
ORIGINAL RESEARCH
published: 24 June 2015

doi: 10.3389/fnhum.2015.00368

Frontiers in Human Neuroscience | www.frontiersin.org 1 June 2015 | Volume 9 | Article 368

Edited by:

Baingio Pinna,

University of Sassari, Italy

Reviewed by:

Branka Spehar,

University of New South Wales,

Australia

Mark E. McCourt,

North Dakota State University, USA

*Correspondence:

Astrid Zeman,

Level 3, Australian Hearing Hub,

Macquarie University, Sydney,

16 University Avenue,

NSW 2109, Australia

astrid.zeman@mq.edu.au

Received: 17 October 2014

Accepted: 11 June 2015

Published: 24 June 2015

Citation:

Zeman A, Brooks KR and Ghebreab S

(2015) An exponential filter model

predicts lightness illusions.

Front. Hum. Neurosci. 9:368.

doi: 10.3389/fnhum.2015.00368

An exponential filter model predicts
lightness illusions

Astrid Zeman 1, 2, 3*, Kevin R. Brooks 3, 4 and Sennay Ghebreab 5, 6

1Department of Cognitive Science, ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney,

NSW, Australia, 2Commonwealth Scientific and Industrial Research Organisation, Marsfield, NSW, Australia, 3 Perception in

Action Research Centre, Macquarie University, Sydney, NSW, Australia, 4Department of Psychology, Macquarie University,

Sydney, NSW, Australia, 5Cognitive Neuroscience Group, Department of Psychology, University of Amsterdam, Amsterdam,

Netherlands, 6 Intelligent Systems Lab Amsterdam, Institute of Informatics, University of Amsterdam, Amsterdam,

Netherlands

Lightness, or perceived reflectance of a surface, is influenced by surrounding context.

This is demonstrated by the Simultaneous Contrast Illusion (SCI), where a gray patch is

perceived lighter against a black background and vice versa. Conversely, assimilation is

where the lightness of the target patch moves toward that of the bounding areas and can

be demonstrated in White’s effect. Blakeslee and McCourt (1999) introduced an oriented

difference-of-Gaussian (ODOG) model that is able to account for both contrast and

assimilation in a number of lightness illusions and that has been subsequently improved

using localized normalization techniques. We introduce a model inspired by image

statistics that is based on a family of exponential filters, with kernels spanning across

multiple sizes and shapes. We include an optional second stage of normalization based

on contrast gain control. Our model was tested on a well-known set of lightness illusions

that have previously been used to evaluate ODOG and its variants, and model lightness

values were compared with typical human data. We investigate whether predictive

success depends on filters of a particular size or shape and whether pooling information

across filters can improve performance. The best single filter correctly predicted the

direction of lightness effects for 21 out of 27 illusions. Combining two filters together

increased the best performance to 23, with asymptotic performance at 24 for an

arbitrarily large combination of filter outputs. While normalization improved prediction

magnitudes, it only slightly improved overall scores in direction predictions. The prediction

performance of 24 out of 27 illusions equals that of the best performing ODOG variant,

with greater parsimony. Our model shows that V1-style orientation-selectivity is not

necessary to account for lightness illusions and that a low-level model based on image

statistics is able to account for a wide range of both contrast and assimilation effects.

Keywords: exponential, filter, model, ODOG, lightness, illusion, contrast, assimilation

1. Introduction

Lightness is the perceived reflectance of a surface, which can vary greatly according
to surrounding context, as demonstrated by lightness illusions (see Kingdom, 2011
for a recent review). One clear and well-known example is the Simultaneous Contrast
Illusion (SCI), where a gray target patch is perceived as lighter when surrounded
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FIGURE 1 | Simultaneous Contrast vs. White’s Effect. Albedo of gray target patches in Simultaneous Contrast shift away from background, demonstrating

contrast. Targets in White’s Effect shift toward surrounding context, demonstrating assimilation. Increasing spatial frequency increases the effect in both cases.

by a black background and darker when surrounded by a
white background (Chevreul, 1839) (Figure 1 left). The SCI
demonstrates the contrast phenomenon, where lightness shifts
away from surrounding luminance values, luminance being the
amount of light that reaches the eye. Under other circumstances,
lightness can shift toward the luminance values of bordering
areas—a phenomenon known as assimilation1. This is effectively
demonstrated by a version of White’s Illusion (White, 1979),
where the test patches are not as wide as they are tall (Figure 1
right).

Theories that aim to explain lightness illusions can be
broadly categorized into low-level and higher-level accounts.
Higher-level theories argue that scene interpretation is necessary
to account for lightness illusions, where cortical processing
of surface curvature, depth, and transparency are known to
influence perceived reflectance (Knill and Kersten, 1991). For
instance, Schirillo et al. (1990) demonstrated that lightness
perception is dependent upon depth cues. Given that depth
perception is thought to be a cortical function, higher-level areas
must be recruited when perceiving reflectance. In 1999, Gilchrist
et al. (1999) established the Anchoring Theory of lightness, where
perceived reflectance of a patch is “anchored” to the highest
luminance value within the retinal image (global information)
and is also “anchored” to luminance values in surface groups
that share commonalities such as being situated within the
same depth plane (local information). Another notable high-
level theory is Anderson (1997)’s Scission Theory, based upon the
principle that a visual scene is split into different causal layers of
reflectance, transparency, and illumination (the amount of light
incident on a surface), to determine the surface properties of

1In some cases, target patches have equal bordering white and black areas, making

it difficult to distinguish whether a contrast or assimilation effect is predominantly

present.

a homogenous area. While these high-level theories are able to
offer consistent explanations for a variety of complex lightness
phenomena, our aim in this paper is to quantify the performance
of low-level models whose computations do not require higher-
level scene interpretation. In the interests of providing a succinct
quantitative account of a range of lightness phenomena, we apply
Occam’s Razor, emphasizing the capability of low-level theories
to deliver improved modeling precision with greater parsimony.

