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Movement generation has been hypothesized to rely on amodular organization of muscle

activity. Crucial to this hypothesis is the ability to perform reliably a variety of motor

tasks by recruiting a limited set of modules and combining them in a task-dependent

manner. Thus far, existing algorithms that extract putative modules of muscle activations,

such as Non-negative Matrix Factorization (NMF), identify modular decompositions

that maximize the reconstruction of the recorded EMG data. Typically, the functional

role of the decompositions, i.e., task accomplishment, is only assessed a posteriori.

However, as motor actions are defined in task space, we suggest that motor modules

should be computed in task space too. In this study, we propose a new module

extraction algorithm, named DsNM3F, that uses task information during the module

identification process. DsNM3F extends our previous space-by-time decomposition

method (the so-called sNM3F algorithm, which could assess task performance only after

having computed modules) to identify modules gauging between two complementary

objectives: reconstruction of the original data and reliable discrimination of the performed

tasks. We show that DsNM3F recovers the task dependence of module activations

more accurately than sNM3F. We also apply it to electromyographic signals recorded

during performance of a variety of arm pointing tasks and identify spatial and temporal

modules of muscle activity that are highly consistent with previous studies. DsNM3F

achieves perfect task categorization without significant loss in data approximation when

task information is available and generalizes as well as sNM3F when applied to new

data. These findings suggest that the space-by-time decomposition of muscle activity

finds robust task-discriminating modular representations of muscle activity and that the

insertion of task discrimination objectives is useful for describing the task modulation of

module recruitment.

Keywords: muscle synergies, task space, primitives, modularity, dimensionality reduction

1. Introduction

The hypothesis of modularity in muscle activity relies on the premise that the central nervous
system (CNS) stores a limited set of modules and recruits them to execute the motor tasks at hand
(Bizzi et al., 2008; Tresch and Jarc, 2009; Bizzi and Cheung, 2013). Putative modules are typically
identified by means of dimensionality reduction algorithms applied to electromyographic (EMG)
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recordings (Tresch et al., 2006). This procedure yields modular
decompositions that approximate the EMG data as accurately
as possible despite the significant measurement noise that
affects such data. Different types of modularity have been
proposed assuming the existence of either spatial (Tresch
et al., 1999; Ting and Macpherson, 2005), temporal (Ivanenko
et al., 2004, 2005), or spatiotemporal modules (d’Avella et al.,
2003; Russo et al., 2014). Recently, we developed a unifying
modularity model, termed as space-by-time decomposition,
which encompasses and merges both space and time dimensions
and provides a low-dimensional yet accurate, highly flexible
and task-relevant representation of muscle patterns (Delis et al.,
2014). To implement it, we introduced a specific dimensionality
reduction algorithm based on non-negative matrix factorization
(NMF). This sample-based non-negative matrix tri-factorization
(sNM3F) identifies concurrent spatial and temporal modules and
combines them with scalar coefficients in order to reconstruct
the single-sample EMG signals. To assess the functionality of
this representation, we tested it in task space a posteriori,
i.e., we evaluated the effectiveness of the decomposition in
categorizing correctly the task performed in each single sample.
We formalized this assessment in terms of a task-decoding
metric (Delis et al., 2013a). This methodology comprised two
independent steps: (a) extraction of spatial and temporal modules
with the aim of approximating the EMG data as accurately as
possible without regard to task discrimination and (b) evaluation
of the performance of a decomposition using a task-decoding
metric and choosing the smallest set of modules that give the
highest task discrimination performance.

However, as motor actions are defined in task space, we
suggest that motormodules should be computed in task space too
(Alessandro et al., 2013). In this study, we propose a method that
we consider as a first step in the direction of task-space module
identification. Ultimately, such an approach is crucial for the use
of modular decompositions in practical and clinical applications,
such as body-machine interfaces, control of robotic limbs, and
rehabilitation devices.

Our proposed approachmerges the above twomethodological
developments, i.e., the sNM3F algorithm and the task-decoding
metric, into a single method that uses task information already
at the stage of module computation. The rationale builds on
the idea that an effective modular representation should not
only allow reconstructing the original and noisy EMG data
but should also guarantee discrimination of the performed
motor tasks. Hence, instead of evaluating the decomposition
in task space as a second verification step, we impose task
discrimination explicitly during the extraction of modules. It is
possible that inserting task categorization information directly
into the first step of the module’s computation could further
improve either the compactness of the set of modules that carry
task information or the overall task discriminability achieved in
a decomposition, as proved by other machine learning studies
for example in image or speech processing (Zafeiriou et al., 2006;
Kotsia et al., 2007; Lee et al., 2012). Figure 1 provides a schematic
illustration of how the method operates. For illustration, we
present the activation of nine muscles during performance of
three motor tasks (task1, task2, task3). Muscle activations are

approximated by a lower-dimensional module space defined
by spatial and temporal modules. Typical module extraction
algorithms aim to extract the optimal modules that minimize
the error obtained when reconstructing the single-sample muscle
activations in the module space. The proposed method adds
to this objective the task categorization objective to implement
the premise that the single-sample module activations (colored
dots representing 10 samples for each task in Figure 1middle)
should allow reliable discrimination of the performed tasks. Tasks
are more discriminable if module activations are similar across
samples for the same task and dissimilar between tasks. To
achieve this formally, our method aims to minimize the within-
task dispersion of module activations (illustrated by the green,
red, and yellow ellipses) and maximize the dispersion of the
between-task activations (illustrated by the dashed-line black
ellipse). Hence, the method optimizes simultaneously the data
approximation and the task discrimination objectives to identify
invariant spatial and temporal modules as well as coefficients that
combine them in single samples.

To implement the method, we develop a novel module
identification algorithm, termed discriminative sample-based
non-negative matrix tri-factorization (DsNM3F) that optimizes
the extracted modules with two complementary yet simultaneous
objectives: (a) to reconstruct the EMG data and (b) to
discriminate the performed tasks. We propose three different
implementations of DsNM3F, whose efficiency may depend on
the data set under investigation. We illustrate the usefulness
of the new algorithm in a simple simulation. We then apply
it to EMG data with available task information and show its
effectiveness in task categorization and data reconstruction.

