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The role of attention in emotional processing is still the subject of debate. Recent studies
have found that high positive affect in approach motivation narrows attention. Furthermore,
the positive affect trait has been suggested as an important component for determining
human variability in threat reactivity. We employed functional magnetic resonance imaging
to investigate whether different states of attention control would modulate amygdala
responses to highly unpleasant pictures relative to neutral and whether this modulation
would be influenced by the positive affect trait. Participants (n = 22, 12 male) were scanned
while viewing neutral (people) or unpleasant pictures (mutilated bodies) flanked by two
peripheral bars. They were instructed to (a) judge the picture content as unpleasant or
neutral or (b) to judge the difference in orientation between the bars in an easy condition (0
or 90◦ orientation difference) or (c) in a hard condition (0 or 6◦ orientation difference).Whole
brain analysis revealed a task main effect of brain areas related to the experimental
manipulation of attentional control, including the amygdala, dorsolateral prefrontal cortex,
and posterior parietal cortex. Region of interest analysis showed an inverse correlation
(r = −0.51, p < 0.01) between left amygdala activation and positive affect level when
participants viewed unpleasant stimuli and judged bar orientation in the easy condition.This
result suggests that subjects with high positive affect exhibit lower amygdala reactivity to
distracting unpleasant pictures. In conclusion, the current study suggests that positive
affect modulates attention effect on unpleasant pictures, therefore attenuating emotional
responses.
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INTRODUCTION
Humans exhibit involuntary co-occurring brain and peripheral
responses to emotional stimuli, such as faces with fearful expres-
sions or unpleasant pictures (Schneider et al., 1995; Cuthbert et al.,
2000; Hagemann et al., 2003). Emotion is believed to take place
automatically in the amygdala, independent of top–down fac-
tors such as attention and awareness (Vuilleumier et al., 2001;
Anderson et al., 2003; Muller et al., 2008). However, the role of
attention in emotional processing is still the subject of debate.
Growing evidence indicates that affective processing is modulated
by several factors, including attention and cognitive regulation
(Erthal et al., 2005; Ochsner and Gross, 2005; Pessoa et al., 2005;
Mocaiber et al., 2010, 2011). Emotional modulation by attention
may be achieved through mechanisms associated with attention
selection and by manipulating the strength of object representa-
tions (Mitchell et al., 2007). For example, manipulating the focus
of spatial attention has been shown to eliminate differential sig-
nals evoked by fearful faces in both functional magnetic resonance

imaging (fMRI) and event-related potential (ERP) studies (Pessoa
et al., 2002, 2005; Eimer et al., 2003).

Currently, the reasons for this discrepancy are unclear, sug-
gesting that other variables may contribute to this effect (see
Oliveira et al., 2013). One possibility is that individual differences
are important predictors of sensitivity to emotional stimuli. For
instance, anxious individuals exhibit greater sensitivity to threat-
related stimuli, and the extent to which the amygdala responds
to threat-related distractors depends on individual anxiety lev-
els (Bishop et al., 2004). Whereas low-anxiety individuals only
show increased amygdala responses to attended fearful faces, high-
anxiety individual’s show increased amygdala responses to both
attended and unattended threat-related stimuli. These findings
suggest that the threat value of a stimulus varies as a function of
a participant’s anxiety level, although attention is important even
for highly anxious individuals (Fox et al., 2005; Bishop et al., 2007).

Similarly, it is possible that individual differences in the
positive affect trait could modulate the emotional reactivity to
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threat-related stimuli. In general, positive affect reflects the extent
to which a person feels enthusiastic, active, and alert. Therefore,
high positive affect is a state of high energy, full concentration,
and pleasurable engagement, whereas low positive affect state is
characterized by sadness and lethargy (Watson et al., 1988). Posi-
tive affect trait is likely an important component for determining
human variability in threat perception and an enhanced ability to
disengage attention from unpleasant stimuli (Segerstrom, 2001;
Isaacowitz, 2005). Previous study from our group showed that
participants with high trait of positive affect were more prone
to be engaged by safety cues. Specifically, their psychophysio-
logical reactions to mutilated body pictures were attenuated in
an experimental context in which these pictures were presented
as makeup tricks used to mimic wounds in movie productions
(Oliveira et al., 2009). In fact, Individuals with high levels of pos-
itive affect experience more persistent positive mood and they
are more actively engaged in the world, showing a predominant
approach disposition and high reward sensitivity (Whittle et al.,
2006).

