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Transcranial Direct Current Stimulation
(tDCS) is a non-invasive brain stimulation
technique that has been reintroduced in
the last decade and is now mainly used
as a cognitive modulator in human neu-
roscience research. tDCS delivers a weak
direct current (usually up to 2 mA) over
the scalp and creates a constant electric
field in the brain which can lead to acute
alterations of the excitability of cortical
areas by its subthreshold depolarizing or
hyperpolarizing effects on neuronal rest-
ing membrane potentials (Nitsche and
Paulus, 2000). Beyond these acute effects,
stimulation for some minutes results in
neuroplastic after-effects, which can last
for over 1 h after stimulation (Nitsche and
Paulus, 2001). With repeated usage, longer
lasting effects can be induced, which are in
the range of late-phase plasticity (Monte-
Silva et al., 2013). The neuroplastic effects
resemble LTP- and LTD-like plasticity of
glutamatergic synapses (Liebetanz et al.,
2002; Nitsche et al., 2003a). Therefore, this
technique allows us to study neuroplas-
ticity of the human brain in a reversible
manner and to modulate plasticity-related
functions such as memory or learning,
which critically depend on neuroplasticity,
in healthy and clinical populations.

Traditionally, one or more surface-
positive (anode) and negative (cathode)
electrodes are used to deliver current;
one is positioned over the target area
and the other one is put over another
cranial (intracephalic) or extracranial
(extracephalic) region of the body. These
electrodes are usually called active and
reference electrode respectively. However,

these terms can be technically improper
and should be replaced with other terms
such as “target” and “return” electrodes,
because the size and the place of a return
electrode have an impact on its effects
and thus it might not be physiologically
inert. The return electrode can contribute
directly—and not only via determina-
tion of electrical field orientation—to
physiological effects when put over the
cranium as well (Brunoni et al., 2012).
Several studies have also shown antag-
onistic effects of stimulation on visual
cortex (Antal et al., 2004; Accornero
et al., 2007) and motor cortex (Nitsche
and Paulus, 2000) dependent on return
electrode position. In any case, the posi-
tion of the return electrode will affect
electrical field orientation, which is crit-
ical for the efficacy, and direction of the
effects (Bikson et al., 2010; Kabakov et al.,
2012). In both—extracephalic and intra-
cephalic conditions—positive (cathode)
and negative (anode) poles are conven-
tionally physiologically distinguished
according to their effects on excitability
of the brain. Basically, cathodal stimula-
tion has hyperpolarizing effects, which
lead to inhibition of cortical activity,
while anodal stimulation has excitatory
effects (Nitsche et al., 2003b, 2008). It
should be worth noting that although
every neuron undergoes hyperpolarizing
and depolarizing, the physiological effect
depends more on axonal/soma polar-
ization (Arlotti et al., 2012), hence the
physical and physiological aspects can be
dissociated. General effects on excitabil-
ity, which were obtained primarily in the

human motor cortex, might also switch,
turning from excitatory to inhibitory or
vice versa, dependent on stimulation
parameters such as intensity, and dura-
tion (Batsikadze et al., 2013; Monte-Silva
et al., 2013), and position of the return
electrode (Antal et al., 2004; Accornero
et al., 2007). With a rise in prevalence
of studies using tDCS, protocols have
become more complex and varieties of
tDCS montages were introduced and are
used in different labs. Despite this extend-
ing diversity of tDCS electrode montages,
to our best knowledge, there is no con-
sensus among researchers in this field
on a systematic framework for catego-
rizing electrode montages in a unified
way. In this short article, we propose a
framework for categorization of tDCS
montages according to physical charac-
teristics. This categorization is based on
published studies until October 2014. Our
main motivation to propose this frame-
work is to unify the classifications of
electrode montages in a simple way; there
are nevertheless several other advantages
of this categorization. First, different mon-
tages that are used to target a specific brain
area such as dorsolateral prefrontal cor-
tex (DLPFC) could have different effects;
therefore providing a unified classification
enables us to take these differences into
account. Furthermore, this classification
gives us a chance to explore other novel
potentials for electrode montages that
so far have remained untouched. Lastly,
a unified systematic framework will be
helpful for presenting study methods and
for extracting data for systematic reviews
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and meta-analyses in a more practical
way.

