 2013) and beta oscillation in
sensorimotor area for motor control (Engel and Fries, 2010).

This is the first study presenting ICs using eLORETA-ICA with
resting state EEG data, and more importantly, which highlight the

differences in some aspects from the previous RS-independent-
Ns using ICA with resting state fMRI data. First, eLORETA-
ICA of EEG data presented right and left VVP separately,
strikingly different from ICA results of fMRI data showing VVP
bilaterally. However, de Pasquale et al. (2010) using correlation
analysis showed that MEG has greater correlations between intra-
hemispheric nodes than inter-hemispheric nodes in RSNs. They
elucidated that this difference stemmed from the difference of
temporal resolution: EEG and MEG have much higher temporal
resolution (1–2 ms) of cortical activity than fMRI, which has
2 s temporal resolution. These findings indicate that only
EEG and MEG, which have millisecond temporal resolution,
combined with ICA can detect the correct ICs of cortical activity.
Furthermore, our result of right and left separation of VVP is
consistent with previous findings that left lateralized activation
of VVP during episodic memory retrieval and right lateralized
activation of VVP during visual target detection (Corbetta et al.,
2005; Daselaar et al., 2006; Angel et al., 2013). Second, our
results were restricted to cortical areas whereas RSNs derived
from fMRI data included deep brain structures such as basal
ganglia, hippocampus and cingulate cortex. This caused from the
fact that EEG cannot detect electrical activity of the deep brain
because electrical potential drastically attenuated by conduction
from deep brain to the surface of the head. Therefore, for instance,
we cannot determine the PCC is involved in IC6 or IC9, although
controversy exists whether the PCC should be involved in self-
referential processing or episodic memory retrieval (Kim, 2012;
Angel et al., 2013).

Although the fact is known that cortical electrical activity
reconstructed from EEG data using sLORETA showed several
topographic distributions somewhat similar to RS-independent-
Ns for a short period (microstate; Musso et al., 2010), no
one could extracted independent sets of cortical electrical
activity (EEG-RS-independent-Ns). And there are some other
decomposing methods such as principal component analysis and
correlation analysis, they cannot decompose cortical electrical
activity into ICs in a precise sense because cortical electrical
activity is non-Gaussian (Bell and Sejnowski, 1997; Hyvärinen
and Oja, 2000; Stam, 2005; Mantini et al., 2011). Therefore, we
selected eLORETA-ICA to detect EEG-RS-independent-Ns.

Our results should be interpreted with caution based on the
following limitations. First, relative small number of electrodes
(19 electrodes) and realistic head model in eLORETA may affect
the source localization results. However, the good localization
property of the LORETA tomography was validated in several
studies as we mentioned in the Methods section and our
source localization results of eLORETA-ICA are consistent
with neuroimaging findings of RSNs. Second, low spatial
resolution of eLORETA, which blur the cortical sources, may
cause non-detection of the low-electrical-activity cortical
sources. Thus, subsequent ICA may have missed some low
activity RS-independent-Ns. Third, our present study has
made use of the hypothesis that healthy subjects have common
RS-independent-Ns which are consistent throughout a very
wide age range, thus aging-related changes are restricted to
activities of RS-independent-Ns (IC coefficients). However, we
confirmed that occipital basic oscillations of all subjects were
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in the alpha frequency band by visual inspection and almost all
the RS-independent-N results did not change even excluding 9
subjects aged 70 years or more from eLORETA-ICA. In addition,
our source localization results of eLORETA-ICA are consistent
with neuroimaging findings of RSNs. Fourth, we supposed
correspondences between RS-independent-Ns and functional
networks. However, these correspondences should be confirmed
by comparing the activities of RS-independent-Ns with cognitive
test scores in the future study.

CONCLUSION
We selected eLORETA-ICA which has many advantages over
the other network visualization methods and overall findings
indicate that eLORETA-ICA with EEG data can identify five
RS-independent-Ns with their intrinsic oscillatory activities, as
well as functional correlations within these networks, while
conventional methods used to examine RSNs such as fMRI
with functional tasks or fMRI with ICA have not been shown
to do so. Moreover, once RS-independent-Ns are determined
by eLORETA-ICA, this method can accurately identify activity
of each RS-independent-N from EEG data as it removes EEG
artifacts by separating artifact components. Therefore, eLORETA-
ICA with EEG data may represent a useful and powerful tool
to assess activities of RS-independent-Ns, which correspond to
specific functions, in patients with neuropsychiatric disease such
as dementia and depression.
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