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Intentional actions cover a broad spectrum of human behaviors involving consciousness,
creativity, innovative thinking, problem-solving, critical thinking, and other related
cognitive processes self-evident in the arts and sciences. The author discusses the
brain activity associated with action intentions, connecting this activity with the creative
process. Focusing on one seminal artwork created and exhibited over a period of
three decades, Thought Assemblies (1979–82, 2014), he describes how this symbolic
art interprets the neuropsychological processes of intuition and analytical reasoning. It
explores numerous basic questions concerning observed interactions between artistic
and scientific inquiries, conceptions, perceptions, and representations connecting mind
and nature. Pointing to some key neural mechanisms responsible for forming and
implementing intentions, he considers why and how we create, discover, invent, and
innovate. He suggests ways of metaphorical thinking and symbolic modeling that can
help integrate the neuroscience of intentional actions with the neuroscience of creativity,
art and neuroaesthetics.

Keywords: intentions, creativity, divergent and convergent thinking, innovating, neuroscience of creativity,
neuroscience of art, neuroaesthetics, embodied aesthetics

Introduction

Nature makes everything look simple. But nothing is as complicated as ‘‘simplicity’’: from jotting
down this observation to drawing things my imagination envisions that exemplify what I mean
by simplicity. These intentional actions join countless others born from brain dynamics that
neuroscientists grope to understand with great ingenuity in laboratory settings (Chatterjee, 2004;
Dietrich and Kanso, 2010; De Dreu et al., 2014). Making that essential leap to real-world settings,
in order to model the neurobiology of intentionality and creativity in more naturalistic or realistic
ways, may be the ultimate methodological and technological challenge of human neuroscience
(Jung et al., 2013).

Applying imagination to knowledge gained from empirical studies creates opportunities to
develop new methods and tools for discovering the connections between nervous systems, mental
processes and patterns of behavior. As the pioneer neuroanatomist Santiago Ramon y Cajal
reminds us: ‘‘Discoveries are largely a function of the methods used.’’ Bold goals can catalyze the
process.

One paramount goal of the neuroscience of art is to understand the nature of creativity (Runco
and Jaeger, 2012; Vartanian et al., 2013). What constitutes a creative process? How it is manifested
in the brain? And how it is manifested in art that connects science, technology, engineering,
mathematics, and all other forms of disciplinary knowledge? By utilizing a wide array of
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neuroimaging tools (fMRI, PET, SPECT) coupled with
psychometric techniques (Dietrich, 2004; Arden et al., 2010),
which help interpret the meanings and implications of brain
dynamics gathered from experimental studies, researchers
are probing the molecular, cellular, cognitive and behavioral
responses to art (Dietrich and Kanso, 2010; Runco et al., 2011;
Vartanian, 2012; De Dreu et al., 2014). Moreover, they’re
searching the biological and genetic basis of creativity (Reuter
et al., 2006; Runco et al., 2011; Jung et al., 2013; Dietrich
and Haider, 2014) and novelty seeking (Ebstein et al., 1996;
Schweizer, 2006; Mayseless et al., 2013).

In their quest to illuminate common brain dynamics and
behaviors underlying artistic creativity and aesthetic experiences
(Zeki, 2001; Ramachandran, 2011; Jung et al., 2013; De Dreu
et al., 2014; Ticini et al., 2015), neuroscientists are examining
the interconnections of art and cognitive science (Epstein, 1999;
Freedberg and Gallese, 2007). These studies deepen and bridge
our understanding of the work of art (Gero and Maher, 1993;
Gero, 2002; Cavanagh, 2005) as it relates to the work of science
(Root-Bernstein and Root-Bernstein, 1999).

Seeing the Big Picture of Intentional
Actions that Connect Art and Science

Understanding intentional acts of artistic and scientific inquiry
entails connecting what neuroscience knows about creativity,
art, aesthetics, and intentions with an overarching perspective
that considers how creative cognition occurs in combination
with environmental, social and cultural influences (Amabile,
1982; Csikszentmihalyi, 1988). This perspective advocates
practicing integrative thinking, in order to create an integrated
neuroscience: one that unifies our collective knowledge of brain-
mind processes (Churchland, 1989), utilizing an ArtScience
prospective (Root-Bernstein et al., 2011).