In the current study, we investigated whether individual differ-
ences in the positive affect trait modulate attention resources to
process unpleasant stimuli. Our hypothesis is that the high posi-
tive trait facilitates disengagement from unpleasant stimuli. More
specifically, we aimed to test whether positive affect diminishes the
interference produced by unpleasant stimuli (mutilated pictures)
presented as a distractor during the performance of an attentional
task. Thus, considering that the amygdala response is a marker of
the impact of an emotional stimulus and that it is modulated by
attention, we employed fMRI to study the amygdala’s responses
when subjects viewed highly unpleasant distractors during an
attentional task.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-two healthy right-handed volunteers between 19 and
37 years of age (12 male; mean age = 26.32, SD = 4.52 years) took
part in this study. The volunteers were selected among students
from the University of São Paulo, and had normal or corrected-
to-normal vision. They reported no psychiatric or neurologic
problems and were not under the influence of medications with
nervous system actions. The subjects were naive to the purpose
of the experiment. The local ethical committee approved this
study, and written informed consent was obtained from all the
volunteers.

POSITIVE AFFECT TRAIT
The Positive and Negative Affect Schedule PANAS is a 20-item
scale, consisting of 10 adjectives that describe positive and negative
moods (Watson et al., 1988). In the current study, the PANAS
was used to evaluate individuals’ mean positive affect trait. The
participants were asked to fill out this scale before the fMRI session,
when they rated the degree to which they felt each emotion on a
1–5 scale (1 = very slightly or not at all, 5 = extremely).

EXPERIMENTAL PROCEDURE
The subjects were scanned while viewing neutral (people) or
unpleasant pictures (mutilated bodies). Each of these images was

centrally presented with two bars on its periphery. They had to
perform three discrimination tasks: (a) judge the picture content
by its valence as unpleasant or neutral, or (b) judge the difference
in orientation of the bars in an easy condition (0 or 90◦ orienta-
tion difference) or (c) in a hard (0 or 6◦ orientation difference)
condition. The participants performed the task by pressing one of
two buttons to report whether the picture presented was neutral
or negative during the emotional judgment task or whether the
bars had the same or different orientation during the bar orienta-
tion tasks. In task (a), the subjects had their attentional resources
engaged centrally to evaluate the valence of the picture, while
in task (b) and (c) the subjects had their attentional resources
engaged to judge the peripheral bars (away from the emotional
stimuli). Furthermore, task (c) demanded an extra attention load
due to its increased difficulty.

In summary, there were three tasks (judgment of “Pictures,”
judgment of “Easy Bars” and judgment of “Hard Bars”). In each
task, a neutral or mutilated body picture was presented. Then,
there were six experimental conditions, which were designated as
follows: (1) “Picture NEU,” the task of judging neutral valence
pictures; (2) “Picture MUT,” the task of judging mutilated body
pictures; (3) “Easy NEU,” the task of judging easy orientation bars
when the picture was neutral; (4) “Easy MUT,” the task of judg-
ing easy orientation bars when the picture was a mutilated body
picture; (5) “Hard NEU,” the task of judging hard orientation bars
when the picture was neutral; and (6) “Hard MUT,” the task of
judging hard orientation bars when the picture was a mutilated
body picture (see Figure 1).

The protocol followed a mixed blocked/event-related design
(Donaldson, 2004; Amaro and Barker, 2006). It consisted of
two runs, each with 12 randomly distributed blocks of the three
tasks (“Picture,” “Easy Bar,” and “Hard Bar”), alternating with
periods of rest (central fixation cross). During the task peri-
ods, the subjects carried out nine trials with either unpleasant
or neutral pictures presented (Figure 1). Each trial lasted 3 s and
was initiated with a fixation cross, shown for 500 ms, followed
by 200 ms of the picture/bars image and a gray scale checker-
board that remained until the volunteer responded. The subjects
were instructed to respond as quickly and accurately as possible.
Each run included an equal number of neutral and emotional
trials.

