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Parkinson’s disease (PD) patients, besides motor dysfunctions, may also display mild
cognitive deficits (MCI) which increase with disease progression. The neurotrophin brain-
derived neurotrophic factor (BDNF) plays a role in the survival of dopaminergic neurons
and in the regulation of synaptic connectivity. Moreover, the brain and peripheral level
of this protein may be significantly reduced in PD patients. These data suggest that
a cognitive rehabilitation protocol aimed at restoring cognitive deficits in PD patients
may also involve changes in this neurotrophin. Thus, in this pilot study we evaluated
the effect of a cognitive rehabilitation protocol focused on the training of executive
functioning and measured BDNF serum levels in a group of PD patients with mild
cognitive impairment, as compared to the effect of a placebo treatment (n = 7/8
group). The results showed that PD patients undergoing the cognitive rehabilitation,
besides improving their cognitive performance as measured with the Zoo Map Test,
also displayed increased serum BDNF levels as compared to the placebo group. These
findings suggest that BDNF serum levels may represent a biomarker of the effects
of cognitive rehabilitation in PD patients affected by MCI. However, the functional
significance of this increase in PD as well as other neuropathological conditions remains
to be determined.

Keywords: Parkinson’s disease, cognitive deficits, cognitive rehabilitation, BDNF, serum levels

Introduction

Several studies have shown that patients with Parkinson’s disease (PD), besides having motor
dysfunctions, may also display mild cognitive deficits in the early stage of disease which
increase with disease progression (Green et al., 2002; Janvin et al., 2003; Muslimovic et al.,
2005). In particular, clinical and experimental findings consistently demonstrated that, in
respect to healthy subjects, PD patients exhibit poorer performance on tests tapping
selected components of executive functions, such as shifting and planning (Cools, 2006;
Cools and D’Esposito, 2011; MacDonald and Monchi, 2011), working memory (Cools, 2006;
Cools and D’Esposito, 2011), and free recall mechanisms in the content of episodic memory
(Costa et al., 2014a).
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The role of dopamine system in cognitive dysfunction in PD
has been increasingly documented in the last years by studies on
the short-term effect of dopaminergic medication. Indeed, lev-
odopa is converted to dopamine presynaptically with subsequent
effects post-synaptically, where it binds to both D1 class receptors
(including D1 and D5) and D2 class receptors (including D2, D3,
and D4). Dopamine agonists on the other hand act directly on the
post-synaptic system. The commonly used non-ergot dopamine
agonists, such as pramipexole and ropinirol, have high affinity
only for D2 class receptors (Brusa et al., 2003; Moustafa et al.,
2013), where pramipexole has a higher affinity for D3 recep-
tors and ropinirol for D2 receptors (Beaulieu and Gainetdinov,
2011). Thus, there may be fundamental differences in the func-
tional effects of different dopaminergic drugs. At this regard,
some data on healthy subjects and PD patients suggest that phasic
D2 activity would be critical for allowing the flexible modification
of mental representations (cognitive flexibility) whereas tonic
D1 activity could sustain the ability to retain stable representa-
tions in the face of incoming information (Cohen et al., 2002;
Frank, 2005; Costa et al., 2009, 2014b; Cools and D’Esposito,
2011). Coherently with this view, the hypothesis was advanced
that, in the early stages of PD, dopamine efficacy on cogni-
tive operations might be related to the regional distribution of
dopamine receptors dysfunctioning. Indeed, dopamine depletion
early affects the striatal regions that are rich of D2 receptors
and that are highly involved in cognitive flexibility processes
(Camps et al., 1990; Yeterian and Pandya, 1991; Agid et al., 1993;
MacDonald and Monchi, 2011).

However, beyond the specific molecule used, dopamine
administration/withdrawal was found to both improve and
worsen cognitive performance of individuals with PD (see Cools,
2006 for a review). These contrasting data have been also inter-
preted in the context of the pattern of dopamine depletion that
in PD primarily affects nigro-dorsal striatum pathways, and the
dopamine projections to dorsal prefrontal cortex (highly involved
in cognitive flexibility operations; Cools and D’Esposito, 2011),
while the ventral tegmental regions projecting to more ven-
tral parts of the caudate nucleus and to prefrontal and limbic
regions, particularly involved in reversal learning operations, are
affected later in the disease course (Yeterian and Pandya, 1991;
Agid et al., 1993). In this view, on one side, dopamine replace-
ment may restore or improve the cognitive functions related
to dorsal striatal activity (e.g., shifting abilities), while, on the
other side, dopamine supplementation may overdose dopamine
circuitries that include the ventral striatum and ventral pre-
frontal cortex areas, that are relatively less affected by dopamine
depletion, causing an impairment in related cognitive func-
tions (inverted-U-shaped dopamine action; Gothham et al., 1988;
Jahanshahi et al., 2010; Cools and D’Esposito, 2011).

