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Recent studies have suggested that the brain’s structural and functional networks
(i.e., connectomics) can be constructed by various imaging technologies (e.g.,
EEG/MEG; structural, diffusion and functional MRI) and further characterized by graph
theory. Given the huge complexity of network construction, analysis and statistics,
toolboxes incorporating these functions are largely lacking. Here, we developed the
GRaph thEoreTical Network Analysis (GRETNA) toolbox for imaging connectomics.
The GRETNA contains several key features as follows: (i) an open-source, Matlab-
based, cross-platform (Windows and UNIX OS) package with a graphical user
interface (GUI); (ii) allowing topological analyses of global and local network properties
with parallel computing ability, independent of imaging modality and species; (iii)
providing flexible manipulations in several key steps during network construction and
analysis, which include network node definition, network connectivity processing,
network type selection and choice of thresholding procedure; (iv) allowing statistical
comparisons of global, nodal and connectional network metrics and assessments
of relationship between these network metrics and clinical or behavioral variables
of interest; and (v) including functionality in image preprocessing and network
construction based on resting-state functional MRI (R-fMRI) data. After applying
the GRETNA to a publicly released R-fMRI dataset of 54 healthy young adults,
we demonstrated that human brain functional networks exhibit efficient small-world,
assortative, hierarchical and modular organizations and possess highly connected
hubs and that these findings are robust against different analytical strategies. With
these efforts, we anticipate that GRETNA will accelerate imaging connectomics in
an easy, quick and flexible manner. GRETNA is freely available on the NITRC
website.1
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1 http://www.nitrc.org/projects/gretna/
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Introduction

The human brain operates as an interconnected network that
responds to various inputs from different sensory systems in
real time. A substantial body of evidence suggests that the
powerful performance arises from a highly optimized wiring
layout embedded in our brains by coordinating neural activities
among distributed neuronal populations and brain regions
(Mesulam, 1990; McIntosh, 1999; Bressler and Menon, 2010).
Mapping and characterization of the underlying structural
and functional connectivity patterns of the human brain (i.e.,
connectomics; Sporns et al., 2005; Biswal et al., 2010) in both
typical and atypical population is therefore fundamental since
they provide invaluable insights into how the collective of the
human brain elements is topologically organized to promote
cognitive demands (Park and Friston, 2013) and how the
topology dynamically reorganizes to respond to various brain
disorders (Bullmore and Sporns, 2009; He and Evans, 2010;
Rubinov and Bullmore, 2013).

Recent advances in the human connectomics have shown
that human brain networks can be non-invasively obtained from
a variety of neurophysiological and neuroimaging techniques,
such as electroencephalography/magnetoencephalography
(EEG/MEG), functional near infrared spectroscopy (fNIRS),
structural MRI, diffusion MRI and functional MRI. Based
on data from these modalities, the brain networks can be
generally categorized into structural networks and functional
networks. Structural brain networks can be constructed by
calculating interregional morphological correlations (e.g.,
cortical thickness) based on structural MRI (He et al., 2007;
Bassett et al., 2008; Tijms et al., 2012) or by tracing interregional
fiber pathways based on diffusion MRI (Hagmann et al., 2007;
Iturria-Medina et al., 2007; Gong et al., 2009). Functional
brain networks can be derived by estimating interregional
statistical dependences in the BOLD signal from functional
MRI (Biswal et al., 1995; Salvador et al., 2005), regional cerebral
blood flow from arterial spin labeling (Liang et al., 2014),
oxygenated/deoxygenated hemoglobin concentrations from
functional near-infrared spectroscopy (fNIRS; Niu et al., 2012)
or electrophysiological signals from EEG/MEG (Stam, 2004;
Stam et al., 2007). Once the brain networks are constructed, a
common mathematical framework based on graph theory can
be employed to topologically characterize the organizational
principles that govern the networks. In graph theory, a network
is abstracted as a graph composed of a collective of nodes linked
by edges. For human brain networks, nodes typically represent
structurally, functionally or randomly defined regions of interest
(ROIs), and edges represent inter-nodal structural or functional
connectivity that can be derived from the above-mentioned data
modalities.

Recent years have witnessed a surge of interest in the study
of human brain networks (Bullmore and Sporns, 2009; Xia
and He, 2011; Filippi et al., 2013). In response, several freely
available toolboxes have been developed to implement and
visualize graph-based topological analyses of brain networks,
such as the Brain Connectivity Toolbox (BCT; Rubinov
and Sporns, 2010), eConnectome (He et al., 2011), CONN

(Whitfield-Gabrieli and Nieto-Castanon, 2012), Graph-Analysis
Toolbox (GAT; Hosseini et al., 2012) and GraphVar (Kruschwitz
et al., 2015). Specifically, we have previously developed PANDA
(Cui et al., 2013) for the construction of structural brain networks
based on diffusion imaging data and BrainNet Viewer (Xia
et al., 2013) toolkits for the visualization of brain networks.
These toolboxes, with distinct advantages and unique scopes
of application (Table 1), together tremendously accelerate the
progress of brain connectome studies. However, these toolboxes
either cover only single functions of network construction,
analysis or statistics or are powerless or inflexible in the face of
huge computational loads and complex and diverse processes
(Table 1, we will return this issue in the ‘‘Discussion’’ Section).
A complete, efficient and flexible pipeline toolbox for imaging
connectomics is currently lacking.

