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Recent imaging connectomics studies have demonstrated that the spontaneous human

brain functional networks derived from resting-state functional MRI (R-fMRI) include

many non-trivial topological properties, such as highly efficient small-world architecture

and densely connected hub regions. However, very little is known about dynamic

functional connectivity (D-FC) patterns of spontaneous human brain networks during

rest and about how these spontaneous brain dynamics are constrained by the

underlying structural connectivity. Here, we combined sub-second multiband R-fMRI

data with graph-theoretical approaches to comprehensively investigate the dynamic

characteristics of the topological organization of human whole-brain functional networks,

and then employed diffusion imaging data in the same participants to further explore

the associated structural substrates. At the connection level, we found that human

whole-brain D-FC patterns spontaneously fluctuated over time, while homotopic D-FC

exhibited high connectivity strength and low temporal variability. At the network

level, dynamic functional networks exhibited time-varying but evident small-world and

assortativity architecture, with several regions (e.g., insula, sensorimotor cortex and

medial prefrontal cortex) emerging as functionally persistent hubs (i.e., highly connected

regions) while possessing large temporal variability in their degree centrality. Finally,

the temporal characteristics (i.e., strength and variability) of the connectional and

nodal properties of the dynamic brain networks were significantly associated with

their structural counterparts. Collectively, we demonstrate the economical, efficient,

and flexible characteristics of dynamic functional coordination in large-scale human

brain networks during rest, and highlight their relationship with underlying structural

connectivity, which deepens our understandings of spontaneous brain network dynamics

in humans.
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Introduction

Over the past two decades, resting-state functional magnetic resonance imaging (R-fMRI),
a promising functional imaging technique, has been widely used to non-invasively map the
brain’s intrinsic or spontaneous functional connectivity patterns (i.e., functional connectome) by
measuring the correlations in blood oxygen level-dependent (BOLD) signals between regions
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during rest (Biswal et al., 1995; for reviews, see Fox and
Raichle, 2007; Kelly et al., 2012). Recently, the combination
of R-fMRI and graph-based network analyses has allowed
us to quantitatively characterize the topological characteristics
of functional networks in the human brain, such as small-
worldness, modularity, and highly connected hub regions (for
reviews, see Bullmore and Sporns, 2009; He and Evans, 2010;
Bullmore and Sporns, 2012). These studies provide mechanistic
insights into the functional organization principles of human
brain networks in health and disease.

To date, the majority of R-fMRI studies on functional
connectomics have focused mainly on static functional
connectivity (S-FC) by computing inter-regional statistical
associations in whole-scan time courses, implicitly neglecting
the potential temporal fluctuations of functional interactions
across time. Recently, emerging evidence suggests that functional
coupling among regions is highly dynamic at a time scale of
seconds to minutes (Chang and Glover, 2010; Kang et al.,
2011; Kiviniemi et al., 2011; Hutchison et al., 2013b; Allen
et al., 2014; Gonzalez-Castillo et al., 2014; Di and Biswal,
2015). The dynamic functional connectivity (D-FC) can capture
the transition between different mental states (Allen et al.,
2014) associated with changes in electroencephalograph (EEG)
power (Tagliazucchi et al., 2012b; Chang et al., 2013), and
provide novel insights into the pathophysiological mechanisms
of neuropsychiatric disorders, such as Alzheimer’s disease
(Jones et al., 2012) and post-traumatic stress disorder (Li et al.,
2014). Specifically, several recent R-fMRI studies have further
demonstrated the dynamic characteristics of the topological
organization of human brain networks such as fluctuating
modular architecture (Jones et al., 2012; Allen et al., 2014) and
sporadic intervals of high network efficiency (Zalesky et al., 2014;
Di and Biswal, 2015). As mentioned above, the brain’s functional
networks include many non-trivial topological properties, such
as small-worldness, which quantifies an optimal balance between
information segregation and integration (Salvador et al., 2005;
Bassett and Bullmore, 2006), and highly connected hubs, which
play key roles in global brain communication (Achard et al.,
2006; Buckner et al., 2009; Liao et al., 2013; van den Heuvel and
Sporns, 2013). However, how these crucial topological properties
of human brain networks vary spontaneously over time remains
largely unknown.