A recent focus has been posed on the rehabilitation of cogni-
tive deficits in individuals with PD. Although this field of research
is still at the beginning, encouraging data suggest that cogni-
tive intervention may be useful to ameliorate some aspects of
executive functioning (Calleo et al., 2012; Hindle et al., 2013). In
particular, Mohlman et al. (2011) found, in PD patients, a signif-
icant generalized improvement after a working memory training
on different executive measures, as assessed by the Behavioral

Assessment of the Dysexecutive Syndrome battery. Sammer et al.
(2006) reported that a training focused on various cognitive func-
tions including planning, working memory and strategic control,
significantly improved PD patients’ performance on set-shifting
and planning measures. A more recent study also document
that the administration of a complex rehabilitative training that
included also planning, working memory and problem solving,
significantly improved PD patients’ working memory perfor-
mance (Petrelli et al., 2014). Other findings also suggest that
cognitive training may produce significant changes in cerebral
activity of these patients (Belleville et al., 2011; Nombela et al.,
2011). However, at present the mechanism of action and the bio-
logical correlates of cognitive rehabilitation in these patients are
not known.

The neurotrophin brain-derived neurotrophic factor (BDNF)
plays a relevant role both in promoting the survival of striatal
dopaminergic neurons and in the regulation of synaptic connec-
tivity (Gómez-Palacio-Schjetnan and Escobar, 2013). BDNF has
been widely investigated in PD animal models and humans. In
humans it was shown that the brain and peripheral level of this
protein may be significantly reduced in PD patients as compared
to healthy subjects (Scalzo et al., 2010) and that antiparkinsonian
drug treatment may increase these levels (Gyárfás et al., 2010).
Data from PD animal models also evidenced that BDNF may
have a protective role on DA neurons. In particular, it has been
demonstrated that BDNF protects DA neurons in vitro from the
neurotoxic effects of 1-methyl-4-phenylpyridinium (MPP+) and
6-hydroxydopamine (Galpern et al., 1996) and that, prior to stri-
atal MPP+ infusions, the implantation of fibroblasts capable of
secreting transgenic human BDNF close to the substantia nigra
of rats counteract the death of DA neurons (Frim et al., 1994).
In addition, intrastriatal injection of BDNF prior to unilateral 6-
hydroxydopamine lesioning prevents neuronal death in the sub-
stantia nigra and decreases the apomorphine-induced rotation
(a measure of asymmetrical dopaminergic function; Shults et al.,
1995).

Altogether these data indicate that BDNF is not only required
for the survival of dopaminergic neurons but can also influ-
ence their activity in these brain regions. Thus, since PD
patients have reduced peripheral and central levels of this neu-
rotrophin, the disturbance in executive functioning may be, at
least in part, explained by the negative effect of decreased BDNF
availability on dopamine pathways linked to these functions
(Savitz et al., 2006). After all, the role of BDNF in cognition
is well defined. At this regard, it has been recently demon-
strated that the reduction of activity-dependent BDNF expression
in mutant mice (BDNF-KIV mice) significantly impairs spa-
tial memory reversal and contextual memory extinction, two
executive functions that require intact hippocampal-prefrontal
cortex circuitry (Sakata et al., 2013). In addition, human studies
on functional BDNF polymorphisms have evidenced an associ-
ation between the presence of BDNF allele variants and deficits
in executive functioning (Erickson et al., 2008; Koven and Carr,
2013), set-shifting tasks in particular (Gajewski et al., 2011)
together with changes in cortical morphology (Pezawas et al.,
2004; Bath and Lee, 2006). Themechanism by which BDNF influ-
ences cognitive flexibility or other cognitive processes is still not
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clear. Nonetheless, the BDNF involvement in survival of striatal
dopaminergic neurons and in the regulation of synaptic con-
nectivity suggests that this protein may constitute one of the
biological correlates of cognitive rehabilitation.