Here, we developed the GRaph thEoreTical Network Analysis
(GRETNA) toolbox to perform comprehensive graph-based
topological analyses of brain networks. The GRETNA is
a Matlab-based, open-source package with a graphical user
interface (GUI). Compared with previous toolboxes, the most
impressive features of GRETNA are the combination of
multiple functional modules, flexible manipulation and parallel
computation (Table 1). Specifically, GRETNA incorporates
network construction, analysis and comparison modules to
provide a complete and automatic pipeline for connectomics.
Given the popularity of resting-state functional MRI (R-fMRI) in
mapping intrinsic brain connectivity patterns and studying the
topological architecture of diseased brains (Biswal et al., 1995;
Fox and Raichle, 2007; Van Dijk et al., 2010; Wang et al., 2010),
GRETNA exclusively extends the capabilities for R-fMRI data
preprocessing and subsequent network construction procedures.
Moreover, GRETNA enables an easy, quick and flexible
manner to manipulate different network analytical strategies,
including structurally, functionally or randomly defined network
nodes, positive or negative connectivity processing, binary or
weighted network types and the choices of different thresholding
procedures or ranges. Finally, GRETNA is capable of performing
parallel computing in the network construction and analysis
modules, an intriguing feature that can substantially shorten
the duration of network analyses of large data sets. With these
efforts, we anticipate that this toolbox will facilitate graph-based
brain network studies, particularly those based on R-fMRI data.
Currently, the Gretna has been successfully applied to many
previous connectome studies (He et al., 2008; Wang et al., 2011,
2015; Cao et al., 2013; Zhong et al., 2015).

Materials and Methods

Overview of Functionality of GRETNA
GRETNA is an open-source, Matlab-based, cross-platform
(Windows and UNIX OS) package under General Public
License (GPL) that provides a GUI framework to implement
comprehensive graph-based analyses of network topology,
perform statistical comparisons of between-group differences
in network metrics and examine the relationships between
network properties and other variables of interest. It is worth
emphasizing that these functionalities are applicable to any
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TABLE 1 | Summary of neuroscience connectomics tools.

Software R-fMRI
Pre-
processing

Network
construction
(static)

Network
construction
(dynamic)

Graph
analysis

Statistics Fle GUI Parallel
computing

Vis Website

GRETNA X X X X X X X X × http//www.nitrc.org/projects/gretna/
BCT × × × X × × × × × https://sites.google.com/site/bctnet/
GAT × X × X X × X × X Not available
PANDA × X × × × × X X × http//www.nitrc.org/projects/panda/
CONN X X × X X × X × X http//www.nitrc.org/projects/conn
eConnectome × X × × × × X × X http://econnectome.umn.edu/
BrainNet Viewer × × × × × × X × X http://www.nitrc.org/projects/bnv/
GraphVar × X X X X X X × X http://www.nitrc.org/projects/graphvar/
Brainwaver × X × X × × × × X http://cran.r-project.org/web/packages/

brainwaver/

Fle, flexibility; GUI, graphical user interface; Vis, visualization. Note: flexibility is determined according to whether a toolbox provides options regarding at least three of the

following factors: network node, network connectivity, network connectivity member, network type and thresholding procedure.

connectivity networks that are derived from various toolboxes
(e.g., PANDA), data modalities (e.g., EEG/MEG, fNIRS and
MRI), species (e.g., humans, monkey and cat) and research fields
(e.g., social networks and transportation networks). In particular,
GRETNA allows researchers to preprocess human R-fMRI data
and construct intrinsic functional brain networks.

GRETNA is divided into three sections: network
construction, network analysis and network comparisons
(Figure 1). In the network construction section, GRETNA
allows researchers to: (i) perform R-fMRI data preprocessing,
including volume removal, slice timing, realignment, spatial
normalization, spatial smoothing, detrend, temporal filtering and
removal of confounding variables by regression; (ii) compute
voxel-based degree centrality (i.e., functional connectivity
density); and (iii) construct region-based connectivity matrices
(Figure 2). In this section, GRETNA accepts two types of
data: DICOM data or Neuroimaging Informatics Technology
Initiative (NIfTI) images (3D/4D). In the network analysis
section, GRETNA allows researchers to: (i) convert individual
connectivity matrices into a series of sparse networks according
to the pre-assigned parameters of the network type (binary or
weighted), network connectivity member (absolute, positive
or negative), threshold type (connectivity strength or sparsity)

FIGURE 1 | The graphical user interface (GUI) of GRETNA. The main
window of GRETNA includes three panels: network construction, network
analysis and network comparison.

and threshold range; (ii) generate benchmark random networks
that match real brain networks in the number of nodes
and edges and degree distribution; and (iii) calculate graph-
based global and nodal network metrics (Figure 3). In this
section, GRETNA accepts two types of data: text files (i.e.,
.txt) or Matlab data files (i.e., .mat). In the final network
comparison section, GRETNA allows researchers to: (i) perform
statistical inference on global, nodal and connectional network
parameters; and (ii) estimate network-behavior relationships
(Figure 4). It is worth highlighting that GRETNA executes
parallel computing throughout R-fMRI data pre-processing,
network construction and network parameter calculation
by allotting processing tasks to different computational
cores. This was done by calling the PSOM toolbox (Bellec
et al., 2012) in a single PC. Of note, the parallel computing
can work not only for multiple subjects, but also for a
single subject when computing multiple network metrics.
Figure 5 presents the flowchart of brain network construction
and topological characterization and explains how parallel
computing works. Below we describe these procedures in
detail.