A growing number of neuroimaging studies have suggested
that the human brain’s functional organization is sculpted by
the underlying anatomical structure (see Reviews, Park and
Friston, 2013; Wang et al., 2015). At the connection level, two
regions often exhibit high temporal synchronization if they are
directly linked by white matter tracts (Greicius et al., 2009; Honey
et al., 2009; van den Heuvel et al., 2009). At the network level,
the brain’s functional and structural networks share topological
organization, such as small-worldness and hubs (Bullmore and
Sporns, 2009, 2012). Notably, all of these previous studies
have been mainly confined to the exploration of the structural
basis of static functional connectivity or networks. Since the
anatomical structure constrains the propensity of inter-regional
interactions, it’s natural to expect that ongoing brain activities
and the accompanying dynamic functional coordination may be

shaped by the underlying structural organization (Deco et al.,
2013). Until recently, Shen et al. (2015) have demonstrated the
structural-dependence of the spontaneous dynamic functional
coordination in macaques at both the local and global levels.
However, for the human brain, very little is known about
whether and how the dynamic connectivity patterns of functional
networks are constrained by the underlying white matter tracts or
structural connectivity (SC).

To address these issues, in the present study we employed
BOLD R-fMRI data and graph theoretical approaches to
systematically characterize the dynamic topological properties
of human whole-brain functional networks. Further, we used
diffusion tensor imaging (DTI) data to construct white
matter structural networks in the same participants to reveal
the structural substrates underlying these functional network
dynamics. Specifically, to better track the brain network
dynamics at a fine time scale, a multiband R-fMRI dataset
with a sub-second sampling rate (TR = 645ms) was used
here, which provides additional temporal information regarding
BOLD signal activities. Here, we sought to determine (i) how the
topological organization of intrinsic or spontaneous functional
brain networks changes over time at different levels (including
connectional, global and nodal properties); and (ii) how the white
matter structural connectivity underlies these dynamic network
characteristics.

Materials and Methods

Participants
The multiband R-fMRI and DTI data were selected
from a publicly available dataset (http://fcon_
1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html)
(Nooner et al., 2012). This dataset includes multi-modal imaging
data of 24 participants (age: 34.4 ± 12.9, 6 females), which
have been recently used in the test-retest reliability studies of
functional homogeneity (Zuo et al., 2013), voxel-wise functional
connectivity (Liao et al., 2013), and directed brain network
analysis (Wu et al., 2013). In the current study, we discarded the
data of 13 participants due to the potential effects of confounding
health issues (current/historical psychiatric disorders, obvious
brain atrophy or missing diagnostic information) or because
of excessive head motion (see data preprocessing) (Table S1).
Finally, the data of the remaining 11 healthy participants (age:
30.2± 9.6, 4 females) were used for subsequent network analyses
(Table S1).

Data Acquisition
All of the participants underwent both R-fMRI and DTI scans
twice, approximately 1 week apart, on a Siemens Trio 3.0 Tesla
scanner, leading to repeated data in two sessions (i.e., Session 1
and Session 2). In each session, the R-fMRI scans were performed
using three echo planar imaging protocols, each with different
sampling rates (TR = 645, 1400, and 2500ms), and participants
were instructed to keep their eyes fixed on the cross on the
screen. Here, we employed the multiband R-fMRI data with
the sub-second sampling rate (TR = 645ms), which provided
finer temporal information regarding fluctuations in the BOLD
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signals. The detailed scanning parameters were as follows: time
repetition [TR] = 645ms; time echo [TE] = 30ms; flip angle
= 60◦; 40 slices, multiband acceleration factor [MAF] = 4; field
of view [FOV] = 222 × 222mm2; voxel size = 3 × 3 × 3mm3;
total acquisition time = 9:46min (i.e., 900 volumes). Because
the last (900th) functional volume was missing in the R-fMRI
data of four participants, we used the 899 volumes available for
all participants. The parameters for the multiband DTI images
were as follows: TR/TE = 2400/85ms; flip angle = 90◦; 64 slices,
MAF = 4; FOV = 212× 180mm2; voxel size = 2× 2 × 2mm3;
b-value = 1500 s/mm2, 128 gradient directions with 9 b = 0
images; total acquisition time = 5:58min. Notably, DTI data
of one participant was missing in the first session (Table S1).
Additionally, a high-resolution T1-weighted image was also
obtained for each participant with a magnetization prepared
rapid gradient echo (MPRAGE) sequence: TR/TE= 2500/3.5ms;
flip angle = 8◦; inversion time = 1200ms; 192 slices; Matrix =

256 × 256; voxel size = 1 × 1 × 1mm3. In the present study,
the data from Session 1 were used for the main analyses, and the
data from Session 2 were used for the validation analyses.