2. Materials and Methods

2.1. Experimental data set
The experimental data set that we will use throughout this study
is composed of the EMG activity recorded from nine upper
limb muscles during execution of arm pointing movements in
the horizontal plane (see Delis et al., 2014 for full details on
the experimental protocol). Six healthy right-handed subjects
participated voluntarily in the experiment ad gave informed
consent which was approved by the local ethical committee ASL-
3 (“Azienda Sanitaria Locale” , local health unit), Genoa. The
experiment conformed to the declaration of Helsinki. In short,
each subject sat in front of a table and was instructed to perform
center-out and out-center one-shot point-to-point movements
between a central location (P0) and four peripheral locations
(P1–P2–P3–P4) evenly spaced along a circle of radius 40 cm with
either normal or fast speed. In total, the experimental protocol
specified four targets × two directions, that is, eight distinct
movement directions. Two speeds were tested, so that the 16
distinct motor tasks were denoted by n1, ..., n8 and f1, ..., f8
for normal and fast speeds, respectively. Each motor task was
composed of 40 trials. Thus, we had a number of musclesM = 9
and a number of samples S = 16×40 = 640, for each participant.
Here, we illustrate our method on the dataset recorded from one
representative subject and then test it on all other subjects to
assess its robustness.
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FIGURE 1 | Schematic illustration of the steps of the proposed

module identification approach. Left: The activity of several muscles is

recorded simultaneously during performance of several repetitions of a

variety of motor tasks. For illustration, here we show the activation of nine

muscles when performing three tasks (task1 in red, task2 in blue, task3

in green). Middle and Top: The first objective of DsNM3F is to

approximate the muscle activations by a lower-dimensional representation

defined by P temporal modules wi (t) and N spatial modules wj. E
2
NMF

is

the squared residual error in this approximation, which is minimized by

the algorithm and is standard in dimensionality reduction methods.

Middle and Bottom: The second objective of DsNM3F is to categorize

the performed tasks as unequivocally as possible. This is achieved in the

space defined by module activations as. Open green, blue, and red dots

represent single-sample module activations to perform task1, task2, and

task3, respectively and squares represent the means of activation for

each task. For visualization, we show three activation coefficients here but

this space is in general of dimension P× N. To discriminate between

tasks, the dispersion of module activations within each task (S
(1)
w , S

(2)
w ,S

(3)
w

shown as red, blue, and green ellipses, respectively) should be minimized,

whereas the dispersion of module activations across tasks (Sb shown as

a dashed-line black ellipse) should be maximized. E2
LDA

is the task

discrimination cost expressed as a linear combination of Swand Sb.

Right: The proposed method integrates the data approximation and the

task discrimination objective to identify invariant spatial/temporal modules

and activation coefficients that combine them in single samples. For

illustration, we show two spatial and two temporal modules combined

with 2× 2 = 4 activation coefficients to reconstruct each sample of

muscle activity.

Body kinematics was recorded by means of a Vicon (Oxford,
UK) motion capture system. Six passive markers were placed
on the finger tip, wrist (over the styloid process of the ulna),
elbow (over the lateral epicondyle), right shoulder (on the lateral
epicondyle of the humerus), back of the neck, and left shoulder.
The kinematics data were low-pass filtered (Butterworth filter,
cut-off frequency of 20Hz) and numerically differentiated to
compute tangential velocity and acceleration of the fingertip.
Movement onset and movement end were identified as the times
in which the fingertip velocity profile superseded 5% of its
maximum. The mean movement duration varied across subjects
from 370 to 560ms. Electromyographic activity was recorded
by means of an Aurion (Milan, Italy) ZeroWire wireless surface
electromyographic system. The EMG signals were recorded
from the following muscles: 1. finger extensors of the posterior
forearm (extensor digitorum) (Fe), 2. brachioradialis (Br), 3.
biceps brachii (Bi), 4. tricepsmedial (Tm), 5. triceps lateral (Tl), 6.
anterior deltoid (Ad), 7. posterior deltoid (Pd), 8. pectoralis (Pe),
9. latissimus dorsi (Ld). EMG signals were digitized, amplified
(20-Hz high-pass and 450-Hz low-pass filters), and sampled at
1000Hz (synchronized with kinematic sampling). Subsequently,
in order to extract the signal envelopes, the EMGs for each sample
were digitally full-wave rectified, low-pass filtered (Butterworth
filter, cut-off frequency of 3 Hz, zero-phase distortion; Ivanenko
et al., 2004) and their duration was normalized to 50 time steps.
The data were then normalized in amplitude on a muscle-per-
muscle basis by dividing each single-sample muscle signal by
its maximal value attained throughout the experiment. Thus, we
finally formed an EMG matrix of dimensions (nine muscles×50
time steps)× 640 samples consisting of all the movement-related

EMG activity (rectified and filtered) of the nine muscles for all
recorded samples. This matrix will serve as a test input for the
decomposition algorithms presented below.

2.2. Space-by-time decomposition model of
muscle activity
To represent muscle activity as a structured modular
decomposition, we used the model of concurrent spatial
and temporal modularity in muscle activity presented in Delis
et al. (2014). This space-by-time model decomposes muscle
patterns into linear combinations of both spatial and temporal
modules, and unifies the most usual types of models. The
decomposition of a single-sample muscle patternms(t) ∈ R

T×M
+

can be written explicitly as follows (T and M being the number
of time frames and muscles, respectively):

ms(t) =

P
∑

i=1

N
∑

j=1

wi(t)a
s
ijwj + residual, (1)

where wi(t) ∈ R
T×1
+ and wj ∈ R

1×M
+ are the temporal

and spatial modules respectively, and asij ∈ R+ is a scalar

activation coefficient. The free parameters P and N correspond
to the number of temporal and spatial modules, respectively. For
convenience, we define the matrix As = (asij)1≤i≤P

1≤j≤N
.

More formally in matrix notation, the decomposition factors
each single-sample non-negative muscle pattern as follows:

Ms ≈ W̃AsW ∀ s ∈ [1, S] (2)
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where W̃ ∈ R
T×P
+ is a matrix whose columns are the temporal

modules, W ∈ R
N×M
+ is a matrix whose rows are the spatial

modules. Note that these matrices W̃ and W are independent of
any particular sample/trial, and constitute the invariant modules
necessary to synthetically describe the muscle activity in a variety
of motor tasks (via the specification of activation coefficients asij).

2.3. Two-step module characterization
To identify the most compact and task-discriminative space-
by-time decomposition, we took a two-step approach that we
developed before Delis et al. (2013a,b). The first step consists in
extracting spatial and temporal modules that approximate the
original muscle activities and the second in selecting the set of
modules that ensures the highest task discrimination. We detail
these two steps below as they are relevant to the new method
derived subsequently.