Low-level theories concentrate on filtering operations and
statistical image properties as the key explanation behind many
lightness illusions. The main principle underlying low-level
theories is that of image reconstruction: that lightness is inferred
by reconstructing the most probable source image using filtering
operations (Blakeslee and McCourt, 1999; Dakin and Bex, 2003).
The filters concerned are considered to reside in early stages
of the visual hierarchy such as the retina, LGN, and/or V1.
Blakeslee and McCourt (1997) designed a low-level model using
a multi-scale array of two-dimensional Difference of Gaussian
filters (DOG). The isotropic filters in this model approximated
retinal ganglion or LGN single cell function. The DOG model
was able to account for the contrast effect shown in the SCI but
not the assimilation observed in White’s Effect. To account for
assimilation, Blakeslee and McCourt (1999) extended this model
to include anisotropic filters (oriented difference of Gaussians, or
ODOG filters) that were pooled non-linearly. These orientation
selective filters best approximate V1 functions, shifting the focus
of the model from pre-cortical to cortical operations to account
for a larger set of lightness illusions. Shortly after this, Dakin and
Bex (2003) introduced an isotropic filter model that reweighted
filter outputs using spatial frequency (SF) properties found in
image statistics. Using a series of center-surround, Laplacian
of Gaussian filters, they demonstrated that low SF structure is
an essential ingredient of two well-known lightness illusions:
White’s Effect and the Craik-Cornsweet-O’Brien Effect (O’Brien,
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1958; Craik, 1966; Cornsweet, 1970). Dakin and Bex (2003)
demonstrated that orientation selective filters were not required
to successfully model assimilation effects, and highlighted the
importance of weighting or normalization schemes within these
low-level models.

Since Dakin and Bex’s paper, focus on statistical image
properties (Corney and Lotto, 2007) and on post-filtering
operations that weight the relative filter outputs (Robinson et al.,
2007) has intensified in the context of low-level lightness models.
Corney and Lotto (2007) demonstrated contrast and assimilation
effects using an approach inspired by image statistics, training
an artificial neural network with virtual scenes that possess
naturalistic structure. In contrast to Dakin and Bex (2003)
who made statistical relationships explicit through weighting
operations, Corney and Lotto (2007) trained an artificial neural
network to implicitly learn the relationships between images and
their underlying statistics. In the same year, Robinson et al. (2007)
focused on applying different normalization schemes to improve
predictions using the ODOGmodel. Normalization is commonly
used as a weighting scheme to smooth distributions and scale all
values to a baseline magnitude (usually 1). Robinson et al. (2007)
focused on applying two different normalization schemes to the
ODOG model: local normalization of filter outputs (LODOG)
and spatial frequency-specific local normalization (FLODOG).
In LODOG and FLODOG, parameters of the normalization
function (such as normalization window size) were adjusted
to produce different model predictions. Robinson et al. (2007)
systematically tested ODOG, LODOG, and FLODOG on a
catalog of 28 stimuli, 27 of which are known to induce illusions
of contrast or assimilation in human observers. While ODOG
was able to predict only 13 illusions in the correct direction,
the best performing LODOG model was able to predict 18.
FLODOG proved the most effective, correctly predicting 24
lightness illusions with an optimal parameter set.

Here we extend the literature using an approach inspired by
natural image statistics. As established by Dakin and Bex (2003),
the underlying distribution of structural properties present in
natural images can greatly influence lightness judgments. Natural
images share common underlying statistics, regardless of their
origin (Zhu and Mumford, 1997a,b). For example, contrast
histograms for natural images are skewed toward lower contrasts
and have an exponential tail (Field, 1987; Ruderman and Bialek,
1994). Basu and Su (2001) investigated filters that encode the
distribution of contrasts over different spatial frequencies. They
concluded that exponential distributions provide a better fit
in representing the underlying power distributions of natural
images than the Gaussian kernels that have been used in the
models described above. By employing exponential filters of
different sizes and shapes within a computational model, we
represent the profile of contrast statistics present in natural
images and observe how these may influence the direction and
magnitude of a set of lightness illusions. These filters have x- and
y-axis symmetry, ranging from ridged, ‘peaky’ distributions to
flatter, more rounded distributions (illustrated in Figure 2).

The exponential filters we explore in this study are offered as
another kind of inhibitory mechanism, since the image filtered
by the exponential function is subtracted from the original
image. As such, this model shares much in common with other
filtering approaches, such as ODOG (Blakeslee and McCourt,
1999). Indeed, this filtering approach bears similarity to the extra
classical surround model of Ghosh et al. (2006) and is most
similar to the filtering approach of Shapiro and Lu (2011), with
the exception of the shape of the surround.

While the filters in ODOG (and variants) approximate
the functioning of orientation-selective V1 cells, and while
Difference or Laplacian of Gaussian filters approximate the
operations of isotropic LGN or retinal ganglion cells, exponential
filters, not unlike those forming the basis of our model, have been

FIGURE 2 | The exponential function family (Basu and Su, 2001) with increasing values of the m exponent.
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identified in H1 horizontal retinal cells (Packer and Dacey, 2002,
2005). Our model is predominantly motivated by the computer
vision literature, where exponential filters have been shown to
be excellent edge detectors as well as resilient to noise (Zhu
and Mumford, 1997a). The level of biological plausibility in our
model is not strongly emphasized, but we do identify possible
neurobiological equivalents to the filters that we apply. Geisler
(2008) illustrates responses to natural images of a sensor that
has a receptive field profile similar to V1, where an exponential
function shows a better fit over a Gaussian distribution. While
there are parallels here in demonstrating that an exponential fit
is better than Gaussian in terms of filter responses, the filters that
we apply are not oriented V1-style filters. Therefore, we would
not suggest any relationship between our model results and the
involvement of cortical neurons.