There are many compelling, evidence-based theories that
describe characteristics of the creative process as they relate to
acts of creating, experiencing and appreciating art (Kawabata
and Zeki, 2004; Ishizu and Zeki, 2011; Ticini and Omigie,
2013). For example, neuroaesthetics explores various areas of
the human cerebrum that are stimulated by these intentional
actions. Using functional magnetic resonance imaging (fMRI),
the neuroscientist Semir Zeki and his colleagues at the Laboratory
of Neurobiology at University College, London are revealing
how we all share ‘‘common neurobiological processes’’ which
enable us to generate ‘‘almost infinite creative variability.’’ Zeki
(2001) theorizes that these processes afford us the ability to
‘‘create radically different styles’’ and forms of artistic expression
(Onians, 2008). They also enable us to experience virtually all
art forms, including dance and performance art, as ‘‘embodied
aesthetics’’ (Cross and Ticini, 2011; Ticini et al., 2015).

Other noted theories analyze features of human creativity
that involve decision making (Vartanian, 2011) under the
influence of uncertainty and biases (Kahneman et al., 1982).
This area of research bares insights into the process of
artistic and scientific inquiry and discovery. It prompts me to
ponder why and how I value certain aesthetic experiences (e.g.,
creative boldness, originality and risk-taking) when evaluating

works of art and science I admire, such as the Bayesian
unified theory of brain dynamics. This behavioral science tool
applies a statistical parametric mapping (SPM) instrument for
investigating the central nervous system’s ability to manage
uncertainty (Doya et al., 2007; Friston et al., 2013). Perhaps, it
can provide a more comprehensive view of the unpredictable
process of creativity which embodies plenty of uncertainty. The
‘‘Bayesian coding hypothesis’’ suggests that neurons code sensory
information probabilistically (Knill and Pouget, 2004). Implying,
our perceptions, actions, judgements, and decisions can be
represented as forms of ‘‘probability distributions’’. Surely, this
tool can also be applied to the causative studies in neuroplasticity,
which reveal the neural mechanisms of creative thinking and
skills across many domains and intentional actions that change
the brain in measurable ways (Fadiga et al., 1995; Pascual-Leone
et al., 1995; Doidge, 2007).

Neuroart Depicting a World of Thoughts,
Feelings, Emotions, Experiences, and
Ideas

Experimenting with various methods of discovery defines my
work process as a practicing visual artist (∼40 years) exploring
the nature of creativity. Posing questions about the creative
process like a theoretical neuroscientist, I link putative brain
processes of creativity with the actions of my unconscious
and conscious intentions that I associate with the art-making
process (Ramachandran and Hirstein, 1999; Zeki, 1999, 2001).
These actions are core to the creative freedom I’ve experienced
innumerable times while conceptualizing, designing, creating,
and installing my works of art (see Figure 1).

For example, specific neural mechanisms, such the parieto-
frontal networks (Jung and Haier, 2007; Gallivan et al., 2011),
the fronto-temporal region (Flaherty, 2005), the emotion-related
areas involving the amygdala (Vuilleumier and Driver, 2007;
Scharpf et al., 2010), hippocampal neurons (O’Reilly et al.,
1998; Wilson, 2002), and long-term memory and associative
memory networks (Anderson and Bower, 1973; Schacter, 1992,
1996; Cowley and Underwood, 1998), enable me to know or
have a sense of what I intend to draw (Damasio, 2000)—before
I’ve physically drawn anything. But I may be wrong. As an
informal disclaimer, I invoke the wisdom of one adventurous
neuroscientist, Warren McCulloch, who said when introducing
a promising theory: ‘‘Don’t bite my finger, look where I am
pointing’’ (Papert, 1965).

Today, researchers can detail many of the neural mechanisms
I mentioned: for instance, how the premotor cortex (PC)
prepares the primary motor cortex (PMC) to implement a
series of commands for a voluntary movement (e.g., extending
a hand) that was prompted by an outside world stimulus (e.g.,
handling different qualities, weights, textures of hot and cold
pressed papers). They can describe how the pre-supplmenatry
motor areas (PMAs) prepare the PMC’s implementation
plans for grasping a chain of commands, which the brain
generates and enacts by means of the PMC (Medina, 2011).
Moreover, researchers can trace intentional actions stimulated
by ‘‘free will neurons’’ (Kreiman et al., 2014; Talbot, 2014).
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FIGURE 1 | “The Brain Theater of Mental Imagery with Thought
Assemblies emerging from the Limbic System,” (1979–82,
2014). Mixed media on synthetic canvas with collage elements,
11 ft. × approx. 145 ft. perimeter × 37 ft. diameter. Installation view:

CU Art Museum, University of Colorado Boulder (Courtesy of the CU
Art Museum. Photo: Jeffrey Wells). (Pictures of “Thought Assemblies”
courtesy of The Picower Institute for Learning and Memory, MIT Art
Collection).