2.3.1. NMF-based module extraction
To uncover the spatial and temporal modules, we used an
NMF-based algorithm, called sNM3F (Delis et al., 2014). The
sNM3F algorithm takes as input the preprocessed EMG matrix
and the desired number of modules (N and P) and gives as
output the matrices W̃, As, W representing the spatial modules,
sample-dependent activation coefficients, and temporal modules,
respectively. The algorithm aims to reconstruct the recorded
EMG data by minimizing the following NMF-based error, while
imposing non-negativity constraints on W̃, As,W:

E2NMF =

S
∑

s=1

||Ms − W̃AsW||2fro. (3)

where ||.||fro is the Frobenius norm.
Themetric typically used to assess how accurately themodular

decomposition reconstructs the original data is the Variance
Accounted For (VAF) (d’Avella et al., 2006; Delis et al., 2013a):

VAF = 1− E2NMF/

S
∑

s=1

||Ms − M̄||2fro, (4)

where M̄ is the average muscle pattern computed across all the
samples of the experiment.

2.3.2. LDA-based module evaluation
We tested a posteriori whether the resultant decomposition
allowed discrimination between the motor tasks performed in
single-trial basis. Precisely, we quantified the task discrimination
power of the identified modular decomposition using a
previously developed task decoding procedure (Delis et al.,
2013a). To predict the motor task executed in each sample, we
used a linear discriminant algorithm (LDA) in conjunction with a
leave-one-out cross-validation. As decoding parameters, we used
the activation coefficients asij recruiting the spatial and temporal

modules in each sample (i.e., N × P parameters). We measured
decoding performance as the percentage of correct predictions
(DEC).

To select the dimensionality of the decomposition, we relied
upon the decoding method introduced in Delis et al. (2013a,

2014). The core idea of the method is that decoding performance
should significantly increase only if inclusion of an additional
module describes reliably some task-related EMG variations
not described by other already included modules. Hence, this
procedure ensured the detection of modules that explain only
the “task-relevant” variability and the exclusion of other sources
of noise that produce “task-irrelevant” variability. This two-
step process (NMF-based plus LDA-based) has been shown to
effectively identify spatial and temporal modules that explain
task differences in muscle activations (Delis et al., 2014). For the
dataset under investigation, P = 3 temporal modules and N = 4
spatial modules were shown to be the optimal choice (see Results,
Spatial and Temporal Modules).

2.4. Incorporating Task Discrimination in Module
Extraction
The above approach has the potential drawback of separating the
data approximation step from the task discrimination step in the
module identification process. In fact, the modules are learned
using an approximation criterion, whereas discrimination is
employed for selecting the ones that convey the largest
information about the tasks being performed and/or for verifying
the task-discrimination power of the resultant decomposition.
However, it is possible that making use of task discrimination
during module extraction could lead to more discriminative
decompositions while still giving a good approximation of the
data. To test this, we developed a new method for learning
spatial and temporal modules that merges the two above steps by
imposing both approximation (NMF) and discrimination (LDA)
objectives on the extracted modules, as proposed by Zafeiriou
et al. (2006) or Kotsia et al. (2007) for instance.

First, in order to integrate task information into the
decomposition, it is necessary to include in the optimization
cost function a term related to task discriminability. This term
will depend on the parameters that carry information about
task differences, i.e., the single-sample activation coefficients
(As)1≤s≤S of the decomposition. Here, we used a cost inspired by
LDA and Fisher’s criterion (Fisher, 1936).

We assume that the S samples can be partitioned in K classes
(or tasks), G = ∪Kk=1Gk, where nk denotes the number of samples

belonging to the class Gk, and
∑K

k=1 nk = S. We defined the
within-class and between-class scatter matrices as follows:

Sw =

K
∑

k=1

∑

s∈Gk

vec (As − Āk) vec (A
s − Āk)

⊤

Sb =

K
∑

k=1

vec (Āk − Ā) vec (Āk − Ā)⊤

(5)

where Ā and Āk denote the mean activation coefficient matrices
across all the samples and across samples belonging to class Gk,
respectively, and vec denotes the vectorization. We denote by nl
the number of samples belonging to group Gl. The matrix Sw
defines the diffusion of sample vector coefficients around their
class mean vec(Āk). To increase discriminability across classes,
the dispersion of samples that belong to the same class around
their corresponding mean should be as small as possible. A
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convenient metric for the dispersion of the samples is the trace
of Sw, which has to be minimized. The matrix Sb denotes the
between-class scattermatrix and defines the diffusion of themean
vectors of all classes around the global mean vec(Ā). As each class
should be as far as possible from the other classes, the trace of
Sb should be as large as possible. We linearly combined these
two discrimination metrics and added them to the NMF-based
approximation cost to build our total cost function that needs to
be minimized during module extraction:

E2 = E2NMF + γ tr(Sw)− δtr(Sb). (6)

where γ and δ are free tuning parameters and the negative sign
of the last term indicates that Sb is maximized, and tr(.) denotes
the trace operator. We will refer to the discrimination cost as
LDA-related and define E2LDA = γ tr(Sw)− δtr(Sb).

2.5. Discriminative non-negative matrix
tri-factorization for extraction of muscle
activation modules
To solve the problem stated above, i.e., learn a modular
decomposition that also attempts to maximize task
discrimination, we developed and implemented three
optimization algorithms. The first algorithm was based on
the NMF multiplicative update rules (Lee and Seung, 1999),
the second relied on constrained alternated least-squares (Berry
et al., 2007) and the third method just formulated the problem
as large-scale non-linear optimization (Liu and Nocedal, 1989;
Byrd et al., 1999). We detail each one in turn.

2.5.1. Multiplicative algorithm (MULT)
The update rules of the temporal and spatial modules were the
same as for the sNM3F algorithm, as the LDA-related cost does
not act on the modules:

Q
′ , W̃A

′ andWi,j ←Wi,j
(Q⊤M)i,j

(Q⊤QW)i,j
∀ i ∈ [1,N], j ∈ [1,M]

(7)

R , AW and W̃i,j ← W̃i,j
(M′R)i,j

(W̃R′R)i,j
∀ i ∈ [1,T], j ∈ [1, P]

(8)
where a calligraphic symbol M denotes the vertical
concatenation of sample elements Ms (a prime superscript
denotes the horizontal concatenation, or “block transpose”
operation).