Our study differs from that of Corney and Lotto (2007) in
that we make statistical relationships explicit through filtering
and normalization operations, instead of training an artificial
neural network to implicitly learn the relationships between
images and their underlying statistics. Our method is similar to
that of Dakin and Bex (2003), in that we both capitalize on the
properties of image statistics to reconstruct the final image. In
our method, we employ exponential shape filters that are based
on image statistics. In Dakin and Bex (2003), the authors split
an image into different spatial frequencies (SFs) using band-pass
filters. The distribution of SFs was then reweighted to match
that which occurs in natural scenes. In our model and in that
of Dakin and Bex (2003), the filters are designed to extract the
most salient features while being robust to noise (Basu and Su,
2001). In this way, both of our studies align with the predictive
coding principle by Srinivasan et al. (1982)—that by exploiting
the spatial correlations of natural scenes, early visual systems are
much better able to handle noise in the environment.

In the current study, we set out to investigate how well an
exponential model is able to predict human data in response
to a large battery of 28 lightness illusions previously used to
test ODOG and its derivatives (Blakeslee and McCourt, 1999,
2001, 2004; Blakeslee et al., 2005; Robinson et al., 2007). We
apply exponential filters with a range of different shapes and
sizes to an input image, with and without normalization of
varying spatial extent. The outputs of this model are taken as
predictions of lightness both for single filters and for multiple-
filter combinations.

2. Materials and Methods

2.1. Stimuli
A standard battery of 28 figures known to produce particular
lightness effects was used as a stimulus set in this study (see
Robinson et al., 2007). Each stimulus (with the exception of the
Benary Cross) involves a pair of uniform, mean luminance target
patches, each surrounded by details with the opposite contrast
polarity. Stimuli are illustrated in Figure 3, reproduced from
Robinson et al. (2007). All stimuli are 512 × 512 pixels in size.
Each stimulus is listed below in Table 1 with original sources
and comparative results reported for human responses where
available. Table 1 also includes the reported illusion direction by

humans as the patch perceived as the lightest within the image
and the corresponding classification of the predominant effect as
contrast or assimilation.

The majority of images exhibit assimilation effects, with
contrast effects demonstrated by figures n, o, p, q,w, and x.
In some cases, target patches have equal bordering white and
black areas, making it difficult to establish whether a lightness
effect should be defined as a contrast or assimilation effect (as
in stimulus s). Stimuli y and z demonstrate opposing illusion
directions for patches with identical bordering surrounds,
presenting both contrast and assimilation effects simultaneously.
In most cases, illusory effect directions reported in the original
articles have been replicated in follow-up studies by Blakeslee
and McCourt (used here and in Robinson et al., 2007 for direct
strength comparisons). However, due to slight differences in
methodology, stimuli e and q demonstrate discrepancies between
the two sets of human data. In these cases, we follow the
convention of Robinson et al. (2007) to allow for easy comparison
between their models and those described here.

As each stimulus involves 2 (or more) uniform, mean
luminance target patches, each surrounded by details with the
opposite contrast polarity, the lightness effects observed on these
patches are expected to be equal and opposite. Our model’s
predictions regarding the presence of contrast or assimilation
effects are made by taking mean lightness values from the largest
rectangular patch inside the bounds of the target areas (matched
for size) and subtracting the values for the patch that appears
darker from those for the lighter. For stimulus n, (“grating
induction”), we select rectangular areas that are 26 pixels wide
to the left and right of center for our prediction comparison (0.4
of the spatial period of the grating), while maintaining the same
patch height as Robinson et al. (2007).

2.2. Model
Our model consists of two-stages: (1) linear filtering using
exponential functions (2) non-linear divisive normalization by
coefficient of variation. Although the details of each stage may
vary, this linear-nonlinear modeling method is commonly used
to model physiology (Schwartz and Simoncelli, 2001; Nykamp
and Ringach, 2002). Once the two stages of the model have
produced lightness values at each pixel location of each target
patch, we produce a prediction by calculating themean difference
over the target patches and applying linear scaling. Details of each
step in the model and on calculating the comparison metric are
described below.

2.2.1. Filtering
The set of exponential filters we apply are taken from Basu
and Su (2001). These exponential filters are two dimensional in
shape and possess x-symmetry, y-symmetry, and symmetry with
respect to the origin. They have unit volume and take the form:

g(x) =
1

K1
exp−K2|x|

m
(1)

where K1, K2, and m are all positive constants. The m exponent
corresponds to the shape of the filter. The normalization or
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FIGURE 3 | Illusions tested, replicated from Robinson et al. (2007). Each letter refers to an individual stimulus.

scaling factor K1 is calculated using K2 and m as follows:

K1 = (1/K
1/m
2 )(1/m)Ŵ(1/m) (2)

where constant K2 is a function of the variance of g(x), which
denotes the size of the filter. Ŵ(x) is the Gamma function
defined as:

Ŵ(x) =

∫ ∞

0
t(x−1)exp(−t)dt (3)

Figure 2 illustrates the variety of exponential filter shapes. When
m is small, the exponential filter is described as having “high
kurtosis,” showing a sharper peak with more prominent ridges.
When m is large, the exponential filter has “low kurtosis,” being
flatter and rounder with smoother ridges. A special case is formed

Frontiers in Human Neuroscience | www.frontiersin.org 5 June 2015 | Volume 9 | Article 368

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Zeman et al. Exponential modeling of lightness illusions

TABLE 1 | Stimuli with original sources, reproduced results (for strength comparison) and illusion direction reported by humans.

Figure Original source Reproduced results Human Contrast (C) or

Direction Assimilation (A)?