Data Preprocessing and Analysis
Multiband R-fMRI Data
Data preprocessing was performed using Statistical Parametric
Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and Data
Processing Assistant for Resting-State fMRI (DPARSF) (Yan and
Zang, 2010). First, 16 volumes in the first 10 s were discarded for
signal equilibrium and to allow the participants’ adaption to the
scanning environment. The remaining data were corrected for
headmotion and participants with large headmotion (2mmor>

2◦) were excluded (Table S1). Subsequently, themotion-corrected
images were spatially normalized to Montreal Neurological
Institute (MNI) space using an optimum, 12-parameter affine
transformation and nonlinear deformations (Ashburner and
Friston, 1999) and then resampled to 3-mm isotropic voxels.
Linear trends were further removed from the normalized images,
and then the images were temporally band-pass filtered (0.01–
0.1Hz). Finally, several confounding factors were regressed out
as covariates using multiple linear regression, including 24 head-
motion parameters (Friston et al., 1996) and cerebrospinal fluid
(CSF), white matter (WM) and global brain (Fox et al., 2005)
signals. The residual time series were used for further network
analysis.

Multiband DTI Data
The preprocessing of the DTI data consisted of eddy current
and motion artifact correction, estimation of the diffusion tensor,
calculation of fractional anisotropy (FA) and diffusion tensor
tractography. The first three steps were performed with the
FDT toolbox in FSL (http://www.fmrib.ox.ac.uk/fsl) (Smith et al.,
2004) as follows. First, an affine transformation was applied to
align each diffusion-weighted image to the b = 0 image to
correct for eddy current distortions and motion artifacts. Second,
the diffusion tensor was calculated by solving the Stejskal and
Tanner equation (Basser et al., 1994), and the reconstructed
tensor matrix was diagonalized to obtain three eigenvalues (λ1,
λ2, andλ3) and corresponding eigenvectors. Finally, the FA value

was calculated voxel by voxel using the three eigenvalues of the
tensor matrix (Basser and Pierpaoli, 1996). Subsequently, the
structural T1-weighted image was segmented into gray matter
(GM), WM and CSF in the CIVET pipeline (http://mcin-cnim.
ca/neuroimagingtechnologies/civet/) and registered to the b = 0
image to obtain the white matter mask in DTI native space.
Diffusion tensor tractographywas then implemented inDiffusion
Toolkit (http://trackvis.org/) using the “fiber assignment by
continuous tracking (FACT)” method (Mori et al., 1999) by
seeding each voxel of the white matter mask. Specifically, given
a voxel, eight seeds were placed evenly within the volume of
the voxel (van den Heuvel and Sporns, 2011). Then each fiber
was reconstructed by tracking from each seed following the
main diffusion direction of the current voxel into the next, thus
reconstruction was terminated if the fiber turned with an angle
>45◦ or went out of the white matter mask (Mori et al., 1999).
After tracking from all white matter voxels of the brain, a large
member of fiber bundles was reconstructed and formed the
whole-brain WM fibers for each participant.

Regional Parcellations
To derive inter-regional functional and structural connectivity,
we parcellated the cerebral cortex into different regions of interest
(ROIs). Given that the topological organization of the brain
networks could be affected by different spatial parcellations
(Wang et al., 2009; Fornito et al., 2010; Zalesky et al., 2010), in
the present study we investigated the functional and structural
connectomics using two different regional parcellation schemes
representing low and high spatial resolution, respectively. In
the first parcellation scheme, 90 ROIs were obtained based on
the automated anatomical labeling atlas (AAL-90; for details of
the ROIs, see Table S2) (Tzourio-Mazoyer et al., 2002); in the
second parcellation scheme, 1024 ROIs with uniform sizes were
obtained based on a random parcellation (H-1024) (Zalesky et al.,
2010). For each parcellation scheme, we investigated the dynamic
functional connectivity (D-FC) and structural connectivity (SC)
among regions. Notably, the analysis of the H-1024 brain
networks was identical to that of the AAL-90 brain networks.