Supporting this notion, it is known that BDNF serum levels
in PD patients might also change after other types of rehabili-
tations such as intensive motor training (Frazzitta et al., 2014).
These effects have been also confirmed in PD animal models
(Tuon et al., 2012; Real et al., 2013) but also to other neuropatho-
logical conditions such as stroke (Mang et al., 2013), Alzheimer’s
(Dao et al., 2013) and Huntington’s (Pang et al., 2006) diseases,
and spinal cord injury (Macias et al., 2009). Furthermore, in
non-PD subjects, it has been demonstrated that physical exer-
cise not only improves physical functioning but also cognitive
functions and BDNF peripheral levels in aged non-pathological
subjects (Vaughan et al., 2014) and ameliorates depressive symp-
toms (Pereira et al., 2013). Regarding the effect of cognitive
rehabilitation on BDNF levels, there are data showing that
schizophrenic patients undergoing to a neuroplasticity-based
computerized cognitive training (10 weeks) showed a significant
increase in serum BDNF compared with carefully matched con-
trol subjects who engaged in 50 h of enjoyable computer games
(Vinogradov et al., 2009). Moreover, this increase in BDNF cor-
related with improved quality of life suggesting that serum BDNF
levels may serve as a peripheral biomarker for the specific effects
of the cognitive training (Vinogradov et al., 2009). Despite these
data, whether BDNF may increase in other forms of cognitive
remediation or possibly in response to any successful behavioral
(or pharmacologic) cognitive intervention is still not known.

The fact that PD patients may also display cognitive deficits
and that these functions may be dependent on BDNF activity sug-
gest that a cognitive rehabilitation protocol aimed at improving
these specific cognitive functions may also involve modification
of this neurotrophin. To test this hypothesis, in this study we
investigated whether a cognitive rehabilitation protocol focused
on the training of executive functioning is effective in produc-
ing cognitive improvements and possibly BDNF serum changes
in a group of PD patients with mild cognitive impairment, as
compared to the effect of a placebo treatment. In particular, the
assumption that cognitive flexibility may be precociously weak-
ened in PDpatients, likely as a result of an imbalance of dopamine
activity within key regions of frontal-striatal networks (i.e., cau-
date nucleus and prefrontal cortex; Cools and D’Esposito, 2011),
makes this cognitive process an interesting target to investi-
gate, in PD, both the effect of cognitive trainings and the pos-
sible neurobiological modifications related to BDNF activity.
Accordingly, the training we here implemented was structured
to specifically potentiate set-shifting, that is the ability to flex-
ibly access to different mental representations/processes and
responses according to the environmental demands. Indeed, set-
shifting is retained to be one of the basic components of the
executive system whose integrity would allow the implemen-
tation of more complex cognitive functions such as problem
solving and planning (Miyake et al., 2000; Miyake and Friedman,
2012). At this regard, an association between flexibility and plan-
ning weakness has been suggested in PD patients (Kliegel et al.,
2011; Dirnberger and Jahanshahi, 2013). Accordingly, in order to

investigate the overall effect of the cognitive training we used as
outcome measure the Zoo Map Test (ZMT) that taps planning
in a complex situation requiring cognitive flexibility at a great
extent.

Materials and Methods

Patients
Fifteen right-handed individuals with idiopathic PD partici-
pated to the study after giving their written informed consent.
The study was approved by the Ethic Committee of the Santa
Lucia Foundation. Idiopathic PD was defined according to the
United Kingdom Parkinson’s Disease Society brain bank crite-
ria (Hughes et al., 1992). In a double-blind randomized study,
PD patients were assigned to two groups of treatment: experi-
mental or placebo. Seven patients were randomly assigned to the
experimental arm and eight to the placebo arm.

Inclusion criteria included the presence of a mild cogni-
tive impairment according to criteria of Litvan et al. (2012).
Specifically, patients included should show a performance below
1.5 SD from the normal population on one neuropsycholog-
ical test tapping executive functioning and on another test
investigating one of the following functions: working mem-
ory/attention, visual-spatial abilities, episodic memory, and lan-
guage (see below for details on the neuropsychological test battery
used). Neuropsychiatric, neuroradiological (CT or MR), and lab-
oratory examinations were executed to exclude major psychiatric
disorders, neurological conditions other than PD, vascular brain
lesions and major systemic or metabolic diseases potentially
affecting cognitive status.