a White, 1979 Blakeslee and McCourt, 1999 Left A

b White, 1979 Blakeslee and McCourt, 1999 Left A

c Robinson et al., 2007 Top A

d Anderson, 2001 Blakeslee et al., 2005 Right A

e Howe, 2001 Blakeslee et al., 2005 No illusion N/A

f Clifford and Spehar, 2003 Left A

g Anstis, 2003 Bottom A

h Anstis, 2003 Bottom A

i Anstis, 2003 Bottom A

j Anstis, 2003 Bottom A

k Howe, 2005 Right A

l Howe, 2005 Right A

m Howe, 2005 Right A

n McCourt, 1982 Blakeslee and McCourt, 1999 Area between C

black

o Chevreul, 1839 Blakeslee and McCourt, 1999 Right C

p Chevreul, 1839 Blakeslee and McCourt, 1999 Right C

q Pessoa et al., 1998 Blakeslee and McCourt, 1999 Left (Right C

in original)

r Todorovic, 1997 Blakeslee and McCourt, 1999 Right A

s Todorovic, 1997 Blakeslee and McCourt, 1999 Right N/A

t Pessoa et al., 1998 Blakeslee and McCourt, 1999 Right A

u De Valois and De Valois, 1988 Blakeslee and McCourt, 2004 Right A

v De Valois and De Valois, 1988 Blakeslee and McCourt, 2004 Right A

w De Valois and De Valois, 1988 Blakeslee and McCourt, 2004 Left C

x Adelson, 1993 Blakeslee and McCourt, 2001 Bottom C

y Benary, 1924 Blakeslee and McCourt, 2001 Left N/A

z2−1 Todorovic, 1997 Blakeslee and McCourt, 2001 Second in 1–2 N/A

z4−3 Todorovic, 1997 Blakeslee and McCourt, 2001 Fourth in 3–4 N/A

aa Bindman and Chubb, 2004 Left A

bb Bindman and Chubb, 2004 Left A

when m = 1
2σ 2 , where the function becomes a Gaussian with

added rotational symmetry.
Each filter of a specific size and shape is applied to every pixel

within the image. The size of the filter affects the information that
is gleaned from an image. Smaller filters (high spatial frequencies
or SFs) show better responsiveness but are less resilient to noise.
Larger filters (low SFs) blur a lot of information, essentially losing
information present in the images, but cope better with noise.
There is a trade-off between selecting precise information and
having greater resilience to noise, which is where scale selection
comes in. The most appropriate filter selection finds the right
compromise between these two factors, taking the smallest scale
with the most reliable response.

A small amount of Gaussian noise is added to the image (0.1%)
before filtering. Adding noise to the image is to avoid divide-by-
zero errors when implementing divisive normalization. We are
aware of other approaches to avoid divide-by-zero errors, such as
adding a constant to the denominator term (Cope et al., 2013).

Responses are then convolved to create a filtered image of the
same dimensions as the original input. The filtered convolved
image is subtracted from the original image as the final step
in processing. We explore a range of different filter shapes and
sizes and produce a set of filtered images for every size and
shape of filter. We use 10 filter sizes ranging from 5 pixels to
95 in increments of 10. The filter shapes range from 0.1 to 1.9
in increments of 0.2. Figure 4 illustrates the result of applying
three example filters with different shape parameters to White’s
Illusion. The predictive success of this particular filter size is well-
demonstrated for this particular image, regardless of filter shape.
The bottom row in Figure 4 demonstrates a close approximation
to the Gaussian filter, which in this case is able to predict the
direction and magnitude of White’s Effect. This filter differs from
the DOG filters used by Blakeslee and McCourt (1997)’s model
in two key ways. Firstly, Blakeslee and McCourt use a Difference-
of-Gaussian (DOG) filter, rather than an approximate Gaussian
pictured here. Secondly, Figure 4 demonstrates a single filter
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FIGURE 4 | Exponential filters applied to White’s illusion, all with

size K2 = 5. The top row shows a filter with high kurtosis (m = 0.5),

the middle row shows a medium kurtosis filter (m = 1.0) and the

bottom row shows a low kurtosis filter (m = 2.0). From left to right,

column 1 is a top-down view of the filter shape, column 2 is the

original image (of size 512 × 512 pixels), column 3 is the same image

filtered and column 4 is a cross section of grayscale values through

row y = 250 pixels (where 0 represents black and 255 represents

white). The locations of target patches are highlighted yellow in the

final column.

operation, rather than a bank of filters used by Blakeslee and
McCourt (1997).

2.2.2. Normalization (Optional)
After applying a specific contrast filter with shape m and
size K2 to each pixel location in the image, we optionally
normalize the filter outputs. Normalization is not only useful in
its primary function of constraining the dynamic response range
of image filters, but is also beneficial for generating a faithful
representation of image contrast. Following (Bonin et al., 2005),
at each image location we divisively normalize the linear filter
output by the output of a suppressive field, which computes
the statistics of filter outputs surrounding the image location of
interest. Bonin et al. (2005)’s normalization method, referred to
as contrast gain control, is closely related to that found in the
LGN and so we apply it here as a biologically plausible method
for normalization in pre-cortical areas. In contrast to Bonin
et al. (2005), who take the local root-mean-square contrast as the
suppressive field, we divide filter responses by the local coefficient
of variation. The local coefficient of variation is inversely related
to local Weibull statistics and as such is diagnostic of local

image structure. Divisive normalization by the local coefficient of
variation amplifies local image contrast. Similarly to Bonin et al.
(2005), we compute normalized filter outputs using the following
formula:

V = Vmax
g(x)

c50 + clocal
(4)

where c50 determines the strength of the suppressive field, Vmax

is the maximum response of the filter to the image, and g(x)
is the filtered response defined above. Finally, clocal is the local
coefficient of variation:

clocal =
σ

µ
(5)

clocal is calculated based on the mean (µ) and the size of the
suppressive field (σ ) that is used as one of the parameters in
our normalization step. The σ parameter specifies the size of the
suppressive field compared to the size of the receptive field.When
σ = 1, the size of the suppressive field is equal to that of the
receptive field. When σ = 2, the size of the suppressive field is
twice that of the receptive field.
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2.2.3. Analysis Metrics
For each stimulus that we analyze, we take the resultant values
(denoted as R) from the filter-only output (step 1) or from
normalized output (step 2) with either σ = 1 or σ = 2 (as
described above, σ represents the size of the suppressive field,
as a proportion of the receptive field). We refer to σ = 1
as short-range normalization, where the suppressive field is the
same area as the receptive field. σ = 2 is referred to as long-
range normalization, where the suppressive field is twice the size
of the receptive field. Within each image, we compare values
over the two areas that have been assigned to be target patches
(see Section 2.1). The lighter patch (as established in human
experiments) is assigned to be patch A and the darker patch is
assigned to be patch B. Mean values are obtained for both target
patches before the mean of patch B is subtracted from the mean
of patch A. Because patch A is assigned to be the lighter patch,
a prediction in the correct direction is indicated by a positive
value, whereas an incorrect prediction is negative. A value of zero
indicates no difference in patch lightness values and therefore no
illusion.