Dynamic Functional Connectivity Analysis
Extraction of D-FC
For each participant, we employed a commonly used sliding
window approach to estimate the D-FC of every pair of ROIs
(Kiviniemi et al., 2011; Jones et al., 2012; Tagliazucchi et al.,
2012b; Hutchison et al., 2013b; Allen et al., 2014; Zalesky et al.,
2014). Briefly, the time course of each ROI was first obtained
by averaging the residual time courses of all voxels within the
ROI. Then, a sliding rectangular window with a fixed length was
selected, and each ROI’s time course within this window was
used to estimate the D-FC of interest. Within a given sliding
window t, a symmetric N × N D-FC matrix, Rt = [rt(i,j)], was
generated, where N denotes the number of ROIs considered
(N = 90 for the AAL-90 network and N = 1024 for the H-
1024 network), and rt(i,j) represents the Pearson’s correlation
coefficient between the time courses of two ROIs, i and j. Here,
we utilized a sliding window with a length of 155 TRs (i.e., 100 s),
which allows us to estimate D-FC over the low-frequency band of

Frontiers in Human Neuroscience | www.frontiersin.org 3 September 2015 | Volume 9 | Article 478

http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl
http://mcin-cnim.ca/neuroimagingtechnologies/civet/
http://mcin-cnim.ca/neuroimagingtechnologies/civet/
http://trackvis.org/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Liao et al. Structural basis of dynamic functional connectivity

interest (0.01–0.1Hz) with an adequate number of time points (at
least one period), and simultaneously to capture the time-varying
information of the D-FC. This window was shifted in time with a
step size of one TR (i.e., 645ms), resulting in 729 D-FC matrices
(Rt, t = 1, 2, . . . , 729) for each participant (Figure 1; Video S1).
We also assessed the effects of different sliding window lengths
on the main results (see “Validation analysis”).

Temporal Characteristics of D-FC
We studied the time-varying features of the D-FC matrices
as follows: (i) To estimate the temporal fluctuations of
the whole-brain D-FC patterns, for each participant, we
constructed the N × N static functional connectivity (S-FC)
matrix as a reference, which was represented by Pearson’s
correlation coefficients over the whole-scan time courses. The
time-varying spatial similarity between the S-FC and D-FC
matrices, R(S−FC,D−FC), was calculated via Pearson’s correlation
analysis within each sliding window. Notably, prior to the
correlation analysis, Fisher’s r-to-z transformation (Zar, 1996)
was performed on all entries in both matrices to improve the

normality of the correlation distribution. (ii) To quantitatively
ascertain the temporal features of the D-FC between every pair
of ROIs (i and j), two measures, temporal mean (tMean) and
temporal variability (tVar), were estimated as follows:

tMeanD−FC(i,j) =
1

T

T
∑

t=1

rt(i, j), (1)

tVarD−FC(i,j) =

√

√

√

√

1

T − 1

T
∑

t=1

(rt(i, j)− tMeanD−FC(i,j))2, (2)

where, rt(i,j)represents the D-FC strength between ROIs i and
j within a given window t, and T denotes the total number of
sliding windows (here, T = 729) for each participant. Therefore,
for each participant an N × N D-FC strength matrix and an
N × N D-FC variability matrix were generated. (iii) To further
explore the spatial dependence of D-FC strength and variability,
we generated the average D-FC strength and variability matrices
across individuals and then classified all of the D-FCs into

FIGURE 1 | Spatial patterns of D-FC matrices over time. (A) Transient D-FC matrices at different sliding windows for one representative participant (ID: 9).

Regions of interest (ROIs) were indexed in an order of left (ROIs: 1-45) to right (ROIs: 46-90) hemisphere (for details of the ROIs, see Table S2). (B) Static functional

connectivity (S-FC) matrix of the same participant (ID: 9) (left) and its spatial similarity with the D-FC matrices over time (right). R(S−FC,D−FC) denotes the spatial

similarity between the S-FC and the D-FC matrices obtained using Pearson’s correlation analysis following Fisher’s r-to-z transformation. (C) Time-varying spatial

similarity between the S-FC and the D-FC matrices for all participants (left) and associated temporal mean and temporal variability across windows (right). Error bars

represent the standard deviation across windows. (D) D-FC strength and its spatial dependence for one participant (ID: 9) and for all participants. (E) D-FC variability

and its spatial dependence for one participant (ID: 9) and for all participants. In (D, E), the D-FC strength/variability matrix for all participants was generated by

averaging the individual strength/variability matrices across participants. The statistical difference between any two categories of D-FC was tested using permutation

tests (**Bonferroni corrected p < 0.001, 10,000 permutations). S-FC, static functional connectivity; D-FC, dynamic functional connectivity.
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three broad categories based on the inter-regional spatial
relationships (Stark et al., 2008): homotopic edges, representing
the connections between homologous brain areas in two
hemispheres; heterotopic edges, representing the connections
between non-homologous brain areas in two hemispheres; and
intrahemispheric edges, representing the connections between
brain areas within the same hemisphere. Next, differences in D-
FC strength or variability between any two edge categories were
tested using permutation tests, during which the D-FC group
assignments were randomly shuffled 10,000 times to obtain the
null distribution. The Bonferroni approach was applied to correct
for multiple testing across all of the category pairs examined
(three in total).