The Clinical Dementia Rating Scale, the Activity and
Instrumental Activity of Daily Living (Lawton and Brody, 1969)
and the Pill questionnaire (Dubois et al., 2007) were adminis-
tered to exclude significant changes in routine activities man-
agement. The Beck Depression Inventory (Beck et al., 1961;
Visser et al., 2009) and the Apathy Evaluation Scale – Self version
(Marin et al., 1991; Leentjens et al., 2008) were also administered
to assess the severity of depression and apathy, respectively. At
the time of assessment, all PD patients were being treated with
levodopa and/or dopamine agonists (ropinirole, pramipexole,
and rotigotine). Levodopa equivalent, clinical and sociodemo-
graphic characteristics of the two PD groups are reported in
Table 1. The specific medications taken by each patient during
the study are reported in Table 2. The dopamine medication was
maintained constant during the study.

Neuropsychological Test Battery
Standardized tests were administered to PD patients to
assess episodic memory [Immediate and Delayed Recall
of a 15-Word List (Carlesimo et al., 1996); Prose Recall
(Carlesimo et al., 2002); Immediate and delayed reproduction
of the Rey’s Figure (Carlesimo et al., 2002)], attention and
short-term memory [Digit Span and Corsi Block Tapping test
Forward and Backward (Monaco et al., 2013); the Trail Making
Test -Part A (Giovagnoli et al., 1996)], executive functions
[Phonological Word Fluency (Carlesimo et al., 1996); Modified

Frontiers in Human Neuroscience | www.frontiersin.org 3 March 2015 | Volume 9 | Article 130

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Angelucci et al. Cognitive rehabilitation and BDNF levels

TABLE 1 | Clinical and sociodemographic characteristics of the PD patients included in the study.

Demographic and clinical features Experimental group Placebo group F-values p-values

Age 67.6 (10.4) 71.9 (6.3) 0.96 >0.30

Years of education 11.7 (5.6) 10.6 (3.9) 0.19 >0.60

MMSE 28.3 (1.5) 28.1 (1.9) 0.03 >0.80

Beck Depression Inventory 7.3 (3.8) 8.9 (5.9) 0.37 >0.50

Apathy Evaluation Scale 33.6 (5.4) 32.0 (9.8) 0.14 >0.70

Pill Questionnaire 2.4 (0.9) 2.9 (0.9) 0.77 >0.39

ADL 4.7 (1.6) 5.7 (0.5) 3.07 >0.10

IADL 7.0 (1.8) 7.1 (0.9) 0.03 >0.80

Disease duration 5.7 (2.8) 7.9 (6.3) 0.69 >0.40

Daily levodopa equivalents 727 (319) 732 (338) 0.01 >0.90

UPDRS T0 27.1 (13.6) 24.1 (7.1) 0.29 >0.50

Data are expressed as mean ± standard deviation, mean (SD); MMSE, Mini Mental State Examination; UPDRS, Unified Parkinson’s Disease Rating Scale; ADL, Activity
of Daily Living; IADL, Instrumental Activity of Daily Living.

TABLE 2 | Medications taken by the patients during the study.

PD groups N. Levodopa Dopamine agonists MAO-inhibitors

Pramipexole Ropinirole Rotigotine Rasagiline

Placebo

1 + + +
2 + +
3 + +
4 + +
5 + + +
6 + +
7 + +
8 +

Experimental

1 + +
2 + + +
3 + +
4 +
5 + +
6 + +
7 + + +

PD, Parkinson’s disease; N., patient’s number; MAO-inhibitors, monoamine oxidase inhibitors.

Card Sorting Test (MCST; Nocentini et al., 2002); Raven’s
Colored Progressive Matrices (Carlesimo et al., 1996); the Trail
Making Test -Part B (Giovagnoli et al., 1996)], language [Objects
and Verbs Naming subtests from the Neuropsychological
Examination of Aphasia (Capasso and Miceli, 2001)], visual-
spatial functions [Copy of Drawings and Copy of Drawings with
Landmarks (Carlesimo et al., 1996); Copy of the Rey’s Figure
(Carlesimo et al., 2002)].

Study Design and Procedure
In the experimental group, a 1-month 12-sessions treatment
(three sessions weekly) that focused on the training of shift-
ing abilities was administered. In each session, lasting 45 min,
paper and pencil exercises involving different stimuli (e.g., letters,
numbers, shapes) were proposed. The exercises were modeled
on existing paradigms shown to be sensitive to frontal-striatal

activity (MacDonald and Monchi, 2011). Exercises required sub-
ject to alternatively select between stimuli belonging to different
semantic categories or between stimuli with different visual and
spatial features.