Network Construction
In this section, GRETNA allows researchers to perform several
preprocessing steps of R-fMRI data, that are commonly used in
the community, and then construct large-scale brain networks
by calculating the pairwise functional connectivity among a
set of ROI according to a brain parcellation scheme. Notably,
researchers can arbitrarily designate the order of preprocessing
steps.

Data Format Conversion
Before formal data preprocessing, the DICOM data, a format
output from most MRI scanners, is typically transformed into
other formats, e.g., NIfTI format. Compared with the previous
analyze file format, the NIfTI format contains new and important
features, such as affine coordinate definitions that relate a voxel
index to a spatial location, indicators of the spatial normalization
type and records of the spatio-temporal slice ordering. This
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FIGURE 2 | The GUI panel of network construction. In this panel, GRETNA allows researchers to perform all common preprocessing steps used by the R-fMRI
community and construct large-scale functional brain networks using different region-based parcellations. Voxel-based degree centrality can also be computed here.

conversion is achieved in GRETNA by calling dcm2nii in the
MRIcroN software.2

Removal of Volumes
The first several volumes of individual functional images are
often discarded for magnetization equilibrium. GRETNA allows
researchers to delete the first several volumes by specifying either
the number of volumes to be deleted or the number of volumes
to be retained. The latter is useful for across-datasets or across-
center studies in which numbers of image volumes are usually
different.

Slice Timing Correction
Currently, R-fMRI datasets are usually acquired using repeated
2D imaging methods, which leads to temporal offsets between
slices. The slice-timing effects have been demonstrated to have
prominent effects on study results and can be successfully
compensated by the slice timing correction step (i.e., temporal
data interpolation; Sladky et al., 2011). This is performed in
GRETNA by calling the corresponding SPM8 functions. Of note,
for a longer repeat time (e.g., > 3 s), within which a whole brain
volume is acquired, it is advised to omit the slice time correction
step because interpolation in this case becomes less accurate.

Realignment
During an MR scan, participants inevitably undergo various
degrees of head movements even when foam pads are used. The

2http://www.mccauslandcenter.sc.edu/mricro/mricron/

movements break the spatial correspondence of the brain across
volumes. This step realigns individual images so that each part of
the brain in all volumes is in the same position. This is performed
in GRETNA by calling relevant SPM8 functions.

Spatial Normalization
For group average and group comparison purposes, individual
data are usually transformed into a standardized space to account
for the variability in brain size, shape and anatomy. This can be
accomplished in GRETNA by two methods based on the SPM8
functions: (i) directly warping individual functional images to
standard MNI space by estimating their transformation to the
echo-planar imaging (EPI) template (Ashburner and Friston,
1999); and (ii) warping individual functional images to standard
MNI space by applying the transformation matrix that can
be derived from registering the T1 image (co-registered with
functional images) into the MNI template (Ashburner and
Friston, 2005). The latter method tends to improve the accuracy
of spatial normalization when the distortions of functional data
are negligible, which is important to ensure effective cross-
modality co-registration.

Spatial Smoothing
Smoothing, a common preprocessing step after spatial
normalization, is used to improve the signal to noise ratio
and attenuate anatomical variances due to inaccurate inter-
subject registration. GRETNA performs spatial smoothing using
a Gaussian filter with a shape that can be determined by a 3-value
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FIGURE 3 | The GUI panel of network analysis. In this panel, GRETNA
allows researchers to calculate many global and nodal graph-based metrics
used in brain network studies. This panel provides flexible manipulations for

researchers regarding the thresholding procedure, network type and network
connectivity member. Notably, null random networks can be generated here to
benchmark the results derived from brain networks.

FIGURE 4 | The GUI panel of network comparison. In this panel, GRETNA allows researchers to statistically infer effects of interest on network measures (global,
nodal and connectional) using different parametric models and examine relationships between network measures and other variables (e.g., behavioral and clinical
variables).

vector of full width at half maximum (FWHM) as implemented
in SPM8.

Detrend
FMRI datasets may suffer from a systematic increase or
decrease in the signal with time presumably due to long-term
physiological shifts or instrumental instability (Lowe and Russell,
1999). GRETNA provides an option to reduce the effects of
linear and non-linear drift or trend in the signal on the basis of
relevant SPM8 functions. It should be noted that this step is still

controversial (Smith et al., 1999) and researchers should interpret
their results with caution if detrend is implemented.