To compare resultant values, we scale the difference between
target patches to the strength of White’s Illusion for ease of
comparison. The magnitude of White’s illusion is denoted as Ra.
This means that all resultant values are scaled to the strength
(or magnitude) of White’s illusion. A resultant value of 1 is
then interpreted as having identical illusory strength to White’s
illusion. A value greater than 1 indicates the illusion is stronger
than White’s, and a value less than 1 (and above 0) indicates the
illusion is weaker thanWhite’s. Although any stimulus could have
been selected for comparative purposes, we follow Robinson et al.
(2007)’s convention by selecting stimulus a as our comparative
figure.

R = (A− B)./|Ra| (6)

We also calculate the difference between model predictions
and human results (where available) to quantify how well-
different model configurations match human data. We do
this by subtracting the human result Rhuman from the model
result Rmodel for stimuli from a to bb for which human
results are available, and calculating the root mean square
error (RMSerror). The smaller the RMSerror value, the better
the model matches human data, and the greater the predictive
accuracy of the model in terms of illusion magnitude or
strength.

RMSerror =

√

√

√

√

1

n

bb
∑

a

(

Rmodel − Rhuman

)2
(7)

When combining the outputs of two filters α and β of different
sizes or shapes, we simply sum the difference in mean responses
to the light and dark patches separately for each filter (removing
scaling to figure a):

Rαβ = Rα + Rβ (8)

3. Results

We assess the performance of our model in two ways: the number
of predictions in the correct direction, and also how closely
the predicted values match the scaled human data on illusion
magnitude. We exclude figure e from our analysis, given that
no illusion direction is reported for humans. Figure 5 illustrates
the number of illusion directions correctly predicted (out of a
maximum possible of 27) using a single filter over a range of
10 filter shapes and 10 filter sizes. For figure z, there are two
predictions, annotated as z2−1 and z4−3, for comparing the two
left patches and the two right patches in the image, respectively.
We take a correct result to be when (z2−1+z4−3)/2 > 0. RMSerror
is also calculated using the average over these two comparisons.
We show predicted results for various model configurations:
with no normalization, and with 2 ranges of local normalization
(σ = 1 and σ = 2). With no normalization, the highest

FIGURE 5 | Single filter predictions over 10 different shapes and 10

different sizes. The number of correct illusion directions predicted for

different model configurations using a single filter.
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number of correct direction predictions made by a single filter
was 20 illusions using a large-sized filter with medium kurtosis.
With short-range normalization (σ = 1), the highest number
of correct direction predictions made by a single filter was 21
illusions (present in a small-sized filter with high kurtosis). With
an increased normalization range (σ = 2), the best prediction
result was slightly lower at 19 out of 28.

Table 2 lists the results for the best performing size and shape
filter in terms of the difference of the mean values over the target
patches. Asmentioned above, we exclude figure e from our results
because no illusion is reported in human results.We report values
for z2−1 and z4−3 (in gray) and take the average of these two
as our prediction for z, maintaining a single value prediction
per illusion. In Table 2 we also reproduce results from Robinson
et al. (2007) for the ODOG, best LODOG, and best FLODOG
model alongside human scaled results for direct comparison.

Predictions in the correct direction are shown in bold and tallies
of the number of these correct predictions are presented at the
bottom. For each model, we also list the RMSerror that represents
how well the model’s predictions match the magnitude of human
results.

Table 2 shows that performance was maintained (in terms
of number of correct direction predictions) when going from
raw filter output to short-range normalized results for single
filter predictions. Normalized results provided predictions with
much smaller magnitudes of lightness illusions, as we would
expect. Across predictions of both direction and magnitude,
normalized results with σ = 1 provided the best predictions for
single filters, showcasing the highest number of correct direction
predictions (21) and reasonable magnitudes for these predictions
(indicated by a substantially reduced RMSerror compared to filter-
only output). Indeed, in this case RMSerror shows an accuracy of

TABLE 2 | Model results for the best single filter with and without normalization alongside ODOG and unscaled human results.