Exercises were grouped in four modules, each requiring three
sessions to be administered with increasing levels of difficulty
(i.e., increasing the number of stimuli and reducing the time
to complete the exercise). Subjects included in the study were
asked to alternately select between stimuli with different visual
and spatial features or according to their belonging to differ-
ent semantic categories. For example, they had to alternately
indicate figures representing living or non-living objects on a
sheet of paper, join numbers with the corresponding letters (i.e.,
as in the Trail Making Test -Part B) or select stimuli on an
arrow that were alternately close to or far from a target let-
ter. The experimental protocol started with a basal module,
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followed by subsequent modules that were consecutively pro-
posed.

In case the subjects did not reach the required level of accu-
racy on a module (80%), this was administered again. In fact, all
patients reached the criteria established for all sections.

In the placebo group, a treatment with the same set char-
acteristics as those of experimental one was administered (i.e.,
frequency, duration of each session and of the whole treatment).
In this case, however, subjects were administered simple cognitive
exercises for sustained attention and language abilities (dictation
exercises and reordering of sentences sequences) that did not
vary for difficulty degree across sessions, and respiratory exer-
cises. For example, patients were read a text by the examiner
that they had to write on a paper and were given syntactically
incorrect sentences they had to reorder. In particular, for this
group, half of each session was dedicated to cognitive activity and
half to respiratory exercises. The examiners (both for behavioral
and biochemical tests) were blinded to the arm the subject was
assigned to.

Zoo Map Test
In order to evaluate the effect of the shifting training on cogni-
tive functions, we recorded the performance scores on the ZMT,
a task mainly devoted to measure planning abilities included in
the Behavioral Assessment of the Dysexecutive Syndrome battery
(Wilson et al., 1998). The ZMT is composed by two consecutive
trials in which the subject is required to visit six out of 12 loca-
tions on a zoo map, according to specified rules. In the first trial
planning abilities are stressed by the fact that no instructions on
the possible sequence is given. In the second trial, the difficulty
of the test is reduced by providing instructions on the locations
sequence. In this way a direct comparison between performances
on the first vs. second trial allows the evaluation of planning func-
tioning. In order to evaluate performance, execution time, and
accuracy (range = 0–8 for each trial; this score takes into account
the effects of errors made by the subject) are registered for both
trials. The test was administered twice to all PD patients, before
beginning the treatment (T0) and within 1 week from the end
of treatment (T1). During the test, the patients were under their
regular dopamine treatment. The test was given at the same time
of the day at T0 at T1 to reduce possible confounding effects of
dopamine therapy between the two sessions.

Blood Sampling
Blood samples were taken between 8 and 10 p.m. at the begin-
ning (T0) and within 1 week from the end of treatment (T1).
Venous blood was collected into sampling tubes and centrifuged
at 2000 × g for 20 min. Serum was then aliquoted and stored at
–80◦C until analysis.

Determination of BDNF Content
Brain-derived neurotrophic factor (R&D Systems, USA; cat.
N◦ DY248) was detected in sandwich ELISA according to the
instructions of manufacturers. This sandwich ELISA is set in
order to measure natural and recombinant human mature BDNF
in serum and plasma. All assays were performed on F-bottom
96-well plates (Nunc, Wiesbaden, Germany). Tertiary antibodies

were conjugated to horseradish peroxidase. Wells were developed
with tetramethylbenzidine and measured at 450/570 nm. BDNF
content was quantified against a standard curve calibrated with
known amounts of protein. The detection limit for BDNF was
15 pg/ml. Measurements were performed in duplicate and values
are expressed as ng/ml. Cross-reactivity to other related trophic
factors (NGF, NT-3; NT-4; TGFβ, TGFα) was less than 3%.

Statistical Analyses
In order to examine the effect of treatment on PD patients’ per-
formance on cognitive test, two mixed ANOVAs were performed
considering as dependent variable the accuracy (that includes the
errors made by the participant) and response times, respectively.
In the case of the ZMT the Treatment (experimental vs. placebo)
was the between factor and Time of Assessment (T0 vs. T1) was
the within factor. In the case of the ZMT the within factor Trial
(Trial 1 vs. Trial 2) was added.