The presentation of each picture across the different task con-
ditions was randomized between subjects. Valence and arousal
were balanced between different blocks. Therefore, the pictures
presented to some participants in the picture judgment task were
presented to the others in the bar orientation tasks.

STIMULI
The stimulus protocols were generated on a PC laptop running the
Presentation® software (Version 0.60, Neurobehavioral Systems,
http://www.neurobs.com/) and displayed using a projector and
screen with a mirror system fixed on the head coil. The responses
were collected with an MRI-compatible button system controlled
by the right hand of the participant and registered by the Presenta-
tion® software. The participants performed a training session prior
to the experiment to ensure that they understood the experimental
procedure.
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FIGURE 1 | Experimental conditions. The tasks (three columns) and picture valence (two rows) are presented to illustrate the six experimental conditions: (1)
“Picture NEU,” (2) “Picture MUT,” (3) “Easy NEU,” (4) “Easy MUT,” (5) “Hard NEU,” (6) “Hard MUT.”

Two classes of images (72 neutral and 72 unpleasant) were
employed. The neutral pictures consisted of photographs of people
“in normal life” and the unpleasant images consisted of pho-
tographs of mutilated bodies. Most of the pictures were selected
from the International Affective Picture System (IAPS; Lang et al.,
2005). A set of additional images was obtained from the World
Wide Web or photographed by the authors because the number
of appropriate images available in the IAPS set was not sufficient.
These were matched to the IAPS unpleasant and neutral stim-
uli in terms of color spectrum and complexity (e.g., number of
faces, number of body parts, etc.). Following the protocol devel-
oped by Lang et al. (2005), all of the images were assessed on
a 1–9 scale in terms of valence (from negative to positive) and
arousal (from low to high) by a separate group of participants
(n = 20) with ages similar to the subjects of the current study
(22.3, SD = 1.8). The unpleasant and neutral images differed sig-
nificantly from each other in IAPS normative valence (M = 2.08
and 5.21, respectively, t =−58.02, p < 0.001) and arousal (M = 6.6
and 3.4, respectively, t = 34.43, p < 0.001) ratings. Unpleasant
pictures with high arousal were selected in order to maximize the
interference effect and brain activation to these pictures. Each
picture was repeated once per block of the same experimental
condition.

IMAGE ACQUISITION
The fMRI data were collected using a 1.5 T MRI scanner (Mag-
netom Vision; Siemens Medical Systems, Erlangen, Germany).
The functional images were acquired using a gradient-echo pla-
nar imaging sequence (TR = 3000 ms; TE = 60 ms; FOV = 240;
flip angle = 90◦; 64 × 64 matrix). Whole brain coverage was
obtained with 25 axial slices (thickness = 4 mm; in-plane res-
olution = 3.75 mm × 3.75 mm). High-resolution structural
T1-weighted images (TR/TE = 9.7/4.0 ms; flip angle = 12◦; 160
slices; thickness = 1 mm; 256 × 256 matrix; FOV = 256 mm) were
obtained during the same session. The presentation of a stimulus
was synchronized with the acquisition of an image using a trigger-
ing circuitry. The subjects’ head movements were restrained with
foam padding.

DATA ANALYSIS
Behavioral data
The latency of the correct responses (reaction time) was analyzed
using StatisticaTM (7). Mean reaction times were determined for
19 of the 22 subjects; behavioral data from three subjects were not
recorded due to technical problems. The reaction time analysis was
performed with a two-way ANOVA with task (“Picture,”“Easy Bar,”
and “Hard Bar”) and valence (neutral and mutilated) as within
factors. Statistically significant effects identified through ANOVA
were further evaluated post hoc using the Newmann–Keuls method
for pairwise comparisons.

fMRI whole-brain analysis
The fMRI analysis was performed in BrainVoyagerTMQX 2.2
(Brain Innovation, Maastricht, The Netherlands) using a gen-
eral linear model (GLM). The dataset was corrected for motion
and slice timing, and it was spatially filtered (8 mm FWHM)
and temporally filtered (high pass filter at 0.01 Hz). Individual
functional maps were normalized into the Talairach anatomi-
cal atlas (Talairach and Tournoux, 1988). After pre-processing,
first-level analysis was performed on each subject using the GLM
with a boxcar waveform convolved with a canonical hemody-
namic response function. Six regressors of interest were created
that correspond to the experimental conditions: Picture NEU,
Picture MUT, Easy NEU, Easy MUT, Hard NEU, and Hard
MUT.