The update rule for the activation coefficients had to
be adapted to incorporate the task discrimination objectives.
Calculating the gradient of the error for a given As, it can
be shown (see the Appendix in Supplementary Materials for
details) that the new update rule for the activation coefficient
is, supposing that the sample s belongs to the group Gl (with nl
elements):

As
i,j ← As

i,j

(W̃⊤MsW⊤ +
δ

nl
Āl + γ Āl + δ

K

S
Ā)i,j

(W̃⊤(W̃AsW)W⊤ +
δ

nl
Ā+ γAsl +

δ

S

K
∑

k=1

Āk)i,j

∀ i ∈ [1, P], j ∈ [1,N] (9)

At each iteration, the rows of W̃ and the columns of W are
also normalized to sum to one. This is a necessary constraint
of the problem formulation to avoid diverging behavior of the
activation coefficients. While this normalization is not an issue
for the standard sNM3F algorithm (Delis et al., 2014), here
adding this constraint does not ensure anymore that the error is
non-increasing at each iteration. Even though we found a good
convergence of this algorithm in practice, we also considered
alternative implementations to check the consistency of the
results given by the algorithm.

2.5.2. Alternating constrained least-squares (ALS)
We consider an alternative formulation to specifically preserve
the normalization constraint during the update of W̃ andW. To
this aim, we considered a constrained optimization problem.

min
W̃
||M− W̃R||2fro s.t.

T
∑

i=1

W̃ij = 1∀ j ∈ [1, P] (10)

After vectorization using Kronecker products, this can be
rewritten as:

(

2RR⊤ ⊗ IT IP ⊗ 1T
IP ⊗ 1⊤T 0

) (

vec(W̃)
λ

)

=

(

vec(2MR⊤)
1P

)

(11)
where 1P is a vector of P ones and ⊗ denotes the Kronecker
product.

This is a standard system of linear equations for which a least-
square solution can be efficiently obtained (e.g., mldivide Matlab
function).

Similarly, to update W, one can solve the following least-
square problem:

(

IN ⊗ 2Q′⊤Q′ 1M ⊗ IN
1⊤M ⊗ IN 0

) (

vec(W)
λ

)

=

(

vec(2Q′⊤M′)
1N

)

.

(12)
Since non-negativity is not ensured after such a process, it can be
imposed a posteriori by setting all negative elements to zero.

Alternatively, a quadratic programming problem could be
solved by imposing non-negativity constraints on the elements of
W̃ and W, which ensures a decreasing error but may slow down
the algorithm significantly.

minW̃ ||M− W̃R||2
fro

s.t.
∑T

i=1 W̃ij = 1∀ j ∈ [1, P]

and W̃ij ≥ 0∀ i ∈ [1,T], j ∈ [1, P]
(13)

2.5.3. Non-Linear Programming (NLP)
To derive our third method, we formulated the problem
as a single large-scale constrained optimization problem. We
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implemented the gradients of the cost function and of the
non-linear constraints to perform the actual optimization using
fmincon Matlab function with calculation of the Hessian by
a limited-memory, large-scale quasi-Newton approximation
(namely, the interior-point algorithm with lbfgsmethod).

The NLP problem was thus formulated as:

min
z

E2(z) s.t. zi ≥ 0∀ i ∈ [1,TP2N2SM] and φ(z) = 0. (14)

where zT ,
(

vec(W̃)⊤, vec(A)⊤, vec(W)⊤
)

, i.e., the

concatenation of the vectorizations of W̃, all the As, and
W. The function φ encoded the additional constraints to
normalize the rows of W̃ and columns of W so that they
summed to one (linear constraint). Comparisons of the three
methods revealed that they were effective and yielded the
same modular decompositions. The best choice of algorithm
implementation (in terms of speed and robustness) may depend
on the data set, but overall the MULT algorithm yielded good
performance. Matlab code implementing DsNM3F including
these three optimization algorithms is available at the last
author webpage (http://hebergement.u-psud.fr/berret/software/
DsNM3F.zip).

2.6. Comparison between Decompositions
We defined VDM = VAF × DEC (0 ≤ VDM ≤ 1), a measure
of the goodness of an EMG decomposition that incorporates
the VAF (data approximation) and the decoding performance
(task discrimination). Higher values of VDM correspond tomore
plausible decompositions that achieve the best trade-off between
data approximation and task discrimination. Hence, we used
this metric to select the best output of DsNM3F with respect to
parameters γ and δ, and compare it to standard space-by-time
decomposition identified by sNM3F.

To assess the similarity between modules identified by
DsNM3F and sNM3F, we used as similarity index the correlation
coefficient between pairs of modules (either spatial or temporal).
To compare activation coefficients, we computed the average
coefficients for each of the 16 tasks, which gave a 16-dimensional
vector for each decomposition and computed the correlation
coefficients for pairs of such vectors.

To assess the power of a modular decomposition in terms
of task prediction, we used Support Vector Machine (SVM)
classification (implemented in Matlab using the LIBSVM
toolbox Chang and Lin, 2011). We applied linear SVM to
the activation coefficients combined with a repeated random
subsampling cross-validation procedure (Cortes and Vapnik,
1995; Theodoridis and Koutroumbas, 2008). More precisely, we
split the dataset into training and test data 20 times making
sure that both training and test data had always the same task
proportions. More precisely, we tested the cases of 5, 10, and
30 training samples per task. For each one of the 20 splits,
first we applied the module identification algorithms (sNM3F or
DsNM3F) to the training data. Then, we kept only the extracted
modules since they represented the basic modules on which the
muscle patterns could be projected. Therefore, we projected all
the data (both training and test) on them without taking into
account task information (as it was anyway unavailable for the

test data). To do this, we used the sNM3F with fixed spatial and
temporal modules, i.e., updating only the activation coefficients.
This procedure gave us new activation coefficients for both the
training and test data sets. We used the activation coefficients
of the training dataset to train a linear SVM classifier and the
ones of the test dataset to compute the classification performance
(percentage of correctly classified samples). We repeated this
process 20 times and computed the average (±SD) classification
score (denoted by CLS).

3. Results

To illustrate the newly developed DsNM3F algorithm and have
a better understanding of its functionality, first we tested it on
simulated data for which the modules and their activations are
known by construction. Then, we applied to the complete EMG
dataset recorded during performance of 16 arm pointing tasks
(40 trials per task), which has been analyzed before using the
space-by-time decomposition model (Delis et al., 2014). Both
datasets allowed us to make direct comparisons between the
outputs of DsNM3F and sNM3F.