Temporal Filtering
Previous studies have shown that spontaneous brain activity
is predominantly subtended by the low-frequency components
(0.01–0.1 Hz) of R-fMRI signals (Biswal et al., 1995; Lowe et al.,
1998; Kiviniemi et al., 2000). Thus, R-fMRI data are typically
band-pass filtered to reduce the effects of low frequency drift
and high-frequency physiological noises. Notably, even in the
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FIGURE 5 | A flowchart to explain brain network construction,
topological characterization and parallel computing.

typically used low-frequency intervals, accumulating evidence
suggests that functional brain architectures are distinct across
different frequency bands (Achard et al., 2006; Salvador et al.,
2008; Zuo et al., 2010; Liao et al., 2013) and show frequency-
specific alterations in neurological and psychiatric disorders,
such as Alzheimer’s disease and mild cognitive impairment (Han
et al., 2011; Wang et al., 2013; Liu et al., 2014). Moreover,
recent studies highlight the physiological significance of high
frequency fluctuations (Boubela et al., 2013; Liao et al., 2013).
In GRETNA, we provide an option for researchers to easily
choose the frequency ranges that the data will be filtered
with an ideal box filter function. This is done by converting
a time series into frequency domain using a Fast Fourier
Transform (FFT), retaining amplitude spectrum for frequency
components of interest and setting amplitude spectrum to
0 for other frequency components, and converting the new
amplitude spectrum into time domain by an inverse FFT
transform.

Removal of Confounding Variables
For R-fMRI datasets, several nuisance signals are typically
removed from each voxel’s time series to reduce the effects of
non-neuronal fluctuations, including head motion profiles,
the cerebrospinal fluid (CSF) signal, the white matter
(WM) signals and/or the global signal (Greicius et al.,
2003; Fox et al., 2005). In GRETNA, researchers can assign
any combination of these variables to be variables of no
interest, which will be regressed out. By default, the global
signal, CSF signal and WM signal are calculated within the
BrainMask_05_61_73_61.img, the CsfMask_07_61_73_61.img

and the WhiteMask_09_61_73_61.img, respectively. The three
images are from the REST toolbox (Song et al., 2011) and
separately correspond to brain masks of the whole brain,
cerebral spinal fluid and WM in the standard MNI space. In
addition, the first-order derivative of head motion profiles can
also be removed.

Voxel-Based Degree
Degree is a measure that quantifies the importance/centrality
of a node through the number and/or strength of connections
to all other nodes in a network. Degree centrality has been
widely used in brain network studies because it tends to have
higher test-retest (TRT) reliability than other nodal centrality
metrics (Wang et al., 2011; Cao et al., 2014), and it is well
in line with physiological measures, such as the rates of
cerebral blood flow and glucose metabolism (Liang et al., 2013;
Tomasi et al., 2013). Three parameters are needed for voxel-
based degree analysis based on R-fMRI data: (i) a brain mask
to indicate the coverage of brain regions; (ii) a correlation
threshold to exclude low-level correlations (e.g., 0.2); and (iii) a
distance threshold to determine short/long connections. Using
GRETNA, we can obtain a total of 18 voxel-based degree
maps for each participant that vary across connectivity distance
(i.e., short-, long- or full-range), sign (i.e., positive, negative
or absolute) and type (i.e., binary or weighted). Researchers
can choose these degree maps according to their research
objectives.

Functional Connectivity Matrix
This option is used to construct individual interregional
functional connectivity matrices in two major steps: regional
parcellation (i.e., network node definition) and functional
connectivity estimation (i.e., network edge definition).
GRETNA provides options for several different parcellation
schemes, including the structurally defined Anatomical
Automatic Labeling atlas (AAL-90; Tzourio-Mazoyer et al.,
2002) and Harvard-Oxford atlas (HOA-112; Kennedy et al.,
1998; Makris et al., 1999) and the functionally defined Dos-
160 (Dosenbach et al., 2006, 2010), Crad-200 (Craddock
et al., 2012), Power-264 (Power et al., 2011) and Fair-34
(Fair et al., 2009). Additionally, GRETNA also contains
functions that can be used to parcel the brain into an
arbitrary number of ROIs with same or different sizes
(Zalesky et al., 2010b). These parcellation approaches
provide flexible choices to determine network nodes for
specific research objectives and allow researchers to test
the robustness of their findings across different regional
parcellations (Wang et al., 2013). Once a parcellation scheme
is chosen, a mean time series will be extracted from each
parcellation unit, and pairwise functional connectivity is
then estimated among the time series by calculating linear
Pearson correlation coefficients. This will generate an N X
N correlation matrix, with N being the number of regions
included in the selected brain parcellation for each participant.
Of note, this section also allows researchers to construct
dynamic correlation matrix based on a sliding time-window
approach.
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Network Analysis
In this section, GRETNA can calculate various topological
properties of a network or graph from both global and nodal
aspects, which can be compared with counterparts of random
networks to determine the non-randomness.

Thresholding
Prior to topological characterization, a thresholding procedure
is typically applied to exclude the confounding effects of
spurious relationships in interregional connectivity matrices.
Two thresholding strategies are provided in GRETNA: the
absolute connectivity strength threshold and relative sparsity
threshold (He et al., 2009). Specifically, for the connectivity
strength threshold, researchers can define a threshold value
such that network connections with weights greater than the
given threshold are retained and others are ignored (i.e., set
to 0s). This connectivity strength threshold method allows for
the examination of the absolute network organization. Note
that the same connectivity strength threshold usually leads
to a different number of edges in the resultant networks,
which could confound between-group comparisons in network
topology (van Wijk et al., 2010). To address this problem,
GRETNA provides an alternative threshold method—sparsity
or density threshold. Sparsity is defined as the ratio of the
number of actual edges divided by the maximum possible
number of edges in a network. For networks with the same
number of nodes, the sparsity threshold ensures the same
number of edges for each network by applying a subject-
specific connectivity strength threshold and therefore allowing
an examination of relative network organization (He et al.,
2009). These two thresholding strategies are complementary and
together provide a comprehensive method to test the network
organization. Finally, given the absence of definitive way in
selecting a single threshold, researchers can input a range of
continuous threshold values to study network properties in
GRETNA.