The same analyses were executed to investigate BDNF changes
as a function of the cognitive training. In this case, with
Treatment (experimental vs. placebo) as between factor and Time
of Assessment (T0 vs. T1) as within factor. In all cases, LSD test
was applied to qualify the statistical significance of main effects
and interactions.

To examine the relationship between subjects’ performance
changes between T0 vs. T1 changes on cognitive test and BDNF
levels we executed Pearson’s r correlations analyses were exe-
cute on the PD group as a whole and separately for the two PD
subgroups.

Results

Zoo Map Test
The results of ZMT are reported in Table 3.

Accuracy
There was a significant effect of Trial [F(1,13) = 53.0; p < 0.001]
documenting that subjects were more accurate in Trial 2
(mean = 6.8; SD = 1.6) than in Trial 1 (mean = 3.2;
SD = 2.8), and a Treatment∗Time of Assessment∗Trial inter-
action [F(2,13) = 5.29; p < 0.05]. Post hoc tests showed that
subjects who underwent to experimental treatment significantly

TABLE 3 | Cognitive performances of Parkinson’s disease patients at the
beginning (T0) and at the end (T1) of the treatment.

Zoo Map Test Time Statistics

T0 T1 Cohen’ s d p-value

Trial 1

Treatment 2.8 (2.6) 5.2 (2.3) 0.98 0.05

Placebo 2.4 (3.4) 2.5 (2.8) 0.03 >0.60

Trial 2

Treatment 8.0 (0) 6.3 (2.5) 1.30 >0.10

Placebo 6.0 (2.3) 6.9 (1.7) 0.45 >0.30

Data are expressed as mean ± standard deviation (SD).
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improved their performance passing from T0 to T1 in the Trial 1
(T0: mean = 2.8; SD = 2.6; T1: mean = 5.2; SD = 2.3; p = 0.05;
Cohen’s d = 0.98), but not in trial 2 (T0: mean = 8.0; SD = 0;
T1: mean = 6.3; SD = 2.5; p > 0.10; Cohen’s d = 1.30), while
performance of subjects in the placebo group did not signifi-
cantly change on both Trial 1 (T0: mean = 2.4; SD = 3.4; T1:
mean = 2.5; SD = 2.8; p > 0.60; Cohen’s d = 0.03) and Trial 2
(T0: mean = 6.0; SD = 2.3; T1: mean = 6.9; SD = 1.7; p > 0.30;
Cohen’s d = 0.45).

Response Times
There was a main effect of Trial [F(1,13) = 49.3; p < 0.001],
documenting that all subjects were faster in performing Trial 2
(mean = 144.7; SD = 75.0) compared to Trial 1 (mean = 345.7;
SD = 146.6); the effect of Time of Assessment only approached
the statistical significance [F(1,13) = 4.14; p = 0.065]. None of
the interactions involving the Treatment factor reached the level
of statistical significance.

BDNF Serum Levels
Brain-derived neurotrophic factor serum levels before and at the
end of experimental treatments are shown in Figure 1. Mixed
ANOVA showed a significant effect of the main factor Treatment
[F(1,13)= 8.272; p< 0.05] and of the Time of Assessment∗Group
interaction [F(1,13) = 6.883; p < 0.05]. Post hoc analyses showed
that at the end of the treatment (T1) BDNF serum levels signifi-
cantly increased in patients of the experimental group (p < 0.05)
but not in the placebo group (p > 0.30). Moreover, at T1, BDNF
levels were significantly elevated in the experimental group as
compared to the placebo group (p < 0.01; Figure 1).

Correlation between Cognitive Performance
Changes and Changes on BDNF Levels
Cognitive performance changes (in terms of accuracy) and BDNF
changes passing from T0 to T1 were computed as percentage
of improvement/worsening according to the following formula:
(T1-T0)/T0. Correlation analyses did not show significant associ-
ation between BDNF changes and changes on ZMT both in the

FIGURE 1 | Brain-derived neurotrophic factor (BDNF) serum levels in
Parkinson’s disease patients before (T0) and after (T1) the cognitive
rehabilitation protocol and placebo treatment. Data are the
mean ± SEM. Values are expressed in pg/ml. Asterisk (∗ ) indicates significant
difference between the groups. ∗p < 0.05.