Supposedly, these neurons trigger the creative freedom I feel in
making Neuroart—even as this art renders unpredictable, non-
deterministic aspects of free will (Thorp, 1980), willed behavior
(Lau et al., 2004), conscious decision-making (Baumeister, 2008;
Mele, 2009), and self-initiated actions (Cunnington et al., 2002;
Mueller et al., 2007) connecting ‘‘creativity across domains’’
(Kaufman and Baer, 2005).

Connecting Intentional Acts with
Neuroscience of Creativity, Art and
Neuroaesthetics

Draw a Venn diagram with three overlapping circles forming a
curved triangle in the center. This simple diagram summarizes
the relationship between these three sub-specialties in brain
science: Neuroscience of Creativity (top circle), Neuroscience
of Art (left circle), and Neuroaesthetics (right circle) with
Neuroscience of Intentions at the intersection; that’s where
the art of science (Siler, 1990) overlaps the science of art
(Ramachandran and Hirstein, 1999; Solso, 2000), in the search
to understand creative, intentional actions.

The meanings and intentions or purposes of Neuroart
involve connecting and freely interpreting the information
gathered from the neuroscience of creativity, art, and
neuroaesthetics—stimulating new thoughts on the creative

nature of the brain. This artwork ruminates the insightful
neuroscientific studies of intention (Lau et al., 2004; Iacoboni
et al., 2005; Nakahara and Miyashita, 2005; Cona et al., 2015;
Xu et al., 2015) as they relate to the neuroscience of creativity
(Jung et al., 2013; Dietrich and Haider, 2014). Collectively,
these studies of creative cognition seek to understand what
creativity is (Sternberg and Lubart, 1999); how it is manifested
in conscious and unconscious intentions (Custers and Aarts,
2010; Simonton, 2010); and how it enhances self-learning,
problem-solving and inductive reasoning in work and play
(Greenfield et al., 1994). These brain processes are integral to
making art (Siler, 1993, 2011; Solso, 1994). After all, art grows
out of creative, intentional actions that unite our diverse sense of
aesthetics.

One overarching question that’s as relevant to the
neuroscience of intentional actions as it is to the neuroscience
of creativity, art and neuroaesthetics: Is the creative process the
same in art as it is in science or pure and applied mathematics?
Consider how the process of creativity uses the same set of
cognitive and affective functions to perform various acts of
creative seeing and divergent thinking (Siler, 1986; Runco
and Richards, 1997; Simonton, 1999), analogical reasoning
(Sternberg, 1977; Vartanian, 2012), metaphorical thinking (Lee
and Dapretto, 2006), proprioceptive thinking and dimensional
thinking (Root-Bernstein, 2011).
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Making and appreciating art embody intentional actions,
which are not unlike the creative actions in practicing science, as
observed in the ArtScience process of discovery and innovation
(Root-Bernstein et al., 2011; Siler, 2011). These actions can
be connected to elements of creative cognition: ‘‘insight,’’
‘‘convergent’’ and ‘‘divergent’’ thinking, among other elements
commonly associated with intentional actions, creative and
critical thinking (Jung et al., 2013), and decision-making
involving unconscious, intuitive [fast] and conscious, analytical
[slow] thinking (Kahneman, 2011). Case in point: ArtNano
innovations addressing global challenges (Siler and Ozin, 2012;
Qian et al., 2015).

Pinpointing Neural Correlates of Creative
Cognitions that Manifest Intentional
Actions

The brain activities that most interest me as a visual artist
concern the use of metaphors and analogies in art and
science (Gentner et al., 2001; Chatterjee, 2004, 2011; Shibata
et al., 2007; Schmidt and Seger, 2009; Yang et al., 2009).
Metaphorical thinking enables us to make intuitive leaps of
insight (Siler, 1988, 1997; Holyoak and Thagard, 1995) that
move our imagination from an unconscious intention (e.g.,
wondering whether or not a connection exists between two
things) to an intentional action (e.g., forming a hypothesis about
the apparent connection and falsifying it using the scientific
method). Consider how Albert Einstein leaped metaphorically to
‘‘picture what it would be like to ride alongside a light beam,’’
while composing his Special Theory of Relativity (Einstein, 1905).
As the biographerWalter Isaacson (2007) describes: ‘‘This type of
visualized thought experiment—Gedankenexperiment—became
the hallmark of Einstein’s career’’.