After transformation into Talairach anatomical atlas, ran-
dom effects group analysis was calculated using an ANOVA in
a whole-brain voxelwise approach. The statistical threshold was
set to p < 0.05, with FDR corrected for multiple comparisons
[q(FDR) < 0.05]. Only clusters of at least 50 mm3 were considered
for further interpretation.

The fMRI whole-brain analysis was performed with a two-way
ANOVA with two factors: task (“Picture,” “Easy Bar,” and “Hard
Bar”) and valence (neutral and mutilated). ANOVA results in
interaction or main effect of task. The null hypothesis for interac-
tion would reveal that the differences between the attention tasks
are consistent for neutral and unpleased pictures. Main effect of
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task represents the differences among tasks performed by partici-
pants: Picture task, Easy bar task, and Hard bar task. Statistically
significant effects identified through ANOVA were further eval-
uated post hoc using the Newmann–Keuls method for pairwise
comparisons.

Region of interest (ROI) analysis
Our a priori hypothesis involved the effects of attention manipu-
lation on the activation of the amygdala in response to unpleasant
pictures. Therefore, this structure was chosen as the main region
of interest (ROI). ROI analysis using planned comparisons in
ROIs of bilateral amygdala was done to test differential activation
between unpleasant and neutral pictures in each attention con-
dition. Differential activation could reveal a valence effect during
the picture judgment task (comparing Pic-MUT vs. Pic-NEU),
and the bar judgment in both the easy task (comparing Easy-
MUT vs. Easy-NEU) and the hard task (comparing Hard-MUT
vs. Hard-NEU).

The amygdala ROIs were defined including all the voxels
presented on a cluster activation in prior ANOVA main effect
of task [q(FDR) < 0.05] and extracting only the anatomical
coordinates corresponding to Amygdala in Talairach atlas (Pol-
drack, 2006). Beta weights averaged across all voxels within
each ROI were extracted for each experimental condition. Fur-
thermore, pairwise comparison between mean beta weights for
each condition were done using Student’s t-test and p < 0.05
was considered significant. The ROI anatomical coordinates
are presented on Table 1 and the cluster size for each ROI
is: Left Amygdala = 908 voxels; Right Amygdala = 866
voxels.

We also evaluated the covariance (ANCOVA) in BrainVoyagerTM

between the fMRI signals and the individual trait levels
measured by PANAS. The amygdala fMRI responses were
obtained using the calculated differences between beta fMRI
estimates, using the GLM that represents emotional modula-
tion between the following experimental conditions: (1) “Easy
MUT” > “Easy NEU”, (2) “Hard MUT” > “Hard NEU”, and (3)
Pic-MUT > Pic-NEU.

RESULTS
BEHAVIORAL RESULTS
The mean reaction times of the correct responses and accuracy
are shown in Table 2. An ANOVA revealed a significant main
effect of task (p < 0.02) but no interaction or main effect of
valence. Post hoc t-tests showed that the overall performance
in the Hard Bar task was significantly slower in comparison to
both the Picture (p < 0.005) and the Easy Bar tasks (p < 0.01).
Concerning the accuracy data, an ANOVA revealed a signifi-
cant main effect of task (p < 0.001) and main effect of valence
(p < 0.01) but no significant interaction between these factors.
Post hoc t-tests showed no significant difference between Picture
and Easy Bar tasks. However, Hard bars task was significantly
different from the two others conditions (p < 0.001, for both
comparisons).

There was no significant correlation between individual Pos-
itive Affect scores and reaction times when participants viewed
unpleasant stimuli relative to neutral during the Easy Bar task

(r = −0.26, p < 0.28), Hard Bar task (r = −0.17, p < 0.49) or
during picture judgment task (r = −0.06, p < 0.81).

fMRI WHOLE-BRAIN ANALYSIS
A whole-brain ANOVA analysis showed a main effect of task
[q(FDR) < 0.05] for areas including the amygdala (Figure 2),
the dorsolateral prefrontal cortex and the posterior parietal cor-
tex (Figure 3). Moreover, a number of different clusters were also
present in the main effect analysis (Table 1).