PD group as a whole (r = 0.15; p > 0.60; Figure 2) and separately
in the PD patients who underwent shifting training (r = 0.05)
and in patients belonging to the placebo group (r = –0.06). The
analysis of the difference between the r values of the two PD sub-
groups did not evidence significant effect (z < 0.01). We executed
a further correlation between BDNF changes and response times
changes on the ZMT trial 1 passing from T0 to T1 that, also in this
case, did not evidence significant effects (r = –0.16; p > 0.10).

Discussion

This studywas performed to investigate whether a cognitive reha-
bilitation protocol focused on the training of shifting abilities
was able to alter BDNF serum levels in PD patients affected by
mild cognitive impairment. The results showed that PD patients
undergoing the cognitive rehabilitation protocol, besides show-
ing improved cognitive performance as measured with the ZMT
also displayed increased serum levels of BDNF as compared to
the placebo group.

To the best of our knowledge, this is the first study show-
ing that cognitive rehabilitation in PD, besides having positive
effects on cognitive functions, may also induce an increase in
BDNF serum levels. The mechanism of action of cognitive reha-
bilitation has been investigated in MRI studies in patients with
PD (Nombela et al., 2011). It was found that cognitive training
improved the cognitive performance of the trained PD patients,
with a cortical activation patterns comparable to those observed
in controls. The neuronal circuits hypothesized are those of dor-
solateral prefrontal cortex and basal ganglia, two regions strongly
affected by dopamine depletion in PD, as well as the fronto-
parietal circuitry.

The training here implemented was specifically structured to
potentiate set-shifting, that is the ability to flexibly access to dif-
ferent mental representations/processes and responses according
to the environmental demands. Indeed, cognitive flexibility is
reported to be early impaired in PD patients, likely as a result

FIGURE 2 | Scatter plot evidencing the relationship between BDNF and
cognitive changes after treatments in the whole PD group. ZMT = Zoo
Map Test.
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of an imbalance of dopamine activity within key regions of
frontal-striatal networks (i.e., caudate nucleus and prefrontal cor-
tex; Cools and D’Esposito, 2011). This evidence makes cognitive
flexibility an interesting target to investigate, in PD, both the effect
of cognitive trainings and the possible neurobiological modi-
fications related to BDNF activity. As a matter of fact, in the
basal ganglia BDNF supports the survival and function of the
dopaminergic neurons and for these reasons its role in PD patho-
genesis and treatment of motor diseases has been widely inves-
tigated (He et al., 2013). Additionally, BDNF regulates synaptic
plasticity and plays a critical role in maintaining normal pre-
frontal cortex function (Savitz et al., 2006; Woo and Lu, 2006),
leading to the idea that BDNF is involved in the regulation of
working memory and behavioral processes (Galloway et al., 2008;
Sakata et al., 2013). Supporting this notion, previous reports
from BDNF heterozygous knockouts and knockdowns revealed
impairments in cognitive functions (Monteggia et al., 2004).
Some authors reported that water maze performance is per-
turbed in forebrain-deleted BDNF mice (Gorski et al., 2003)
and in mice with hippocampal virally induced BDNF ablation
(Heldt et al., 2007), whereas transgenic overexpression of BDNF
in the cerebral cortex and hippocampus facilitates performance
(Koponen et al., 2004). In humans, molecular studies have evi-
denced that a functional polymorphism (Val66Met) in BDNF
gene can influence human executive functions in healthy subjects
(Alfimova et al., 2012) and in patients affected by mental illness
(Lu et al., 2012; Tükel et al., 2012).

Other studies have shown that brain stimulation, in form of
environmental or cognitive enrichment, may modulate BDNF
in the brain. In animal models, environmental enrichment
has been shown to increase BDNF levels in the hippocampus
(Ramírez-Rodríguez et al., 2014), as well as other brain areas
(Angelucci et al., 2009). Moreover, infusion of BDNF directly
into the basal ganglia (nucleus accumbens) restored cognition,
synaptic plasticity, and cell signaling in cognitively impaired aged
rats (Li et al., 2012). In human subjects, it has been shown that
BDNF increases after physical exercise (Schmolesky et al., 2013;
Vaughan et al., 2014), and this increase may correlate to improve-
ment of cognitive functions in pathological conditions such
as stroke (El-Tamawy et al., 2014) and depression (Oral et al.,
2012). Moreover, other studies have shown that BDNF serum
levels in PD patients might change in relation to other types
of rehabilitations such as intensive motor training and these
effects are associated to motor improvements (Frazzitta et al.,
2014). These results parallel those obtained in animal mod-
els where the increase in striatal BDNF has been associated
to the neuroprotective effects of exercise training (Tuon et al.,
2012; Real et al., 2013). These effects in animal models are
not limited to PD but also to other neuropathological condi-
tions such as stroke (Mang et al., 2013), Alzheimer’s (Dao et al.,
2013) and Huntington’s (Pang et al., 2006) diseases, depression
(Pereira et al., 2013) and spinal cord injury (Macias et al., 2009).