Network Type
Networks can be binarized or weighted depending on whether
the connectivity strength is taken into account. Previous brain
network studies have mainly focused on binary networks due
to the reduction in computational complexity and clearness of
network metric definitions. Notably, binary networks neglect
the strength of connections above the threshold, and therefore
fail to identify subtle network organizations (Cole et al., 2010).
In GRETNA, all network analyses can be conducted for both
binary and weighted networks. Briefly, a connectivity matrix Cij
= [cij]can be converted into either a binary network

Aij = [aij] =
{

1, if |cij| > rthr ;
0, others (1)

or a weighted network

Wij = [wij] =

{
|cij|, if |cij| > rthr ;
0, others (2)

where rthr is a connectivity strength threshold that is the same
across all subjects for the connectivity strength thresholding

procedure or a subject-specific connectivity strength threshold
determined by the sparsity thresholding procedure. It should be
emphasized that for weighted network analysis, the connectivity
strength must reflect similarity (e.g., correlation coefficient)
because the reciprocal of connectivity strength is used to calculate
inter-nodal path length.

Network Connectivity Member
Previous R-fMRI studies have found that certain functional
systems are anti-correlated (i.e., have a negative correlation)
in their spontaneous brain activity (Greicius et al., 2003; Fox
et al., 2005). However, negative correlations may also be
introduced by global signal removal, a preprocessing step that
is currently controversial (Fox et al., 2009; Murphy et al., 2009;
Weissenbacher et al., 2009; Schölvinck et al., 2010). For network
topology, negative correlations may have detrimental effects on
TRT reliability (Wang et al., 2011) and exhibit organizations
different from positive correlations (Schwarz and McGonigle,
2011). Accordingly, GRETNA provides options for researchers
to determine the network connectivity members, based on which
subsequent graph analyses are implemented: positive network
(composed of only positive correlations), negative network
(composed of only absolute negative correlations) or full network
(composed of both positive correlations and the absolute values
of the negative correlations).

Random Networks
Brain networks are typically compared with random networks to
test whether they are configured with significantly non-random
topology. In GRETNA, the random networks are generated by
a Markov-chain algorithm (Maslov and Sneppen, 2002; Sporns
and Zwi, 2004), which preserves the same number of nodes
and edges and the same degree distribution as the real brain
networks. Specifically, for a binary network, two edges (i1,j1) and
(i2,j2), are first selected at random that is node i1 is connected
to node j1 and node i2 is connected to node j2. If there are
no edges between node i1 and node j2 and between node i2
and node j1, we then add two new edges, (i1,j2) and (i2,j1), to
replace the original two edges, (i1,j1) and (i2,j2). This procedure
is repeated 2 X the number of edges in the reference brain
network to assure the randomized organization. For a weighted
network the randomization is performed in a similar manner
but in this case the weights are bound to the edges. It should
be noted that how to generate random networks is an ongoing
topic for brain network studies Zalesky et al. (2012); Hosseini
and Kesler (2013). Therefore we also provide codes to generate
random networks based on a time series randomization and
correlation matrix randomization as introduced in Zalesky et al.
(2012). Further studies are needed to produce null models that
are more biologically meaningful as benchmarks for real brain
networks.

Network Metrics
GRETNA can calculate several widely used network metrics in
brain network studies for both binary and weighted networks.
Generally, these measures can be categorized into global and
nodal metrics. Global metrics include small-world parameters
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clustering coefficient and characteristic path length (Watts
and Strogatz, 1998; Onnela et al., 2005), local efficiency and
global efficiency (Latora and Marchiori, 2001, 2003), modularity
(Newman, 2006), assortativity (Newman, 2002; Leung and Chau,
2007), synchronization (Barahona and Pecora, 2002; Motter
et al., 2005) and hierarchy (Ravasz and Barabási, 2003). Nodal
metrics include nodal degree, nodal efficiency (Achard and
Bullmore, 2007) and nodal betweenness centrality (Freeman,
1977). Of note, during the calculation of the characteristic path
length, local efficiency, global efficiency, nodal efficiency and
betweenness, GRETNA computes the pairwise shortest path
length matrix by calling functions from the MatlabBGL toolbox
(version 4.0)3 (Floyd-Warshall algorithm for networks with
density larger than 10% and Johnson’s algorithm otherwise).
Additionally, GRETNA calculates the characteristic path length
as the ‘‘harmonic mean’’ distance between all possible node
pairs (Newman, 2003) to address the disconnected nodes. For
the formula, usage and interpretation of these measures, see
Rubinov and Sporns (2010) and Wang et al. (2011). Finally,
GRETNA can also calculate the area under the curve (AUC)
for each network measure to provide a scalar that does not
depend on specific threshold selection (Wang et al., 2009;
Zhang et al., 2011). It should be noted that this module can
perform topological analysis of brain networks, independent
of imaging modality and species. For example, the structural
brain connectivity matrices in humans or macaques that are
obtained from the PANDA software (Cui et al., 2013) or the
CoCoMac database4 can be entered into the module for graph
analysis.