ROI ANALYSIS
Region of interest analysis compared the bilateral amygdala beta
values from the unpleasant and neutral pictures. Planned compar-
isons showed a valence effect only for the picture judgment task
(Pic-MUT vs. Pic-NEU; p < 0.05; Figure 4). Such an effect was
not observed when the participants judged the orientation of the
bars, in both the easy (Easy-MUT vs. Easy-NEU; p < 0.19) and
the hard conditions (Hard-MUT vs. Hard-NEU; p < 0.77).

POSITIVE AFFECT TRAIT CORRELATIONS ON ROI ANALYSIS
The mean positive affect trait was 33.32 (SD = 4.75), varying from
26 to 45. During the Easy Bar task a significant inverse correlation
(r = −0.51, p < 0.01) was observed between the individual left
amygdala response to unpleasant stimuli (Easy-MUT vs. Easy-
NEU) and the individual PANAS scores (Figure 5). Subjects that
scored higher in the positive affect trait exhibited lower amygdala
reactivity to unpleasant pictures relative to neutral, and subjects
that scored lower in the positive affect trait exhibited higher amyg-
dala reactivity to unpleasant pictures relative to neutral. There was
no significant correlation between the right amygdala response
and the PANAS scores during the Easy Bar task (r = −0.11,
p < 0.63). Furthermore, there was no correlation between pos-
itive affect and either the left or right amygdala during the Hard
and Picture judgment task.

DISCUSSION
In the current study, we showed that differences in the positive
affect trait modulate the impact of attention on brain pro-
cessing of unpleasant pictures relative to neutral. In the Easy
Bar orientation task we found a significant inverse correlation
(r = −0.51, p < 0.01) between left amygdala activation and posi-
tive affect (see Figure 4). Participants with a higher positive affect
trait exhibited lower amygdala reactivity to unattended unpleas-
ant pictures whereas participants with lower scores showed higher
amygdala reactivity. These results suggest that positive affect facil-
itates the disengagement of attention from highly unpleasant
pictures, increasing attentional resources to perform the task at
hand.

The task main effect and ROI analysis revealed a reduced
response of the amygdala to unattended emotional stimuli dur-
ing non-emotional tasks (Figure 4), which may reflect a cognitive
modulation of the amygdala activation (Pessoa et al., 2005). In fact,
the task main effect revealed the activation of a selective visuospa-
tial attention network, particularly involving the posterior parietal
cortex and dorsolateral prefrontal cortex (Desimone and Duncan,
1995; Figure 3). Several studies have shown that the dorsolateral
prefrontal cortex and posterior parietal cortex are implicated in
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Table 1 | Areas modulated by attention during the tasks (ANOVA main effect of task) considering a threshold of 50 continuous voxels and

qFDR < 0.05.