CATEGORIZATION OF tDCS MONTAGES
Based on affected hemispheres and the
number of electrodes, we categorized
montages for conventional electrodes in 4
groups and 12 subgroups. We have used
the 10/20 EEG system to localize areas
on the cranium. For describing electrode
montages, we state the position of the
anode electrodes first. For example, F3/F4
refers to the anodal electrode over the
F3 and cathodal electrode over the F4
region.

UNILATERAL
In this group, only one hemisphere is tar-
geted for stimulation. It can be divided
into 3 subgroups:

Monopolar
This term refers to positioning only one
electric pole over the cranium. In this
montage, one electrode is positioned on
the scalp and the other one is placed on
any other part of the body. As shown in
Figure 1, an example of this montage is
F3/contralateral shoulder (Fertonani et al.,
2010).

Bipolar
In bipolar arrangements, both electric
poles are placed over the brain. In the uni-
lateral bipolar subgroup, both electrodes
are positioned over the same hemisphere
(e.g., F3/TP3). In this condition the tar-
geted hemisphere is modulated while the
other hemisphere is supposed to remain
unaffected by direct effects of stimula-
tion. Brunelin et al. (2012) used this mon-
tage to modulate auditory hallucinations
in schizophrenic patients (Brunelin et al.,
2012).

Multiple-monopolar
At least 3 electrodes are used in this mon-
tage. The target electrodes of identical
polarity are placed over one hemisphere
and the return electrode is positioned
over another part of the body. We could
not find any study incorporating this
montage, but an example could be F3
and P3/contralateral shoulder, to modu-
late frontoparietal networks contributing
in attention processing.

BILATERAL
Electrodes are placed bilaterally and both
hemispheres are supposed to be affected by
electric current.

Bipolar-balanced
The electrodes are placed symmetrically.
This montage is supposed to be suitable for
simultaneously activating a brain region
and inhibiting its contralateral counter-
part. An example of this montage is F3/F4,
which is usually used to enhance excitabil-
ity of the left DLPFC and to reduce
excitability of the right DLPFC (Brunoni
et al., 2013; Nelson et al., 2014).

Bipolar-nonbalanced
Same as the previous condition, the elec-
trodes are positioned bilaterally, but are
placed over different regions not symmet-
rically. For example, the anode could be
placed over P3 and cathode over P6, which
was Jacobson’s montage of choice in his
study on episodic memory (Jacobson et al.,
2012).

Multiple-monopolar
Similar to the electrode arrangement in
previous group, at least 3 electrodes are
used in this montage. 2 target electrodes
of the same polarity are placed bilaterally
over two hemispheres and the third elec-
trode (return) is put over any part of the
body. An example is the T3andT4/right
deltoid muscle montage that was used in
some protocols for enhancing visual mem-
ory (Boggio et al., 2012; Lapenta et al.,
2012).

MIDLINE
In this condition, the target electrode/s will
be placed over the midline (e.g., Cz or Oz
or Fz). These montages can be categorized
in 3 subgroups:

Monopolar
In this type, the target electrode is placed
over the midline area and the return
electrode is placed over an extracephalic
position (e.g., Fz/Left cheek to modulate
inhibitory control) (Hsu et al., 2011).

Bipolar-balanced
Both electrodes will be placed over mid-
line regions. One prevalent montage of
this subgroup is Oz/Cz which is common
in visual studies (Antal et al., 2001; Peters
et al., 2013).

Bipolar-nonbalanced
The target electrode will be placed over
the midline region with an intracephalic
return electrode positioned over any part
of scalp except midline. An example could
be Cz/FP2 (Stagg et al., 2009).

DUAL CHANNEL
In this group, 2 pairs of electrodes are used,
which are connected to two independent
devices.

Bipolar
Two target electrodes with different polar-
ities are placed symmetrically over the
scalp. The return electrodes are put over
ipsilateral parts of body. An example
would be F7/left shoulder and right shoul-
der/F8. This montage provides us with an
opportunity to perform anodal tDCS over
F7 and cathodal tDCS over F8 simulta-
neously (Lee et al., 2013). The advantage
of this montage compared to the classic
Bilateral Bipolar Balanced montage, F7/F8,
might be that this montage allows to pro-
duce distinct electrical fields in homolog
regions of the brain with different inten-
sity and timing, which might enable us
to modify brain functions in a more spe-
cific manner. It should however be noted
that this montage, as compared to the
bilateral balanced montage leads to differ-
ent current flow directions, which might
result in different physiological effects.
Hence, computational modeling for a bet-
ter understanding of current flow patterns
will be needed.