Figure Shorthand Human ODOG LODOG FLODOG Exp model Exp model Exp model

Name Scaled n = 2 n = 2s Single filter Single filter Single filter

m = 0.5 No norm Norm σ = 1 Norm σ = 2

a WE-thick 1 1.00 1.00 1.00 1.00 1.00 −1.00

b WE-thin-wide 1.1 2.08 2.08 2.52 19.36 0.73 1.18

c WE-dual −0.30 1.36 1.93 −8.57 0.28 −0.49

d WE-Anderson 1.54 −0.15 −0.30 −0.43 −1.68 −0.37 0.95

f WE-zigzag −0.51 −0.76 1.26 55.52 0.42 −1.69

g WE-radial-thick-small −0.67 −0.39 0.46 0.52 0.18 0.16

h WE-radial-thick −0.41 0.01 0.18 0.16 −0.16 1.09

i WE-radial-thin-small −0.34 0.21 2.74 2.32 0.28 −1.00

j WE-radial-thin −0.22 0.83 3.24 0.52 0.58 1.91

k WE-circular1 −0.82 −1.04 0.28 1.24 0.22 0.52

l WE-circular0.5 −0.53 −0.67 1.84 −2.84 0.67 2.40

m WE-circular0.25 −0.38 −0.49 3.64 −2.15 0.55 −1.30

n Grating induction 1.49 2.03 1.69 0.66 0.20 0.18 −0.30

o SBC-large 2.72 4.75 7.56 3.96 4.01 3.09 0.75

p SBC-small 4.73 6.22 14.94 5.96 8.79 4.52 7.02

q Todorovic-equal 0.53 −0.36 −0.26 0.08 0.19 0.02 1.33

r Todorovic-in-large 0.57 0.49 0.55 0.39 0.03 0.20 −1.00

s Todorovic-in-small 1.05 0.80 0.95 1.08 0.32 0.19 0.80

t Todorovic-out 0.37 0.35 0.38 0.03 0.34 −0.07 1.86

u Checkerboard-0.16 1.78 1.10 0.94 8.03 −0.34 0.33 2.69

v Checkerboard-0.94 0.68 0.40 0.35 −4.89 20.26 −0.19 3.93

w Checkerboard-2.1 1.36 0.69 0.60 −1.48 0.61 0.05 0.77

x Corrugated Mondrian 2.6 0.95 0.91 0.12 12.92 −0.02 2.32

y Benary cross 2.2 0.09 0.06 0.05 −559.23 0.23 −1.94

z2−1 Todorovic benary 1–2 2.86 −0.12 0.55 0.11 −1408.10 0.23 1.77

z4−3 Todorovic benary 3–4 2.28 −0.12 0.58 0.14 1383.70 0.14 7.16

z avg Todorovic benary average 2.57 −0.12 0.57 0.13 −12.20 0.18 4.47

aa Bullseye-thin −0.74 −0.35 0.54 0.18 0.02 3.31

bb Bullseye-thick −0.77 −0.38 0.07 1.16 −1.49 1.59

Total correct 13 18 24 20 21 19

RMSerror 1.29 1.80 2.56 140.59 1.32 1.85

The result reported for z is the average of z1 and z2 listed in gray. Bold values indicate predictions in the correct direction. Tallies of correct predictions are presented at the bottom for

each model. The most successful single filter result using the exponential filter model has its tally highlighted in bold.
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prediction that is matched only by the small values of the ODOG
model, which fares considerably less well in terms of number of
correct direction predictions (13). The RMSerror increased when
the normalization range was extended to σ = 2, where only 19
correct direction predictions were made.

The results presented so far have demonstrated the capability
of single filter predictions. We also combined multiple filters
to observe the possibility of improving predictive success.
Figure 6 shows the result of combining pairs of filters together,
taking a particular size and shape filter and combining it with
the best possible match to maximize the number of correct
directions predicted. The best result across all environments
(normalized and filter-only), for dual filter combinations was 23
correct directions. The best resultant combinations in terms of
maximizing the number of correct prediction directions occurred
for a number of filter pairings within different environments.
In the filter-only environment, the best filter pair combinations

FIGURE 6 | Dual filter predictions. Highest predictive success when

combining a filter of specified size and shape with any other size and shape

filter.

occurred across 6 different large sized filters ranging from high to
low kurtosis. For normalized filters with σ = 1, the best filter pair
was with a small sized filter with medium kurtosis and a medium
sized filter with low kurtosis. For normalized filters with a larger
range of normalization (σ = 2), the best pairings occurred across
a range of filters with medium kurtosis over various sizes, or were
large in size and had low to medium kurtosis.

We extended our multi-filter analysis to allow for the
combination of any number of size and shape filters to determine
whether an optimal combination of multiple filters exists. Using
an ordered search sequence over the space of all possible shape
and size filter combinations, we found that the maximum
predictive success (in terms of illusion direction) that the model
was able to achieve was 24 out of 27. This value represents the
upper bound of performance of this exponential filter model
and was found for the set of short-range normalized filters.
Figure 7 illustrates the four filter combinations that achieve the
maximum of 24 correct illusion direction predictions for the
exponential filter model. This was found for the set of normalized
(σ = 1) filters. The filters across all four combinations were
tallied and the frequency of these is presented on the right. A
minimum of 6 filters was required to reach the best prediction
as shown in combination 1. These were filters of size K2 =

(15, 35, 85) and shape m = (0.5, 1.3). Combinations 2–4 in
Figure 7 show the other filter combinations for which 24 illusion
directions were correctly predicted. We see that a spread of
different size and shape filter combinations is required to produce
the best predictive performance. Certain filters are found to
be informative whereas others are found to be consistently
uninformative. Looking at the frequency of specific size and
shape filters across all five most successful combinations, we
see that filter (K2 = 15, m = 1.3) is common across all filter
arrangements. It is also evident that the organization of multiple
filters is distributed across the parameter space.

4. Discussion

In this study, we applied a series of exponential filters differing
in scale and shape to a set of lightness illusions that have
previously been tested with Oriented Difference-of-Gaussian
(ODOG) filters and associated models. The exponential model
far outperforms the early ODOG models, and demonstrates
predictive capabilities that match the successes of more recent
elaborations of these models—LODOG and FLODOG—that
incorporate local normalization post-filtering. Using a single
filter, the direction of 21 (out of a possible 27) illusions can
be predicted successfully. Using a two-filter combination, the
predictive success of the model increases to 23. Extending the
model to include any number of combined shape or size filters
allows us to define the maximum capability of this model as 24
correct illusion direction predictions. Our results show that a
low-level filtering model based on exponential filters can account
for a large number of lightness illusions without requiring
orientation-selective filters.

Comparing our work to the current literature, we highlight
that existing models are restricted to filters of a specific
shape (either DOG or LoG). We wanted to explore the
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FIGURE 7 | The four filter combinations that achieve the maximum of 24 correct illusion direction predictions for the exponential filter model. These

combinations were found for short-range, normalized filters. The filters across all four combinations were tallied and the frequency of these is presented on the right.

effect of variation in the shape of the filters, which remains
fixed in existing models. Our aim was not to emphasize
stronger prediction performance, but to investigate whether
filters inspired by image statistics can provide predictions on par
with current state-of-the-art models. We have shown that this is
indeed the case, where Gaussian-shaped filters do not provide the
best predictability for the illusion set under all circumstances.

While the 28 stimuli used in this study feature substantial
differences, one pertinent respect in which they vary is the
induction of contrast or assimilation. Six of our illusions can be
classified as predominantly contrast effects, whereas 18 primarily
produce assimilation, with 4 illusions unclassifiable (see Section
2.1). Our best single-filter model was able to achieve 5/6 and
13/18 accuracy for contrast and assimilation effects, respectively,
showing its ability to deal effectively with both classes of effect.