Topological Analyses of Dynamic Functional
Brain Networks
Construction of Dynamic Functional Networks
To assess the time-varying topological properties of whole-brain
functional networks, for each participant, we first generated a
set of binary D-FC matrices (i.e., binary functional networks)
over time through a thresholding approach and then performed
graph-based network analysis. Specifically, for a given sliding
window t, any correlation rt(i,j) greater than a given threshold τ

was retained as an edge connecting ROIs i and j; no edge existed
otherwise. The correlation threshold τ was determined via a
Bonferroni correction with pcorr < 0.01, which preserved the
significantly existing correlations, producing dynamic functional
networks with different edge numbers. Moreover, the edges with
negative correlations were ignored during the network topology
analysis, as their physiological meaning is not clear yet (Fox et al.,
2009; Murphy et al., 2009; Weissenbacher et al., 2009; Adachi
et al., 2012). We also assessed the effect of different thresholding
strategies on the main results (see “Validation analysis”).

Network Topology Analysis
All network analyses were performed using the in-house Gretna
package (http://www.nitrc.org/projects/gretna). For the D-FC
network within each sliding window, we calculated both global
and nodal network metrics (for review, see Rubinov and Sporns,
2010), to characterize their overall architecture and nodal
centrality, respectively. (i) The global network metrics included
connectivity density or sparsity (S), small-world attributes
(clustering coefficient, Cp, and characteristic path length, Lp),
assortativity (α), and their normalized versions using random
networks (γ , λ and αz−score). Briefly, the density or sparsity
(S) of a network characterizes the number of existing edges,
indicating the total wiring costs of the network. The clustering
coefficient of a node reflects the fraction of triangles around
this node, indicating the extent of local information segregation
(Watts and Strogatz, 1998). Hence the clustering coefficient
(Cp)of a network characterizes the prevalence of local clustering
in the network, reflecting the overall capability for information
segregation. The characteristic path length (Lp) describes the
average length of the shortest paths linking any two nodes in the
network, measuring the capability for information integration.
Typically, a small-world network architecture supports the
balance between information segregation and integration with a

lowwiring cost, and is characterized by high local clustering (γ =

Cp/<Crand
p >>>1) and short path length (λ = Lp/ <Lrandp > ∼

1), leading to a small-world index σ = γ /λ > 1 (Humphries
and Gurney, 2008). Specifically, <Crand

p > and <Lrandp > were
the average of Cp and Lp, respectively, estimated from 100
matched random networks conserving the same number of
nodes, edges and the same degree distribution as the real
brain networks (Maslov and Sneppen, 2002). Assortativity (α)
describes the similarity of degree values for any two connected
nodes (Newman, 2002). Positive values of α indicate nodes
possessing large degrees prefer to connect with each other to
form a relatively resilient core, and vice versa. Assortativity
is considered significant if the normalized value αz−score =

(αreal
− < αrand >)/std(αrand) > 1.64 (i.e., one-tailed t-test with

p < 0.05), where < αrand > and std(αrand) denote the mean
and the standard deviation of the α values, respectively, estimated
from 100matched random networks. (ii) For regional topological
properties, we employed nodal degree centrality due to its higher
test-retest reliability in the functional networks than other nodal
metrics (Wang et al., 2011). The degree ki of node i is defined as
the number of edges directly connected to this node, indicating
its role in the information communication in the network.