Network Comparison
In this section, GRETNA allows researchers to perform statistical
testing on global, nodal and connectional network measures.
For global and nodal network measures, GRETNA provides
several popular parametric models, including one-sample t-test,
two-sample t-test, paired t-test, one-way analysis of variance
(ANOVA) and repeated measures ANOVA. GRETNA also
provides multiple comparison correction approaches, including
the false discovery rate (FDR) and Bonferroni procedures.
With respect to inter-nodal connection comparisons, one-sample
t-test and two-sample t-test are provided, followed by multiple
comparison correction procedures with FDR, Bonferroni or
network-based statistic methods (Zalesky et al., 2010a). Finally,
the statistical analysis of network-behavior correlation can be
implemented in this section. In addition, covariates of no
interests (e.g., age, gender and clinical variables) can be added
into all of these statistical models.

Example R-fMRI Data to Illustrate the Usage of
GRETNA
Participants and Data Acquisition
A publicly available TRT reliability dataset5 was employed to
exemplify the usage of GRETNA. This dataset contains 57

3https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/
4http://cocomac.g-node.org/
5http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html

healthy young volunteers in total (male/female: 30/27; age:
19–30 years) who completed two MRI scan sessions within
an interval of approximately 6 weeks (40.94 ± 4.51 days).
All participants were right-handed and had no history of
neurological and psychiatric disorders. For the R-fMRI scans,
participants were instructed to rest and relax with their eyes
closed without falling asleep. Each R-fMRI scan includes 200
contiguous EPI functional volumes: time repetition (TR) =
2000 ms; time echo (TE) = 30 ms; flip angle (FA) = 90◦; number of
slices = 33; slice thickness = 3.5 mm; slice gap = 0.7 mm; matrix =
64 × 64; and field of view (FOV) = 200 × 200 mm2. Additionally,
a high-resolution T1-weighted magnetization prepared gradient
echo (MPRAGE) sequence was also obtained: TR = 2530 ms;
TE = 3.39 ms; inversion time = 1100 ms; FA = 7◦; number of
slices = 144; slice thickness = 1.3 mm; slice gap = 0.65 mm;
matrix = 256 × 192; and FOV = 256 × 256 mm2. Only
the first session was used in the current study to explain the
use of GRETNA. Of note, four participants were excluded
due to excessive head motion or image quality (Dai et al.,
2014).

Data Preprocessing
Data preprocessing included removal of the first 10 volumes,
slice timing correction, head movement correction, spatial
normalization (T1 segmentation), removal of linear trend,
temporal band-pass filtering (0.01–0.1 Hz) and nuisance signal
regression (24-parameter head motion profiles, global signal,
CSF signal and WM signal).

Network Construction and Analysis
We first obtained 6 voxel-wise functional connectivity strength
maps (i.e., voxel-based degree centrality maps) for each
participant, which were combinations between network type
(binary or weighted) and network connectivity member
(positive, negative or absolute of both). We then constructed
6 inter-regional functional connectivity matrices for each
participant according to the 6 different regional parcellation
approaches provided in GRETNA (i.e., Power-264, Crad-
200, Dos-160, Fair-34, AAL-90 and HOA-112). The order,
location and name of each node under these parcellation
atlases are provided in the toolbox (. . .\GRETNA\Templates).,
These connectivity matrices were subsequently averaged
across participants to derive 6 group-level mean connectivity
matrices. These group-level matrices were further converted
into a set of binary and weighted networks via connectivity
strength (i.e., correlation) and sparsity thresholding procedures
(both ranged from 0–1 with an interval of 0.04). Finally, we
calculated various global (clustering coefficient, characteristic
shortest path length, local efficiency, global efficiency,
assortativity, hierarchy, synchronization and modularity)
and nodal (nodal degree, nodal efficiency and nodal
betweenness centrality) topological properties of these brain
networks.

All imaging preprocessing, network construction and analyses
were performed in the GRETNA toolbox. The results of the
network analysis were visualized using the BrainNet Viewer
toolbox (Xia et al., 2013).
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Results

Voxel-Based Functional Connectivity Strength
Maps
Figure 6 shows the mean voxel-based functional connectivity
strength maps for all of the participants. We found that the
functional connectivity strength was distributed heterogeneously
over the brain with the most highly connected regions in
the posterior cingulate gyrus, precuneus, medial prefrontal
cortex, dorsolateral prefrontal cortex and subcortical structures
(e.g., hippocampus, thalamus and amygdala). This pattern was
generally robust across of network type (binary or weighted) and
network connectivity member (absolute, positive or negative).

Region-based Brain Networks: Global Metrics
The mean interregional functional connectivity matrices
derived under each regional parcellation scheme are shown
in Figure 7. Given the fact that: (i) the R-fMRI data were
mainly used to illustrate the usage of GRETNA; (ii) the
analyzed network properties have been frequently studied
under both healthy and pathological conditions (For relevant
reviews, see Bullmore and Sporns, 2009; He and Evans,
2010; Stam, 2014); and (iii) our findings were largely
comparable with previous studies and were qualitatively
independent of the brain parcellation schemes used in the
current study; we thus only took Power-264 as an example
to present our findings since this parcellation provided
the highest spatial resolution among the 6 atlases used.
Figure 8 presents all global metrics (clustering coefficient,
characteristic path length, local efficiency, global efficiency,
assortativity, hierarchy, synchronization and modularity) for
both the group-based brain network and the 100 matched
random networks as a function of sparsity and correlation
thresholds. The functional brain network exhibited different
organization from random networks, as characterized by
a higher clustering coefficient, characteristic path length,
local efficiency, assortativity and modularity but lower
global efficiency. Most of these findings were robust against
the selection of network types and threshold procedures.
Additionally, several network measures varied depending
on the choices of network type or thresholding procedure.
For example, only weighted network analysis revealed lower
synchronization for the brain network than the random
networks; a hierarchical structure was evident in the brain
network only when the correlation-based thresholding method
was used.