The Nobel laureate chemist and poet Roald Hoffmann
has observed: ‘‘The images that scientists have as they do
science are metaphorical. The imaginative faculty is set in
motion by mental metaphor. Metaphor shifts the discourse,
not gradually, but with a vengeance. You see what no one
had seen before’’ (Hoffmann, 2006). This versatile connection-
making process often inspires the formation of intentions
evident in commonplace and exceptional creative cognition
(Siler, 1997; Simonton, 1999). Consider the nature-inspired
metaphors Leonardo da Vinci wielded like all-purpose tools for
discovering nature’s unity; specifically, how ‘‘everything connects
to everything else’’ (A Treatise on Painting DaVinci, 1452–1519;
Rigaud, 2005; Firmin and Siler, 2014).

Creating, Discovering, Innovating, and
Learning Through Neuroart

‘‘The Brain Theater of Mental Imagery with Thought Assemblies
emerging from the Limbic System’’ (1979–82, 2014; Figure 1)
interprets the brain’s creative engine of innovation that connects
and integrates the process of consciousness, attention and
intention (Lau et al., 2004) with acts of creativity. The art
speculates on various neural mechanisms that move the mind
from intentional states (e.g., envisioning the design of an

immersive, experiential artwork) to voluntary actions and
visceral responses (e.g., building the structures I’ve envisioned).
While reading about the inferior parietal lobule (IPL) neurons
(Fogassi et al., 2005), immediately I imagine how the IPL neurons
are activated in this creative process, as I manipulate my pencils
in drawing various conceptual and design possibilities for this
evolving art installation.

When visitors enter this immersive artwork, they’re
enveloped by a womb-like structure that resembles a mid-
sagittal section of the limbic system (outlined in red in the top
diagram). This structure represents the heart of the brain: a
region where thoughts, feelings and emotions meld as they’re
integrated and interpreted by the whole brain (Siler, 1986;
Feldman et al., 2007) via the web of connections linking the
prefrontal cortex and limbic system structures (Boeree, 2011)
and providing feedback to the sensory cortices and brain reward
areas involving the nucleus accumbens (Salimpoor et al., 2013).
It serves as a ‘‘Creative Commons,’’ invoking images of a
resource that belongs to and affects the networked community
of subcortical systems.

Mounted on the massive cortical screen, ‘‘The Brain Theater
ofMental Imagery, ’’ is themultipart ‘‘Thought Assemblies.’’ This
artwork consists of 515 constituent images, each one depicting a
mental image that’s been rendered on a substrate. The substrate
represents the concomitant neural processes corresponding to
the creation of the images. Collaged on the surface of ‘‘Thought-
Assemblies’’ are examples of historical and everyday innovations
that reveal inspired acts of creativity.

‘‘Thought Assemblies’’ envisions and explores the possible
structure and organic unity of creative cognition. It examines
the neural mechanisms that create and connect thoughts-
feelings-actions (Chorover and Chorover, 1982; Shallice, 1988;
Kelley et al., 2002), baring the marks of unconscious and
conscious intentional actions. In representing brain functioning
it combines visual metaphors, physical analogies, symbols, signs,
stories, and allegories, which are part of its embodiments,
expressions and aesthetics. In fact, it’s a symbolic model of
neuropsychological processes that unfolds in Cartesian (X, Y, Z)
space (Figure 2). Like any artwork, this one is inescapably self-
referential; it presents the personal lexicon, free-associations and
perceptions of its creator. As well, it is introspective in that it
traces my thought patterns, their contexts, and the perceptual
pieces from which these patterns were constructed (Siler, 1986;
p. 75).