Among our catalog of illusions there are several sets of
images that vary principally in terms of SF. These not only
include low and high SF versions of White’s Effect (a and b)
and the SCI (o and p) as highlighted in Figure 1. Variations
in SF are also seen for radial White’s Effect (figures g through
to j), circular configurations of White’s Illusion (figures k, l,
and m), the Checkerboard illusion (u, v, and w) and Bullseye
figures (aa and bb). In Table 2 (column 3), we list values of
illusion magnitudes where human data is directly comparable
with various SF configurations of the same illusion (reproduced
from Robinson et al. 2007). Such comparisons are available for
White’s illusion (a and b), the SCI (o and p) and the Checkerboard
illusion (u, v, and w). We draw direct conclusions for the
performance of our best single-filter model to these figures. For
the remaining figures with no directly comparable human data,
we make observations based on the general rule that higher
spatial frequencies yield greater effects. Our best single-filter
model (normalized with σ = 1) predicts the correct direction
of illusion for both high and low SF versions of White’s illusions

(stimuli a and b) and of the SCI (figures o and p). In the case of
the SCI the model can also account for the change in the size of
the illusion as a function of SF, successfully predicting a larger
effect at higher SF. However, in conflict with the human data,
a reduction of the effect at higher SF is predicted for White’s
illusion. The Checkerboard illusion is an interesting case where
the direction of the effect flips from assimilation to contrast for
human observers when the visual angle of checkerboard squares
is greater than approximately 1◦ of visual angle. Our best single-
filter model is able to successfully account for two out of three
illusion directions, with an appropriate increase in magnitude
when comparing the lowest (w) and highest (u) SF versions.
Despite an incorrect direction being predicted for figure v, the
model correctly predicts a reduction in magnitude compared
with u. Comparing the performance of our model to the best
ODOG variants, we see that only ODOG and LODOG are able
to account for all variations of correct illusory magnitudes where
human data is available, performing with 5/5 correct relative
magnitudes (for comparisons b > a, p > o, u > v,w > v,
and u > w). The best performing model in terms of illusion
direction, FLODOG, is able to successfully account for 3 out of a
possible 5 illusory magnitudes consistent with SF. We conclude
that our model is able to surpass that of FLODOG, with 4/5
illusion magnitudes that are commensurate with human data for
both high and low spatial frequencies.

Reflecting on the best performance of the exponential model
using a single filter, we note that two particular illusions that were
predicted incorrectly—t (Pessoa et al., 1998); and x (Adelson,
1993)—warrant closer inspection. Stimulus t can be said to
belong to the family of modified SCI figures from q to t. Figure s is
a modified version of figure o (conventional SCI), where squares
with opposite contrast polarity to the background are overlaid
onto the target patch, creating equal boundaries of light and dark.
Figures r, q, and t are modified versions of s with increasing
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crossbar lengths. The spectrum of figure arrangements from q
to t demonstrate changes to figure-ground relationships in terms
of object assignment, depth placement and scene segmentation.
In figures q, r, and s, the target patch appears to be contiguous
with the surrounding white or black regions (as in the SCI: see
stimuli o and p), and is positioned behind black or white square
occluders. However, in stimulus t, the figure that posed a problem
for our most successful single filter model, a quite different depth
arrangement is evident, as the target patch now forms a cross
that appears to be the most proximal object, and no longer
shares the same depth plane as the surround. The exponential
model we adopt does not include higher-level information such
as depth cues of occlusion. Depth information is also evident
in the corrugated Mondrian (figure x), providing shadow cues
that could be processed by higher cortical levels for lightness
judgments. These results may be taken to support suggestions
that some illusions may escape successful prediction by low-level
mechanisms if their lightness depends on depth relationships
(Schirillo et al., 1990).

While the ODOG model and its variants closely approximate
the orientation selective operations in V1, exponential filters
based on image statistics represent an efficient coding scheme
that could be present in pre-cortical areas as early as the
retina. The prevailing view in early work with lightness
illusions was that they arose from retinal interactions, rather
than cortical processing (Cornsweet, 1970; Todorovic, 1997).
However, more recent research highlights the influence of higher-
level mechanisms on our lightness perception (Adelson, 2000;
Gilchrist, 2006). Using our model, we do not prescribe that

filtering mechanisms alone can explain all lightness illusions.
Instead, we set out to quantify the gap between what filtering
operations can and cannot demonstrate. We propose that
our exponential filtering model represents the first stage in a
process of operations to estimate lightness. Later operations,
such as those responsible for the scission of a scene into its
component causal layers (Anderson, 1997) would occur post-
filtering and normalization. The anchoring of lightness values
to local and global context (Gilchrist, 2006) could occur within
normalization operations or post-normalization. In our model’s
normalization step, the filtered image is first scaled to local
responses (using local coefficient of variance) and then to the
global maximum response within the image. This provides one
of many approximations for the anchoring of lightness values.

The filtering approach we use reshapes contrast distributions
toward those that best describe natural images using the
exponential filter family. Similarly to Dakin and Bex (2003),
we essentially reconstruct an image that represents the
most probable naturally occurring source. By redistributing
lightness values to more closely reflect the underlying statistical
relationships of images within our environment, we can form
predictions of perceptual lightness estimates that align with a
large array of lightness illusions. Figure 8 illustrates the power
spectra for a set of images that are unfiltered (left column) and
filtered (right column) using different shape filters that are all
of size 5 pixels. The top row illustrates power spectra for 28
natural images. From these graphs we can see that the power
spectra for filtered natural images is quite similar to the power
spectra for unfiltered natural images. The bottom row shows the

FIGURE 8 | Power spectra for images that are unfiltered (left column) and filtered with size = 5 pixels (right column). Top row: 28 natural images. Bottom

row: 28 illusory images.
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power spectra for illusory images. The unfiltered images in the
bottom left graph show a flatter power spectrum in the lower SFs
than the filtered images in the bottom right graph. By applying
these exponential filters, we see that they not only push the
power spectra of illusory images toward that of natural images,
reflecting the properties of image statistics. Applying these filters
also boosts low SF information, hypothesized to be a driving
factor in the perception of lightness illusions (Dakin and Bex,
2003). Dakin and Bex (2003) find that low spatial frequencies
are primarily responsible for the Craik, Cornsweet, and O’Brien
(CCOB) illusion that they study. The LoG filters that they apply
boost this information when it is not present. From their results,
Dakin and Bex (2003) hypothesize that low SF information may
drive many illusions.