3.1. Trade-off between task discrimination and
data approximation
To exemplify the usefulness of the new algorithm, we generated
an artificial EMG dataset consisting of two spatial modules
and two temporal modules (Figures 2A,B) and simulated their
activations during performance of four motor tasks, each
repeated ten times with relatively small inter-trial variability
(Figure 2C, black bars) that allows perfect task discrimination.
For simplicity, we modeled the spatial modules to consist of
two muscles and the temporal modules to consist of two time
points. The EMG signals (constructed by combining spatial
and temporal modules using the single-trial activations) were
corrupted with large additive and multiplicative noise (40% of
the signal) to model different sources of measurement noise
in the EMG recordings. We applied the standard sNM3F and
the new DsNM3F to the resulting EMG datasets and found
that both algorithms reconstructed accurately the original spatial
and temporal modules despite the presence of significant noise
(Figure 2, dark gray for DsNM3F, light gray for sNM3F, and
black for original modules). DsNM3F approximated the original
activation coefficients more accurately than sNM3F indicating
that the insertion of the task discrimination objective resulted
in a better reconstruction of the task-dependent structure of
the module activations. This result is also reflected in the
VAF and DEC values of the two decompositions. In light
of the data generation, an imperfect VAF is expected even
if both the modules and the true activation coefficients are
correctly recovered because of the addition of unstructured
noise to the EMG signals. In contrast, this noise should
not affect the task-dependence of the activation coefficients
(i.e., perfect task decoding if they are well identified). Here,
DsNM3F achieved perfect task categorization and lower VAF.
However, sNM3F achieved maximal VAF at the expense
of task discrimination power. The reason is that the only
objective of sNM3F is data reconstruction so that it attempts
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A

B C

FIGURE 2 | Performance comparison DsNM3F and sNM3F on

simulated data. (A) Two temporal modules were used to generate the

data and were recovered correctly by both algorithms. (B) Two spatial

modules were used to generate the data and were recovered correctly by

both algorithms. (C) We simulated coefficients combining the spatial and

temporal modules to perform ten repetitions of four hypothetical tasks.

Black bars correspond to the simulated coefficients over the ten trials for

each task DsNM3F reconstructed the activations (dark gray bars) more

accurately than sNM3F (light gray bars). Dashed vertical lines separate

different tasks.

to recover all the variability in the data (even the one that
is due to measurement noise), which therefore degrades the
reconstruction of the task dependence of the activations. This
can be viewed as overfitting in the module activations space.
The insertion of task discrimination objectives in DsNM3F is
a way to address this issue by balancing data approximation
with task discrimination. Hence, DsNM3F appears to be
useful for identifying representations that achieve better VAF-
DEC trade-offs and may thus be more plausible in task
space.

3.2. Influence of parameters on VAF and task
decoding
DsNM3F has two free parameters γ and δ that need to be
carefully selected in order to achieve the optimal solution
that balances task discrimination with data approximation.
In our framework, we measure task discrimination as percent
correct decoding performance (DEC) and data approximation
as the VAF by the decomposition. As our goal is to achieve
the highest possible task discrimination without a significant
data approximation loss, we chose to maximize VDM, a metric
that incorporates both objectives (see Materials and Methods
for details). To determine the optimal pair of parameters, we
developed an automated optimization procedure. First, we
used a coarse grid in (δ, γ )-space to find an approximate value
maximizing VDM. Second, we ran an optimization starting
from the latter initial guess in order to tune more finely the
parameters and try to get the best possible VDM value. Typically,
this required running the DsNM3F with varying values of γ

and δ. Note that throughout the paper, we always chose the
best modular decomposition among a large number of restarts
(∼100) to limit the problem of local minima and reason on
reliable factorizations.We used the output to compute VAF, DEC,
and in turn VDM (see Materials and Methods). In Figure 3, we
show the dependence of VAF, decoding and VDM on γ and δ for
the initial coarse grid. The highest VAF is obtained for γ = δ = 0
as expected, which corresponds to removing the discrimination
objective from the optimization (equivalent to standard sNM3F).
The VAF is high for small values of γ and δ and, as expected,
decreases with values of both parameters close to 1 (i.e., when
more weight is put on discrimination). Conversely, decoding
performance is high for large values of γ and δ and decreases
as their values decrease. Interestingly, decoding shows a higher
dependence on γ than δ indicating that decreasing the within-
task variability plays a bigger role in decoding performance
than increasing the between-task variability. The maximal
VDM appears as a compromise between the two metrics and
corresponds to γ = 0.01 and δ = 0.01 (illustrated with a star
on the graph). These parameter values were actually very close
to the global optimum (the best solution we found was for
(γ, δ) = (0.01, 0.006) giving a VDM value very close to the
one found using the coarse grid procedure), which finalizes our
process for finely tuning the two free parameters. This approach
was successful in determining the optimal values of γ and δ also
for the data recorded from the remaining five subjects. Parameter
values were found to be quite robust across datasets: (γ, δ) =
(0.01, 0.01), (0.0001, 0.1), (0.01, 0.01), (0.01, 0.01), (0.0001, 0.01)
for the five other subjects, respectively.
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3.3. Spatial and Temporal Modules
After selecting the best γ and δ, we used these optimal parameter
values and ran the DsNM3F algorithm to decompose the EMG
data into spatial and temporal modules. In a previous study (Delis
et al., 2014), we showed that three temporal and four spatial
modules constitute the lowest-dimensional decomposition that
achieves the highest decoding performance. Thus, we used the
same temporal and spatial dimensionality in this study and
verified whether decoding could not be increased more. Figure 4
shows the temporal modules extracted by DsNM3F (gray) and
the ones extracted by sNM3F (black). The variable R indicates
the similarity between pairs of modules. The two decompositions
yielded highly similar temporal modules consisting of successive
bursts of muscle activity (R > 0.75). Both decompositions
identified two modules with a single activation burst and a third
one composed of two bursts. These temporal decompositions
are reminiscent of the well-known triphasic pattern of muscle
activity observed during the single-joint rotations but also
during whole-body actions: a first temporal burst activates
agonist muscles to initiate the movement, a second temporal
burst activates antagonist muscles to decelerate the movement
and a last burst activates again agonist muscles to stabilize
over the endpoint (Berardelli et al., 1996; Chiovetto et al.,
2010). The existence of a double-burst temporal module in
our temporal decomposition (with an early and a late peak)
likely signifies the activity of muscles that support the arm at
the starting point (early activation) and co-contract to achieve
precision at the endpoint (late activation). Figure 5 shows that
the spatial modules extracted by the two algorithms were almost

identical (S > 0.99). The spatial modules reveal four muscle
groupings with distinct functional roles: elbow extensors (S1),
shoulder flexors (S2), shoulder extensors (S3), and elbow flexors
(S4).