Altogether these data suggest that BDNF may have a
dual role in the dopaminergic system. It is a protective
agent of the nigrostriatal pathway with its survival action
and can modulate cognitive processes by regulating synaptic
plasticity in the hippocampal and cortical pathway. This

dual role is of special relevance to PD. Several studies
have shown an association between motor dysfunction and
cognitive performance in PD patients. Specifically, among
all the PD symptoms, bradykinesia has been found to be
associated with poor performance in tests measuring men-
tal flexibility and working memory (Domellöf et al., 2011).
Bradykinesia is considered an hallmark of nigrostriatal lesion
in PD (Vingerhoets et al., 1997). However, these findings sug-
gest that loss of dopaminergic neurons may also cause non-
motor symptoms. Supporting this hypothesis, it has been
shown that both bradykinesia and aspects of cognition involv-
ing mental flexibility(Lewis et al., 2005) and working memory
may benefit from intake of dopaminergic drugs (Lewis et al.,
2003).

Brain-derived neurotrophic factor signaling, via its
Tropomyosin related kinase B receptor tyrosine kinase, is
important for the survival of nigrostriatal dopaminergic neu-
rons (Baquet et al., 2004; Baydyuk et al., 2011). Thus, absence
or reduced support of BDNF in dopaminergic nigrostriatal
pathway may cause either reduced survival and/or malfunction.
Interestingly, postmortem studies showed that BDNF mRNA is
reduced in the substantia nigra (pars compacta) of PD patients
as compared healthy subjects (Howells et al., 2000). Also, serum
levels of BDNF are directly correlated with the amount of striatal
dopamine transporter binding (Ziebell et al., 2012) and the
severity of motor symptoms in PD (Scalzo et al., 2010). On the
other hand, studies on BDNF gene expression have evidenced
that this neurotrophin may exert its effect on cognitive functions
(such as long-term memory and executive functioning) by
regulating synaptic transmission in hippocampal and prefrontal
regions (Savitz et al., 2006). These data indicate that BDNF may,
at least in part, mediate the effect of cognitive rehabilitation in
PD patients. However, given its dual role on the nigrostriatal and
cortical pathways, the mechanism by which BDNF influences
executive function may be wider and not limited to this specific
task. Other cognitive functions, beside those investigated in the
present study, may be involved and BDNF effect may be not
limited to dopamine, but also to other neurotransmitters (i.e.,
glutamate) as recently demonstrated in mice (D’Amore et al.,
2013). The fact that in our cohort of PD patients BDNF levels
do not correlate with changes in executive function provides
evidence for this hypothesis.

Limits of the study are represented by the relatively small
sample size that could have affected the power of statistical anal-
yses. For instance, low sample size could have prevented us
from finding significant correlations between BDNF and cogni-
tive performance changes. Thus, our data should be regarded
as preliminary observations and need to be confirmed in larger
cohorts of PD patients. Furthermore, it should be noted that the
effects of the shifting training were not compared with those of
training focused on other executive sub-components (e.g., updat-
ing or inhibition). Therefore, we cannot exclude the possibility
that the effect observed in the PD group after cognitive training
was due to a general improvement of executive/attentional func-
tioning, rather than merely shifting abilities, also considering that
the shifting training has a higher level of attention-demanding
when compared to the placebo training.
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Nonetheless, given that the placebo and the experimental
groups were strictly comparable in terms of clinical and cognitive
symptoms as well as dopamine medication, this pilot study can
provide valuable information on the neurobiological correlates of
cognitive rehabilitation in PD as well as in other neurodegenera-
tive diseases (Vinogradov et al., 2009).

In conclusion, this pilot study showed that a cognitive rehabil-
itation program focused on the training of executive functioning
improves cognitive functions and increases BDNF serum levels
in PD patients with mild cognitive impairment. Additional stud-
ies with larger samples and/or other methodologies are needed
to determine if BDNF acts directly in neural networks associated
with executive functioning or indirectly via trophic influences on
other neurotransmitters such as glutamate or dopamine.
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