Region-Based Brain Networks: Nodal Metrics
Figure 9A shows the spatial distributions of three nodal
centralities (degree, efficiency and betweenness) for both binary
and weighted brain networks under both correlation and
sparsity thresholding procedures (the AUCs were used here).
The spatial distributions of nodal degree and efficiency were
highly similar regardless of network type and thresholding
procedure. Specifically, the posterior parietal, medial and
lateral prefrontal and lateral temporal cortices as well as
several subcortical structures exhibited the highest values.

However, nodal betweenness exhibited obviously different
patterns in that only the posterior parietal cortex showed
extremely high betweenness in the brain, a consistent finding
across different network types and thresholding procedures.
Further clustering analysis of the spatial similarity (i.e.,
correlation) matrix of nodal centrality distributions validated
this observation that betweenness centrality was separated from
nodal degree and efficiency, which were clustered together
(Figure 9B).

Discussion

We developed a toolbox, GRETNA, to automatically analyze
topological properties of brain networks that are not constrained
by data modality and species. Specifically, GRETNA can perform
R-fMRI data preprocessing, construct brain functional networks
and calculate most commonly used global and nodal topological
attributes with parallel computing ability. Moreover, GRETNA is
flexible in dealing with several important methodological issues,
such as network node definition, network types, thresholding
procedure and treatment of negative correlations, all of which
are great concerns in brain network studies. Finally, we utilized a
publicly released R-fMRI dataset to demonstrate the capabilities
of GRETNA.

Graph-based topological analysis of human brain networks
is one of the most active domains in modern brain science.
With the explosion of brain network studies, a growing number
of toolboxes are being developed to facilitate the progress
from brain network construction to topological characterization
and result visualization (Table 1). For example, the PANDA
toolbox has been developed to construct large-scale structural
brain networks based on diffusion MRI data (Cui et al.,
2013); the BCT toolbox allows topological analysis of networks
based on Matlab codes (Rubinov and Sporns, 2010); and the
BrainNet Viewer can visualize brain networks (Xia et al.,
2013). For R-fMRI, toolboxes also exist with functionality
in data preprocessing, network construction or descriptions,
such as the REST (Song et al., 2011), CONN (Whitfield-
Gabrieli and Nieto-Castanon, 2012) and GAT (Hosseini et al.,
2012). Of note, the CONN toolbox can also calculate some
topological attributes of networks. However, it is important
to note that the majority of these toolboxes either can only
address a single module of brain network construction (e.g.,
PANDA) or network metric calculation (e.g., BCT), or lack the
ability to support parallel computing, therefore inconvenient for
conducting a complete, efficient brain network study. In contrast,
GRETNA combines parallel computing with a whole pipeline
of R-fMRI data pre-processing, network construction and
network topological characterization, which could significantly
accelerate the research process during connectome studies.
Specifically, compared with the recent developed GraphVar
(Kruschwitz et al., 2015), GRETNA has distinct features in
parallel computing, capability to preprocess R-fMRI data. In
addition, connectome-based studies are of high complexity
during their implementations as reflected by liberal choices
in the analytical strategies, such as brain node and edge
definition, thresholding procedure, network type and others. Due
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FIGURE 6 | Mean voxel-based functional connectivity strength. Higher
connectivity strength was observed primarily in the posterior cingulate gyrus,
precuneus, medial prefrontal cortex, dorsolateral prefrontal cortex and

subcortical structures. This pattern was generally robust across of network type
(binary or weighted) and network connectivity member (absolute, positive or
negative).

to the current lack of a gold standard in the determination
of these options, GRETNA thus provides many options to
address increasingly concerning issues in brain network analysis,
such as the brain parcellation scheme, binary or weighted
network type, thresholding procedure and treatment of negative
correlations. This enables researchers to flexibly determine their
analytical strategies and thus allow testing the robustness of
their findings against different choices. Finally, the outputs
from GRETNA are easily compatible with our previous
connectome visualization tool, BrainNet Viewer (Xia et al.,
2013).

Using a publicly released TRT dataset, we found that the
most highly connected regions in the brain were predominantly
in the posterior cingulate gyrus, precuneus, medial prefrontal
cortex, dorsolateral prefrontal cortex and several subcortical
structures. This finding is generally robust against the spatial
resolutions (voxel- or region-level) and centrality measures
(degree, efficiency or betweenness) used, particularly for
the posterior parietal regions. These identified hubs are
comparable with previous structural and functional brain
network studies (Hagmann et al., 2008; Buckner et al., 2009;
Gong et al., 2009; Tomasi and Volkow, 2010; Liang et al.,
2013). Moreover, the hub topography was independent of
several factors of network type, network connectivity member
and thresholding procedure, indicating that hubs are a stable,
intrinsic property of brain network architecture. Of note,
despite high spatial correlations, nodal betweenness behaved
differently from nodal degree and efficiency in capturing
hub topography, presumably due to their differences in
depending on only one graph property (i.e., first-order; degree

and efficiency) or on more than one property or ratios of
one property (i.e., second-order; betweenness; Wang et al.,
2011).