When applying the two algorithms on the EMG data of the
remaining five subjects, we found that the above results are robust
across subjects. The two algorithms identified highly similar
spatial modules (average similarity R = 0.97, 0.96, 0.99, 0.98 for
the four modules, respectively) and also highly similar temporal
modules (average similarity R = 0.95, 0.91, 0.97 for the three
temporal modules, respectively).

3.4. Activation coefficients
Next, we examined the coefficients that combine the spatial and
temporal modules in single samples. For our decompositions
consisting of three temporal and four spatial modules, the
number of single-sample coefficients is 3 × 4 = 12. In
Figure 6, we plot the average (± standard deviation) activation
coefficients for each one of the 16 tasks performed in the
experiment. Activation coefficients are higher for the eight fast
speed tasks (denoted as f1, ..., f8) compared to the eight normal
speed tasks (n1, ..., n8) for both algorithms, which indicates
overall higher muscle activity for fast movements. Figure 6

also illustrates the task specificity of module recruitment. For
example, the second temporal module (middle column in
Figure 6) is combined mainly with the first and third spatial
modules (elbow extensors and shoulder extensors, respectively)
to perform tasks n1, n2, n3, n4 and f1, f2, f3, f4, whereas it
is combined with the second and fourth spatial modules

A B C

FIGURE 3 | Influence of the parametersγ and δ on the extracted

space-by-time decomposition. (A) Dependence of the Variance

Accounted For (VAF) on γ and δ. VAF takes higher values for low values of

the two parameters. (B) Dependence of task classification (DEC) on γ and δ.

DEC takes higher values for high values of γ (mainly) and δ. (C) The

VAF-Decoding metric (VDM) is defined as the product of the two metrics in

(A,B). The star symbol depicts the values of the pair of parameters γ and δ

that maximize VDM, here (γ, δ) = (0.01,0.01).

FIGURE 4 | Comparison of the three temporal modules extracted by sNM3F (black) and DsNM3F (gray). The temporal modules are waveforms over the time

course of movement and are ordered by similarity (index R) here. Overall the temporal modules appear to be highly similar in the two cases.
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FIGURE 5 | Comparison of the four spatial modules extracted by

sNM3F (black) and DsNM3F (gray). The spatial modules are weightings of

muscle activations and are ordered by similarity (index R). Overall the spatial

modules appeared to be almost identical in the two cases.

(shoulder flexors and elbow flexors, respectively) to perform tasks
n5, n6, n7, n8 and f5, f6, f7, f8. Regarding differences between
the two algorithms, the variability of the DsNM3F coefficients
is lower compared to the sNM3F coefficients for all tasks
(see the error bars in Figure 6). This decrease of the within-
task variability of the activation coefficients results from the
within-task variability penalization introduced into the objective
function of the DsNM3F algorithm. Similarly, as illustrated
by the similarity indices, the average activation coefficients
extracted by the two algorithms exhibit considerable differences
for some pairs of modules (see the low R-values for S1 and
T3 and S4 and T1 for instance). This is likely a result of the
between-task variability constraints that attempt to make average
activations for each task as discriminable as possible from all
other tasks. In sum, the effect of both within-task and between-
task objectives was qualitatively observable in the results even
though this did not imply any obvious modification of the

underlying modules. This module invariance was mainly a result
of imposing the data approximation objective. In fact, we noticed
that the modules could change as well for larger values of
γ and δ but at the price of considerably lowering VAF and
therefore VDM. Hereafter, we assess these main observations
quantitatively.

3.5. Effects of Inserting a Discrimination
Objective into sNM3F
To gain more insights into task separability and verify the
effectiveness of the DsNM3F, we computed tr(Sw) and tr(Sb)
that quantify the within-task and the between-class dispersion,
respectively. For sNM3F, tr(Sw) = 3.0e4 and tr(Sb) = 2.4e3 ,
whereas for DsNM3F tr(Sw) = 7.1e3 and tr(Sb) = 2.9e3. Thus,
the overall within-class variance was much smaller for DsNM3F,
which reflects onto a decrease of the inter-sample variance of the
16 activation coefficients [3.18± 1.78 for sNM3F vs. 1.26± 0.63
for DsNM3F (mean±SEM)]. Also, the between-task variability
was higher for DsNM3F compared to sNM3F indicating that
DsNM3F achieved higher task-to-task separation on average.

To summarize the above findings in one measure, we
computed the ratio of the above quantities J = tr(Sw)/tr(Sb),
which is an objective function to be minimized for maximal
task discrimination. This was 2.49 for the DsNM3F and 12.3
for sNM3F, thus showing the task discrimination gain obtained
when applying the DsNM3F algorithm to the complete dataset.
This discrimination gain was also observed in the remaining five
datasets we tested [24± 2.6 for DsNM3F vs. 36± 7.8 for sNM3F
(mean±SEM)] and was achieved because activation coefficients
were better clustered together for each task but also because the
task centroids were moved toward more optimal locations in the
space of activation coefficients. Applying LDA to the activation
coefficients of the two algorithms gave 0.8 correct classification
for sNM3F vs. 1 (i.e., perfect classification) for DsNM3F for the
example subject and 0.675 ± 0.06 vs. 0.933 ± 0.03 on average
(±SEM) across subjects. Hence, by modifying the single-sample
activation coefficients, DsNM3F achieved significantly higher
task separability. Importantly, this was possible with only a small
decrease in data approximation [VAF was 0.797 for sNM3F vs.
0.770 for DsNM3F for the example subject and 0.766 ± 0.02 vs.
0.712± 0.03 on average (±SEM) across subjects]. In sum, VDM
values [0.638 for sNM3F vs. 0.770 for DsNM3F for the example
subject and 0.518 ± 0.043 vs. 0.656 ± 0.029 on average (±SEM)
across subjects] indicate that DsNM3F achieves overall a better
trade-off between task discrimination and data approximation.
If we combine these results with the finding that DsNM3F
alters minimally the extracted spatial and temporal modules,
we conclude that DsNM3F increases task discrimination by
optimizing mainly the activation coefficients and disregarding
better task-irrelevant measurement noise in that space.