Region Hemisphere BA x Y z Sx Sy Sz

Precentral gyrus Left 4,6 −33 −15 52 5 4 4

Right 4,6 42 −6 49 12 5 7

Postcentral gyrus Left 2,3,40 −48 −25 47 7 5 6

Right 1,2,3,40 50 −27 41 7 3 5

Superior frontal gyrus Left 6,9 −9 15 47 13 12 9

Right 6,8,9,10 26 31 43 11 19 14

Cingulate gyrus Left 32 −3 17 40 1 2 1

Right 32 7 17 37 4 13 4

Middle frontal gyrus Left 6,8,9,10,11,47 −38 31 22 6 17 24

Right 6,8,9,10,46 36 22 42 10 20 12

Inferior parietal lobule Left 40 −49 −38 42 8 7 4

Right 40 45 −40 44 6 8 5

Precuneus Left 7,19 −13 −68 41 8 7 5

Right 7,19 14 −64 44 7 8 4

Posterior cingulate Left 29,30 −7 −49 10 4 3 3

Right 29,30 6 −49 12 3 3 4

Inferior frontal gyrus Left 13,45,46,47 −44 23 −5 10 6 9

Right 9,13,47 41 8 4 12 3 23

Claustrum Left − −29 17 2 1 3 2

Right − 29 15 5 2 3 4

Middle occipital gyrus Left 19 −42 −75 4 11 7 8

Right 19,37 49 −69 6 3 2 2

Amygdala Left − −23 −5 −15 3 2 3

Right − 24 −5 −15 3 2 3

Middle temporal gyrus Left 19,21,22,39 −54 −35 −3 6 28 16

Right 19,21,37,39 48 −41 1 4 28 15

Hippocampus Left − −29 −16 −15 2 4 3

Right − 30 −16 −15 2 4 3

Fusiform gyrus Left 20,36,37 −40 −33 −18 7 16 4

Right 18,20,37 35 −37 −17 6 20 4

Insula Left 13 −33 20 2 2 2 3

Right 13 36 14 5 3 6 4

The Talairach coordinates correspond to the center of the cluster of activity with its respective SD.

Table 2 | Mean reaction times (in milliseconds) and SD for each task per valence condition.

Attention-related task Valence-related picture Reaction times (ms) SD Accuracy (%) SD

Picture judgment Neutral 919.1 109.1 68.0 7.4

Mutilated 922.0 113.3 74.7 4.9

Bar orientation task EASY Neutral 932.9 106.6 74.1 7.1

Mutilated 960.6 116.5 73.4 6.2

Bar orientation task HARD Neutral 1019.3 191.1 52.8 9.1

Mutilated 1029.1 213.0 56.7 11.5
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FIGURE 2 | Whole brain ANOVA, task main effect. The crossed lines show the amygdala.

FIGURE 3 | Whole brain ANOVA, task main effect (qFDR < 0.05). The crossed lines show the dorsolateral prefrontal cortex (left) and the posterior parietal
cortex (right).

selective visuospatial attention (Liu et al., 2004; Nobre et al., 2004)
and in emotion modulation by attention and cognition (Pessoa
et al., 2005; Blair et al., 2007; Mitchell et al., 2007). Furthermore,
the left dorsolateral prefrontal cortex is widely implicated in the
executive control of attention (MacDonald et al., 2000), in manip-
ulating representations of task-relevant stimuli at the expense of
higher conflict among distracters and stimuli (Botvinick et al.,
2004), and in the presence of threatening distracters (Bishop et al.,
2004).

Although some studies have proposed that emotion auto-
matically evokes amygdala responses (Vuilleumier et al., 2001;
Anderson et al., 2003; Muller et al., 2008), growing evidence

demonstrates that affective processing is modulated by several fac-
tors, including attention and cognitive regulation (Erthal et al.,
2005; Ochsner and Gross, 2005; Pessoa et al., 2005; Mocaiber et al.,
2010, 2011).

It has also been suggested that the interaction between atten-
tional control and emotional processing depends on a number of
additional variables, such as the relevance of distracting emotional
stimuli, task difficulty, and individual differences, such as anxiety
and positive affect levels (Oliveira et al., 2013). Moreover, previous
studies revealed that the amygdala response to threat varies as a
function of individual focused attention and anxiety levels. Highly
anxious individuals have more difficulty disengaging from threat
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FIGURE 4 | Region of interest (ROI) analyses for the bilateral amygdala

(RIGHT and LEFT). Significant differences were observed bilaterally
between the unpleasant pictures and the neutral conditions only for the
picture judgment task (Pic-MUT vs. Pic-NEU; p < 0.05).

FIGURE 5 | Inverse correlation (r = −0.51, p < 0.01) between the

individual left amygdala response to unpleasant stimuli with

individual positive affect trait in the Easy bar orientation task.

stimuli (Fox et al., 2005; Bishop et al., 2007). Another study sug-
gested increased attentional dwelling time on emotional facial
stimuli, relative to neutral faces, for participants with a heightened
anxiety trait (Fox, 2002).

Our results suggest that individual differences in positive affect
trait influence attention and adjust amygdalar responses to threat-
related stimuli. Positive affect is an important component of
human reactivity to threat (Oliveira et al., 2009). For instance,
participants with the high positive affect trait showed attenuated
autonomic reactions to threat-related mutilation pictures in a con-
text in which the pictures were presented as fictitious, suggesting
that positive affect facilitated engagement in safety context inter-
pretation, therefore diminishing the emotional impact of those
pictures (Oliveira et al., 2009).