In a post-hoc analysis, we analyse whether filters of a particular
shape aid in boosting low SF information, which is postulated
by Dakin and Bex (2003) as a driving factor for many illusions.
Figure 9 illustrates the effect of different shape filters on the
power distribution of a filtered White’s Illusion image. Looking
at the left side of the graph, we see that different shape filters have
an effect on the low SF distributions. Filters with high kurtosis
(those that have a low exponent and a sharper distribution) boost
low SFs more than filters with low kurtosis (those that have a
high exponent and a flatter distribution). The exponential filters
therefore provide a mechanism to boost lower SF information
more than Gaussian filters.

We emphasize that this study was conducted to investigate
filters that are best able to push the power spectra of images
toward that of natural images as well as preserve image structure
while being resilient to noise. In earlier work, we showed that a
filter size selection model helps in extracting and amplifying local
image structure (Ghebreab et al., 2009). This model locally selects
the smallest filter (extracting high-frequency information) with a
response above a noise threshold (ensuring resilience to noise).
In a similar fashion, local selection of filter shape may further
enhance local image structure. Instead of performing local scale
and shape selection in this paper, we study how different types of
filters, varying in size and shape, may explain illusions.

The two-stage process of our model uses exponential filters
that allow for efficient coding, followed by divisive normalization
to boost shallow edges, promoting faithful representation of
salient image features. In this way, the filtering stage of our model
relies on the Efficient Coding Hypothesis, a theoretical model of
sensory coding in the brain (Barlow, 1961). The Efficient Coding
Hypothesis states that sensory information is represented in the
most efficient way possible, such that it is closely representative
of an organism’s natural environment. The Efficient Coding
Hypothesis is closely related to the Predictive Coding approach
(Srinivasan et al., 1982), which states that the representation
of sensory information in a statistically efficient way allows
sensory systems to reduce redundancies and also provides greater
resilience to noise (Barlow, 1961, 2001). In the specific case of
our model, there is ample evidence from Basu and Su (2001) that
exponential filters are resilient to many types and intensities of
noise. From Dakin and Bex (2003) we see that statistical image
representation and noise handling complement one another
in understanding and predicting lightness illusions. Alongside

FIGURE 9 | Average power over spatial frequency of different shape

filters applied to White’s Illusion (figure a). All filters are of size 5 pixels. m

refers to the exponent.

(Dakin and Bex, 2003), by successfully modeling illusions using
properties of image statistics, we support the predictive coding
approach proposed by Srinivasan et al. (1982).

In earlier work we showed that globally processing images
with filters of different sizes results in scale space image
representations that account for different visual phenomena
(Ghebreab et al., 2009). We also showed that collapsing scale
space representations into a single image representation via local
scale selection accounts for even further visual phenomena. This
model locally selects the smallest filter (extracting high-frequency
information) with a response above a noise threshold (ensuring
resilience to noise). In a similar fashion, local selection of filter
shape may further enhance local image structure. Instead of
performing local scale and shape selection, in this work we first
studied if and how different types of filters, varying in size and
shape, may explain illusions.We found this is indeed the case.We
also tested whether combining different image representations,
obtained by globally applying different filters, adds to explaining
illusions. The next step in our work would be to determine
whether local selection of filter size and shape, based on a model
similar to Ghebreab et al. (2009), is able to further explain
illusions.

An interesting future direction of study would be to explore
additional versions of White’s effect, particularly those that have
been found to produce an inverted effect (Spehar et al., 1995;
Ripamonti and Gerbino, 2001; Spehar et al., 2002). It is well-
known that White’s effect holds only when the luminance of
the two target patches lies between the luminance values of
the surrounding gratings (Spehar et al., 1995). Modifying the
luminance values of the test patches to double-increments or
double-decrements, relative to the gratings, not only drastically
reduces the magnitude of illusion, but can also reverse the
direction of the illusion from assimilation to contrast (Spehar
et al., 1995; Ripamonti and Gerbino, 2001; Spehar et al., 2002).
Inverted versions of White’s effect have not been successfully
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accounted for using (Blakeslee and McCourt, 1999)’s ODOG
model, according to Spehar et al. (2002). Testing double-
increment and double-decrement versions of White’s effect
in the exponential filter model may further demonstrate its
robustness in accounting for an even larger range of lightness
illusions.

Another direction for follow-up work would be to investigate
the effects of different types and intensities of noise on human
perception of lightness illusions and observe how closely these
results are matched by our exponential filter model. Dakin and
Bex (2003) show that when introducing different levels of noise
into their stimuli, their model maintains a close approximation to
human performance. However, ODOG has shown discrepancies
in matching human response magnitudes for noisy stimuli (Betz
et al., 2014). If the exponential filter model demonstrates results
similar to human observers in classifying illusory images with
noise manipulations, this would provide further support for
predictive coding (Srinivasan et al., 1982).

In summary, our study demonstrates that a filter model
based on contrast distribution statistics of natural images is
able to account for the direction of 21 out of 27 lightness
illusions using a single filter. When two filter combinations
are considered, the number rises to 23, with asymptotic
performance at 24 for an arbitrarily large combination of filter
outputs. We observe the effect of incorporating non-linear
divisive normalization, providing a better understanding of the

role that contrast gain control provides in the perception of
these illusions. While short-range normalization only slightly
improves the number of correct direction predictions, it
considerably reduces the error in predicting illusion magnitude,
measured as RMSerror . The exponential filters we employ
are not orientation selective, demonstrating that V1-style
operations are not required to account for a large number
of lightness illusions. Given that these exponential filters
could be found as early as the retina, it is possible that
the majority of these lightness effects result from pre-cortical
operations, leaving only a few to be explained by higher level
mechanisms.
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