3.6. Predictive Power of the Decompositions
So far, we have shown that the new DsNM3F algorithm allows
almost perfect task discriminability when applied to data for
which task information is already available. A subsequent
question is to examine whether the algorithm can be used for
prediction, i.e., to test how accurately it decodes the task for
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FIGURE 6 | Comparison of the activation coefficients combining the

four spatial (in rows) and three temporal modules (in columns)

extracted by sNM3F (black bars) and DsNM3F (gray bars). Each bar

indicates the mean ± SD of all the samples for each task (n and f stand for

normal and fast speeds, respectively; subscripts indicate the movement

direction). The two algorithms show differences in the activation coefficients:

(a) an overall decrease of the inter-sample variability for the DsNM3F (smaller

gray error bars than black error bars for all coefficients and tasks) as well as

(b) modifications of the average activation coefficients (e.g., small R-values

for S2 × T1 and S4 × T1).

independent samples corresponding to unknown tasks. This
problem requires the computation of a dedicated projection
mapping from the EMG data onto the task-dependent activation
coefficients computed by DsNM3F. It is likely that this mapping
cannot be made by means of a simple projection onto the
extracted modules because, as we showed above, they do
not really carry the extra task information introduced by the
task discrimination objectives. Nevertheless, as there are slight
differences in the extracted temporal modules, we can still test
how DsNM3F compares with sNM3F when no task information
is available.

To do this, we randomly split our data into two sets of samples.
We exploited task information only in the first set (training
samples) and used the second set (test samples) to predict the
task of each sample (see Materials and Methods for a detailed
explanation of the procedure). We repeated this procedure 20

times using different random splits and averaged VAF, DEC,
and classification scores (CLS) over repetitions. To assess the
importance of training on these results, we varied the number
of training samples from each task (namely 5, 10, 30, and 35).
The results are shown in Figure 7. VAF for DsNM3F is slightly
but not significantly (p > 0.1) lower than for sNM3F for all
training set sizes. For both algorithms, slightly lower VAF and
more robust estimates of it (as indicated by the smaller error bars)
are obtained when the number of training samples increases.
Regarding DEC scores, i.e., classification performance on trained
samples, DsNM3F achieves close to perfect classification for
any training set size, whereas for sNM3F DEC is significantly
lower and increases with the number of training samples (it
saturates for 30 training samples at 0.815). Again, the variability
of estimates decreases with the number of training samples. In
sum, these results confirm that the insertion of discrimination
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FIGURE 7 | Comparison of VAF, DEC (classification on trained data)

and CLS (classification on independent test data) for sNM3F (black

bars) and DsNM3F (gray bars) varying the number of training samples

for each task. Each bar indicates the mean ± SD over 20 repetitions of

random subsampling cross-validation.

objectives increases significantly task classification on trained
data, while it does not decrease significantly VAF scores.

DsNM3F has equal performance with sNM3F in task
classification when using independent new data. This finding
can be explained in view of the fact that the two algorithms
extract essentially almost the same modules and the projection
on the modules does not exploit the learned distribution of
activation coefficients. Since the modules constitute the sample-
independent basis on which any newly acquired data can be
projected and the two sets of basis functions are almost identical,
the activation coefficients obtained by projecting the new data
onto the modules (using a data approximation criterion alone)
will be very similar too. Thus, there will be no difference in the
resulting decoding performance. For both algorithms, decoding
performance increases with the number of training samples
and reaches its maximum for 30 samples from each task (no
increase beyond that point). Interestingly, to perform reliable

task prediction, a minimum of 30 training samples from each
task is required. Taken together, these results indicate that the
modules extracted by sNM3F or DsNM3F constitute the best
possible basis with respect to task discrimination and data
approximation.

4. Discussion

In this paper, we proposed a principled method for identifying
data-approximating and task-discriminating modules of muscle
activity. We introduced a new algorithm, named DsNM3F, which
is an extension of a previously developed method (sNM3F
algorithm) that extracts space-by-time representations of EMG
data, i.e., decomposes EMG data into concurrent spatial and
temporal modules and combines them in single samples (Delis
et al., 2014). The novelty of our approach resides in the
insertion of task discrimination objectives within the space-by-
time module identification process.

4.1. Foundations of the new approach
The functional role of modularity in muscle activity consists
in the accomplishment of a variety of motor tasks in single
samples using a small fixed set of modules. Hence, for a modular
representation to be functional and plausible, we assert that
the extracted modules should not only reconstruct the recorded
EMG activity as accurately as possible, but also categorize it
with respect to the performed motor tasks. In the literature
thus far the latter objective has typically been considered only
after module identification. A number of studies have related
the extracted module activations to task parameters (see e.g.,
Brochier et al., 2004; Torres-Oviedo and Ting, 2010; Chvatal
et al., 2011). Other studies proposed computing VAF within
each task separately to assess whether all tasks are accounted for
by the decomposition (Torres-Oviedo and Ting, 2010; Chvatal
et al., 2011; Roh et al., 2011) but did not explicitly assess task
separability. Yet another approach proposed an algorithm for
extracting task-specific modules (Cheung et al., 2009). This
approach is indeed useful when the examined dataset contains
tasks whose execution relies on synergies that are not shared with
other tasks, however, it tends to increase the dimensionality of
the extracted set of modules. Finally, in our previous work that
motivated this study, we employed a single-sample task decoding
metric for selecting the dimensionality of the set of modules
and comparing alternative decomposition models (Delis et al.,
2013a,b, 2014).

On a similar vein, novel approaches have been proposed to
critically test the functional role of modularity in task space.
Recent studies examine the use of modularity for task control
and its ability to explain motor behavior (Kuppuswamy and
Harris, 2014). In particular, modular decompositions have been
shown to introduce errors in task accomplishment and depend
on the dimensionality of muscle space as well as task space
(de Rugy et al., 2013; Steele et al., 2013). Also, another study
found that the current formulations of modular control were not
fully adequate to explain muscle coordination in multidirectional
locomotion tasks (Zelik et al., 2014). Our current formulation,
as well as most formulations of modular control, implicitly
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involves an open-loop control scheme. While motor planning
may rely on such a compact motor representation to generate
genuine yet approximate muscle patterns, motor execution is
known to rely on a closed-loop control scheme. Therefore,
feedback may modify the on-line recruitment of modules or
even the activity of single muscles (Valero-Cuevas et al., 2009).
Hence, it is likely that the role of feedback should be modeled
when considering task execution from modular decompositions.
For instance, in Neptune et al. (2009), the timing of empirical
modules had to be slightly modified to allow normal walking
of a detailed musculoskeletal model of the lower limbs. In the
present study, we only focused on the motor planning stage,
where task discrimination is especially relevant but additional
work is needed to understand the extent to which muscle pattern
adjustments are critical for accurate task execution.