Metaphorically, this Neuroart interprets what nature makes
and what we make of nature. It considers how every detail
of nature details ‘‘human nature’’ (humankind’s integration
with nature). The mosaic of drawings and paintings picture
the creative process as a system dynamically resembling the
fusion and fission processes that form and shape the universe.
I hypothesize the mergence of brain functions (‘‘cerebral fusion’’)
at the instant of intuition and the divergence of these functions
(‘‘cerebral fission’’) in moments of analytical reasoning and
expression. Here reasoning includes both analytic and affective
reasoning in artistic and scientific expressions (representations)
of knowledge, experience, etc. Virtually every form or aspect
of reasoning is represented in artistic expression including

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2015 | Volume 9 | Article 410

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Siler Neuroart

FIGURE 2 | The Conceptual Armature of Thought-Assemblies—a
diagram indicating the information portrayed in this artscience work,
which consists of three interactive axes. Presented on the X-axis is
information based on intuition and perception about the brain and universe.
Intersecting this plane is the plane mirror, or Z-axis, which reflects vertically
above and below the X-axis. Above the X-axis, the information is abstracted
and implied, thus entering the realm of art. Below the X-axis, qualifying and

quantifying information is added, entering the realm of science.
Thought-Assemblies indicates that analytic and artistic thought can proceed
from the same frame of insight-perception and that these two models of
thought converge. As an exercise in topology, if the artwork were folded to form
a tube and then the ends of the tube were brought together to form a torus, or
donut-shape, the farthest points at both ends of the X- and Y-axes would be
continuous.

sequential, feature by feature reasoning (as in spatial cognition)
and emotional or affective reasoning (i.e., reasoning about and
with emotions as in the discriminations of feelings). Figure 2
sums up the overall design of the artwork, which is described
in this doctoral dissertation,’’Architectonics of Thought: A
Symbolic Model of Neuropsychological Processes’’ (Siler, 1986).

My intention was to present ideas and images towards a
theory proper that emerged from a phenomenological study
of insight-perception and introspective analyses, relating it
to experimental studies of cerebral functions: e.g., evoked
potentials (Regan, 1972; Bodis-Wollner, 1982), positron emission
tomography (Heiss and Phelps, 1983), and lateralization (Sperry,
1968, 1976; Sperry et al., 1969; Gazzaniga, 1972). I had wanted to
verify my hypotheses, but life had other plans for me in the field
of Contemporary Art.

I continue to advocate using arts-based learning methods
and tools to contribute to neuroscientific discoveries and inspire
innovations (Siler, 1997, 2010, 2011; Holman et al., 2007;
Root-Bernstein and Root-Bernstein, 1999; Root-Bernstein, 2011;
Fetz, 2012; Seifter, 2014). Interpreting big data from the Brain
Activity Map (BAM) requires broad cross-disciplinary creative
collaborations, in order to describe the whole brain’s functional
architecture and neural activity. BAM joins the Blue Brain
Project (BBP), which maps the labyrinth of synaptic connections
between diverse populations of neurons and how they grow.
These projects and advancements in Neuroinformatics (Koslow
and Subramaniam, 2005) aim to record and decipher ‘‘every
spike from every neuron’’ that form the ‘‘functional connectome’’
(Alivisatos et al., 2012), enabling researchers to eavesdrop on
the conversations of neurons talking to neurons, and make
sense of them in the healthy and diseased brains. Hopefully,

this adventurous work will illuminate the unintentional and
intentional actions of the creative process in art and science
taking us ‘‘Closer To Truth’’ (Kuhn, 2000).

Summary

The example of Neuroart highlighted here pictures intentional
actions. Its contents intimate how the creative process
of convergent and divergent thinking is similar in all
representations of thought that comprise the interrelated History
of Art, Science, Technology, Engineering, Mathematics, and
other forms of explicit, implicit and tacit knowledge (Polanyi,
1958/1998, 1967). Neuroart explores ways of experiencing and
understanding human creations as metaphorical manifestations
of creative and critical thinking that reveal the nature of
intentional actions. With that objective, this experimental
work aims to catalyze and cultivate innovative thinking in the
neuroscience of creativity, which is essential for interpreting
anew the neural data being gathered and examined in major
relational-data mining endeavors (e.g., http://www.incf.org;
BRAIN Initiative,1 or Brain Mapping Project; the Human
Connectome2) (Seung, 2012). These resources already aid
researchers in grasping the brain processes of intentions and
volitional motor actions that underlie the creative process of
making and appreciating art (Kandel, 2012; Ishizu and Zeki,
2011), which include simulating the actions, emotions and
sensory impressions we experience as ‘‘embodied aesthetics’’
(Ticini et al., 2015).

1http://www.whitehouse.gov/share/brain-initiative
2http://www.humanconnectomeproject.org
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