It is notable that the association between positive affective trait
and emotional reactivity to unpleasant pictures was lateralized to
the left amygdala activation, only. In fact, the Valence-Specific
Hypothesis (VSH) suggested that the left cerebral hemisphere is
specialized for processing positive emotions (Ahern and Schwartz,
1979; Adolphs et al., 2001). Furthermore, high left frontal activ-
ity is associated with positive-related traits including positive
affect (Tomarken et al., 1992). One possibility is that the posi-
tive affective trait has more influence to modulate the left-brain

activations, adjusting the attention influence just to the left
amygdala reactivity.

In general terms, experiences of positive affect prompt individ-
uals to engage with their environment and activities (Fredrickson,
2001; Carver, 2003), which could be linked to increases in
brain dopamine levels (Ashby et al., 1999). Furthermore, con-
sidering that high positive affect involves high concentration,
pleasure and alertness (Watson et al., 1988), individuals in this
state would have increased attentional control and engagement
with the task, thus reducing neural resources available for
emotional processing. Isaacowitz (2005) used eye tracking to
investigate attentional preferences and showed that optimistic
people, compared with pessimists, presented selective inatten-
tion to unpleasant skin cancer images. In the current study,
individuals with the high positive affect trait seem to present
increased attention in the bar-orienting tasks, disengaging from
unattended aversive pictures. It is important to highlight that,
considering the experimental design of the present study, it is not
possible to disentangle unpleasant pictures disengagement from
facilitated attentional processing to perform the bar-orienting
task. In fact, both processes can be responsible for the results
obtained.

Recent evidence of the positive affect interaction with atten-
tion comes from studies that use global–local visual processing
paradigms to assess biases in attentional focus. Positive affect, par-
ticularly in individuals low in approach motivation, can suggest
a comfortable, stable environment and allows for a broadening
of attention and cognition, which may serve adaptive functions.
However, broadening does not occur when positive affect individ-
uals are high in approach motivation (Gable and Harmon-Jones,
2008; Harmon-Jones and Gable, 2009). Such positive affect often
encourages specific action tendencies, such as tenacious goal pur-
suit, and an associated reduction in attentional breadth. This
reduced attentional breadth may prove adaptive, as it assists in
obtaining goals.

It is interesting to note that the emotional modulation found in
the current study was dependent on the attentional resources avail-
able for the emotional distracters. The correlation between positive
affect and amygdala activity was found only in the easy condition,
when attentional resources were still available, but not in the hard
orientation condition. Bishop et al. (2007) also found a positive
correlation between the state of anxiety and amygdala reactivity
to threat-related distractors under low- but not high-attentional
load. The results from Bishop et al. (2007) already suggested that
some attentional resources are required to reveal the influence of
anxiety on the amygdalar reactivity to threat.

Behavioral analysis did not detect emotional interference in
task performance. It is possible that the interference produced by
aversive pictures leads to opposite effects on behavior. In fact, it has
been suggested that pictures of mutilated people induce freezing
reactions in humans (Azevedo et al., 2005; Volchan et al., 2011),
with a significant reaction time increase (Pereira et al., 2006, 2010).
Conversely, tasks in which the appraisal of emotional valence is
evaluated (such as the valence judgment in the present study) are
likely to have reduced reaction times (Calvo and Avero, 2009).
Regarding accuracy findings, we observed that Picture task and
Easy bar task were easier in comparison to the high load task,
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as expected. Subjects were slower and less accurate, indicating
attention maintenance on this Hard bar task.

In conclusion, we highlight the importance of considering that
other variables may facilitate the attentional control of emotional
processing. Currently, the discrepancy between evidence about the
automaticity of emotion processing and its dependence on atten-
tion can be explained, at least in part, by individual differences in
attention control processes. Herein, subjects that scored higher in
the positive affect trait exhibited lower amygdala reactivity to dis-
tracting unpleasant pictures relative to neutral. Thus, the current
study suggests that positive affect modulates the effect of atten-
tion on unattended unpleasant pictures, therefore attenuating
unpleasant emotional processing.
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