Midline double-monopolar
The montage is similar to the previous
condition, but active electrodes are posi-
tioned over midline regions. An example
is Fpz/right shoulder and Pz/left shoulder.
To our best knowledge, no published study
has ever used this type of montage.

Bilateral double-monopolar
Two electrodes of same polarity are placed
over the scalp and 2 other electrodes
will be positioned over the contralat-
eral orbits or above contralateral parts of
the body (e.g., P3/contralateral orbit and
P4/contralateral orbit) (Klein et al., 2013).

FUNCTIONAL CONSIDERATIONS
The framework we are proposing is mainly
based on physical electrode arrangements,
but there are a few other points regarding
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FIGURE 1 | Subgroups of tDCS montages: (A) unilateral monopolar, (B)

unilateral bipolar, (C) unilateral multiple monopolar, (D) bilateral
bipolar-balanced, (E) bilateral bipolar-non balanced, (F) bilateral multiple

monopolar, (G) midline monopolar, (H) midline bipolar-balanced, (I) midline
bipolar-non balanced, (J) dual channel- bipolar, (K) dual channel midline
double monopolar, (L) dual channel bilateral double monopolar.

tDCS montages that should be addressed.
First, published articles in most cases
consider montages with return electrodes
above supraorbital regions as unilateral
and monopolar, but supraorbital regions
are situated over the frontal poles and
orbitofrontal cortices and therefore these
electrodes have an effect on brain func-
tions (Kincses et al., 2003), unless large
electrodes, which are functionally ineffec-
tive (Nitsche et al., 2007) are used. Thus,
in most cases these arrangements resem-
ble bipolar bilateral electrode montages.
Hence, for the sake of physical characteris-
tics and also functional efficacy, we suggest
to classify these montages as bipolar.

Another important aspect is the size
of electrodes. In some studies, electrodes
are positioned bilaterally, but the size of
the return electrode is enhanced to reduce

the amount of current density, hence the
functional efficacy of the return electrode
might be eliminated (Nitsche et al., 2007)
and therefore these montages have a func-
tion similar to monopolar montages. HD
electrodes arrangements are also dissimilar
in functional efficacy and physical config-
uration aspects. We haven’t excluded these
montages from their physical subgroups,
but these differences should be taken into
consideration in analyses of functional
effects.

Furthermore, some montages such
as Unilateral Multiple—Monopolar and
Dual Channel montages can be used to
stimulate brain networks rather than a
region (Ruffini et al., 2014). This oppor-
tunity might allow us to investigate func-
tional connectivity among brain regions
and to modulate our targeted cognitive

function more effectively. In these cases,
the terms “target” and “return” electrodes
might not be appropriate.

Finally, the main technical limitation
in electrode positioning over the skull is
the distance between edges of anodal and
cathodal electrodes. Some modeling stud-
ies suggest keeping the edges of the elec-
trodes at least 4 cm away from each other
to reduce current shunting over the cra-
nium (Moliadze et al., 2010). New com-
putational models of brain current flow
during tDCS are required to provide more
accurate insights into real current flow pat-
terns of these 12 groups of montages in
the normal range of human cranium and
brain.

The framework we have proposed is
mainly based on physical arrangements,
therefore some characteristics which have
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been shown to be important for physiolog-
ical and functional effects (e.g., electrode
distance, current intensity, stimulation
duration), are not included. We hope that
nevertheless this physical classification can
create a common ground for researchers,
facilitate communication, and will help
to classify methods and approaches. This
classification can be easily extended and
modified in future studies for other tran-
scranial electrical stimulation (tES) meth-
ods without anode vs. cathode electrodes
such as transcranial alternating current
stimulation (tACS) and transcranial ran-
dom noise stimulation (tRNS) techniques
and hopefully will help also in these cases
to unify nomenclature, and to explore the
parameter space systematically.
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