In this study for the first time we devised an algorithm,
DsNM3F, that offers the possibility to compute modules
in task space by combining task discrimination with data
approximation objectives during the module identification
process. We also introduced a new metric, VDM, whose
maximization corresponds to an optimal trade-off between these
two objectives and showed that we can reach such a trade-off by
appropriately tuning the free parameters γ and δ of DsNM3F.

4.2. Insights about the space-by-time
Decomposition
We applied DsNM3F to simulated data with known underlying
structure and to an EMG dataset collected during an arm
pointing experiment that we studied before. For both datasets,
we were able to compare with the standard sNM3F algorithm and
gain valuable insights concerning the functionality and usability
of the new method. Indeed, the DsNM3F algorithm validated
previous results regarding the spatial and temporal structure
of muscle activity. Interestingly, adding the task discrimination
objective had little or no effect on the extracted spatial and
temporal modules on condition that data approximation had to
be preserved as much as possible. A possible explanation for this
similarity was that even for DsNM3F the data approximation
objective prevailed over the task discrimination objective, so it
did not allow the emergence of alternative modules. In fact,
we tested this by relaxing the data approximation constraint
and found that it led to the identification of relatively different
modules (data not shown). However, these new modules
accounted for significantly lower variance and had lower task
discrimination performance. Hence, we suggest as a more
plausible explanation that the standard modules (extracted by
either sNM3F or DsNM3F) constitute the lowest-dimensional
representation that achieves the best VAF-DEC trade-off for
this dataset. In this respect, our results support effectiveness
of the space-by-time decomposition of muscle activity in
finding robustly and consistently modules that carry task-
relevant information, independently of the details of module
computation.

Regarding module activations, our simulations suggested
that DsNM3F retrieves the task dependence of the activation
coefficients more accurately than sNM3F, which results in better
task categorization. Indeed, when applied to the real data,

the activations extracted by DsNM3F gave almost perfect task
categorization. These findings suggest that DsNM3F should
be the algorithm of choice when the aim is to distinguish
between motor tasks and characterize how module activations
are modulated by differences in task parameters (e.g., speed,
amplitude, or direction tuning of module recruitment (e.g.,
d’Avella et al., 2008).

We also examined whether our results could generalize to
new data with no task information and found that DsNM3F
had equal performance with sNM3F. It is possible that better
task prediction could be achieved by DsNM3F if the knowledge
about the distribution of activation coefficients could be used for
prediction. Indeed, we observed that the high decoding scores of
DsNM3F mainly resulted from a rearrangement and clustering
of the activation coefficients. To exploit this distribution, we
need to learn a (possibly non-linear) projective mapping between
the EMG data and the extracted activation coefficients. The
standard NMF projection we used here is simply based on data
approximation criteria and depends only on the shape of the
spatial and temporal modules, thus it ignores the distribution
of activation coefficients. In future work, it would be interesting
to develop methods that perform this projection efficiently in
order to enhance the generalization power of our approach.
For example, neural networks or Gaussian processes could be
used to learn how to map EMG data (or parts of such data) to
task-discriminant activation coefficients. Knowing this mapping,
new EMG data could be mapped onto the identified activation
coefficients, which, in turn, would give both the task being
performed and a predictive reconstruction of the full EMG
pattern that should be used to execute that task. This type
of approach may be useful in body-machine interfaces and
myoelectric control devices for inferring user’s intention when
performing different goal-directed movements. We believe that
learning such a mapping constitutes an additional interesting
research question, which may be application-dependent and
therefore will be treated in future work.

We suggested before that the space-by-time decomposition
of muscle activations is not only task-relevant but also low-
dimensional. We explicitly demonstrate this point using the
dimensions of our experimental dataset as an example. To specify
the activity ofMmuscles (M = 9 in our data) over T time frames
(this value could be considered smaller as a result of filtering or
larger to account for arbitrary waveforms in continuous time)
for the execution of S movements (S = 640 = 16 tasks ×40
repetitions), the number of parameters to be determined for the
whole dataset is MTS = 288, 000. When applying the space-
by-time decomposition to this dataset, the model parameters
comprise (a) the activation coefficients combining the N spatial
with P temporal modules to perform each movement S, i.e.,
NPS = 3×4 = 7680 parameters and (b) the spatial and temporal
modules that need to be stored and reused across movements,
i.e., NM + TP = 27 + 150 = 177 parameters, which makes
7857 parameters in total. Hence, for this example the space-by-
time model of modularity reduces considerably the number of
dimensions from 288,000 to 7857 (see also Delis et al., 2014).

At last, to investigate the above questions further, we also plan
to apply the space-by-time decomposition using both proposed
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algorithms to other EMGdatasets recorded duringmore complex
motor tasks, in which task decoding will perhaps be more
challenging, thusmore differences betweenDsNM3F and sNM3F
may be revealed.

4.3. Possible extensions of the algorithm and
future work
A limitation of our approach is that the proposed algorithm
works only with discrete motor tasks. In fact, our experimental
protocol specified movement endpoints and speeds that define
16 distinct motor tasks. Future work on DsNM3F may consider
extending the method to an unfixed number of tasks and also
treating continuous task parameters, such as reach endpoint
coordinates, movement trajectories, joint angle displacements
etc. Other extensions of the space-by-time NMF decomposition
may involve adding other constraints such as enhancing sparsity
of the extracted spatial and temporal modules (Hoyer, 2004).

Finally, we indicate two possible avenues for future
investigations. First, the use of generative models, such as
non-negative restricted Boltzmann machines (e.g., Downs
et al., 2000), for extracting modules of muscle activity could
be relevant for learning task-discriminative modular structures

as this method was shown to have discriminative properties
(Nguyen et al., 2013). Second, modular decompositions of
muscle activity can be useful to assist motor rehabilitation or
skill acquisition training (Safavynia et al., 2011; d’Avella et al.,
2013). Development of methods that identify modules online,
i.e., during the execution of motor tasks, could be exploited to
obtain faster recovery of functional module recruitment.
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