At the global level, the human brain networks exhibit
different organization from matched random networks as
characterized by a higher clustering coefficient, characteristic
path length, local efficiency, assortativity and modularity and
lower global efficiency, which is indicative of the efficient
small-world, assortative and modular organizations of functional
brain networks. This is consistent with numerous previous
brain networks studies (Park et al., 2008; Bullmore and
Sporns, 2009; He and Evans, 2010; Meunier et al., 2010;
Braun et al., 2012; Liang et al., 2012). Additionally, these
findings were robust against the factors of network connectivity
member and thresholding procedure, suggesting that these
organizational principles are stable configurations embedded
in the functional brain networks. Regarding hierarchy, positive
values were observed, which indicates a hierarchical structure
of functional brain networks. In hierarchical networks, highly
connected hubs tend to link nodes that have a limited chance
to interconnect with each other, which favors top-down routing
among network nodes on the one hand and minimize wiring
costs on the other hand (Ravasz and Barabási, 2003). The
hierarchical structure observed here is consistent with previous
brain network studies (Bassett et al., 2008; Braun et al.,
2012; Liang et al., 2012). Additionally, we also noted positive
synchronization for functional brain networks, a feature that
has been relatively less studied in human brain networks
than other measures. Notably, the behaviors of hierarchy and
synchronization seemed to depend on the analytical strategies:
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FIGURE 7 | Mean inter-regional correlation matrices. Individual
R-fMRI functional connectivity matrices were first transformed into z-score
matrices (Fisher’s r-to-z transformation), then averaged across all
participants, and finally inversely transformed into r-value matrices

(Fisher’s r-to-z inverse transformation). Six different regional parcellation
approaches were used, including four functionally defined parcellations
(Power-264, Crad-200, Dos-160 and Fair-34) and two structurally defined
parcellations (AAL-90 and HOA-112).

FIGURE 8 | Global organization of group-based functional brain
network. Significantly different organization was observed for R-fMRI brain
networks from matched random networks, as characterized by a higher

clustering coefficient, characteristic path length, local efficiency, assortativity and
modularity but lower global efficiency. These findings were generally robust
against the choices of network type and thresholding procedure.
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A B

FIGURE 9 | Nodal characteristics of group-based functional brain
network. (A) Nodal degree, efficiency and betweenness were computed
for both binary and weighted R-fMRI brain networks under both the
correlation and sparsity thresholding procedures (only nodes with
centralities larger than the mean of the whole brain network are shown).

(B) Although significant correlations were observed in the spatial
distributions among the three nodal centrality measures regardless of
network type and threshold procedure, nodal betweenness revealed
unique patterns compared to nodal degree and efficiency, which was
demonstrated by the hierarchical clustering analysis.

that more obvious deviations of functional brain networks from
matched random networks appeared when the weighted network
analysis was used for synchronization and the correlation-based
thresholding procedure was used for hierarchy. Taken together,
GRETNA revealed largely comparable findings with previous
brain network studies, therefore demonstrating its effectiveness.

It should be noted that while graph-based brain network
studies are burgeoning, they are still in their infancy. There are
many methodological challenges that remain elucidative, such
as head motion correction (Muschelli et al., 2014; Patel et al.,
2014), null model construction (Zalesky et al., 2012; Hosseini and
Kesler, 2013), thresholding method selection (Toppi et al., 2012)
and connectivity type determination (Salvador et al., 2007; Liang
et al., 2012). Moreover, there are certain topological attributes
that are not included in the current GRETNA, such as rich-
club architecture (van den Heuvel and Sporns, 2011) and motif
(Milo et al., 2002). Future versions of GRETNA will expand
the functionality of these aspects. GRETNA can be further
improved by integrating independent component analysis to
allow exploring functional brain network topology among
different brain components or subsystems (Yu et al., 2011, 2013)
and sophisticated methods to characterize temporal evolution of
functional brain networks (Liao et al., 2014; Zalesky et al., 2014)
or both (Yu et al., 2015) In addition, the current GRETNA can
only handle undirected networks (binary and weighted). Recent
methodological advances have allowed researchers to infer large-
scale directed brain networks with R-fMRI data (Liao et al., 2011;
Yan and He, 2011). Hence, an important future extension of

GRETNA is to add functionality to address directed networks.
Finally, although the current GUI version of GRETNA includes
several statistical functions, they are all parametric. Given the
lack of statistical theory regarding the distribution of graph
metrics for human brain networks, future versions could contain
nonparametric inference of brain networkmetrics (Bullmore and
Sporns, 2009), such as the permutation test (Wang et al., 2013),
Functional Data Analysis (Bassett et al., 2012) or re-sampling
approach (Gong et al., 2012).

In conclusion, we developed a user-friendly and easily
navigable toolbox, GRETNA, to assist in conducting topological
analysis of structural and functional brain networks. This
toolbox has a highly compatible GUI with the widely used SPM
toolbox. We hope that the toolbox contributes to facilitating and
standardizing brain connectomics studies based on graph theory.
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