Temporal Characteristics of Network Topology
The temporal characteristics of each network metric were
estimated across windows within each participant, which were
further averaged across individuals for group-level analysis.
Briefly, for each global metric, including S, Cp, Lp, γ , λ, σ ,
and α, we estimated a normalized histogram across windows.
For nodal degree, we identified the hub regions for each sliding
window, the degree values of which exceeded the mean value
across the brain. Then, we counted the occurrence probability
(i.e., ratio of sliding windows) as functional hubs for each region,
and identified functionally persistent hub regions that possessed
occurrence probability>50% over time. Finally, we estimated the
temporal mean (tMean) and temporal variability (tVar) of each
global or nodal metric over time as follows:

tMeanNET =
1

T

T
∑

t=1

NETt, (3)

tVarNET =

√

√

√

√

1

T − 1

T
∑

t=1

(NETt − tMeanNET)2, (4)

where, NET represents the global or nodal metric of interest,
NETt denotes its value for a given sliding window t, andT denotes
the total number of sliding windows (here, T = 729) for each
participant.

Relationship between Structural and Dynamic
Brain Networks
Recent studies have suggested that the intrinsic or spontaneous
functional organization of the brain is shaped by the underlying
structural architecture (Hagmann et al., 2008; Honey et al.,
2009; See Reviews Deco et al., 2011, 2013; Park and Friston,
2013; Wang et al., 2015). Here, we reconstructed human white
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matter structural networks using DTI data from the same
participants, and then investigated the relationship between
dynamic functional networks and structural networks at different
levels (including connectional, global and nodal properties).

Construction of Structural Networks
The network construction approaches were the same as our
previous procedures (Gong et al., 2009; Shu et al., 2011). Briefly,
the nodes were first obtained using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm) based on the parcellation schemes mentioned
above (AAL-90 or H-1024). Specifically, the registered T1 image
was nonlinearly transformed into the ICBM152 T1 template in
the MNI space, and the corresponding transformation matrix
was inversed to warp the parcellation scheme (AAL-90 or H-
1024) from the MNI space to the DTI native space using
a nearest-neighbor interpolation method to preserve discrete
labeling values. Second, any two ROIs in DTI native space
were considered structurally connected if at least one fiber
streamline existed with two end-points locating in these two
regions, respectively (Shu et al., 2011; Zalesky et al., 2011). Hence,
for each participant, an undirected weighted SC matrix was
constructed, indicating the presence or absence of SC between
region pairs, as well as the SC strength. Specifically, for each
SC its strength was denoted by the normalized number of
streamlines, which was calculated by dividing the number of
interconnecting streamlines by the mean volume of the two
connected regions. Additionally, to balance the inter-individual
variance in structural connections, we identified significantly
consistent connections across participants by performing a
nonparametric one-tailed sign test on the normalized streamline
number (Gong et al., 2009). For each pair of ROIs, the sign
test was performed with the null hypothesis that no connection
existed (p < 0.05). Non-zero connections were preserved and
assigned the average SC strength across participants to generate
the group-level SC network (i.e., backbone).

Relationship between D-FC and SC Networks
We explored the relationship between D-FC and SC networks at
the following three levels. (i) Connection level. The relationship
between D-FC and SC was performed at both individual and
group levels. Specifically, for each participant, we examined
whether there was a significant difference in D-FC strength
or variability between region pairs with direct SC and those
without direct SC. Here, a non-parametric permutation test
was employed, where D-FC group assignments were randomly
shuffled 10,000 times between the two categories of SC present
and SC absent. Then, for the region pairs with direct SC,
the relationship between SC strength and D-FC strength or
variability was estimated using Pearson’s correlation analysis.
Prior to correlation analysis, a Gaussian resampling method was
separately applied to all of the measures to improve the normality
of their distributions. Similar analysis was also performed at the
group level, based on the SC backbone network. (ii) Global-
topology level. For each participant, we first estimated the
global network metrics, including Cp, Lp, γ, λ, σ, and α, for
the binary structural networks. Then, for each global metric,
we used an across-subject Pearson’s correlation analysis to

examine the relationship between the SC networks and the
temporal features of the D-FC networks, including temporal
mean and temporal variability. (iii) Nodal-topology level. For
each participant, we calculated nodal degree centrality in the
binary structural network and identified the structural hub
regions whose degree values exceeded the mean value across the
brain. Then, we counted the occurrence probabilities of structural
hubs across individuals, and identified structurally consistent hub
regions with occurrence probabilities >50%. Furthermore, for
all participants, we explored the potential constraints of both
structural hub probability and structural degree centrality on the
temporal variability of functional degree centrality via across-
node correlation analysis. Because the values of structural hub
probability were discrete, Spearman’s correlation analysis was
performed in these correlation analyses. Notably, during steps (ii)
and (iii), network metrics were estimated for binary structural
networks ignoring the SC strength, to ensure the comparability
of network topology between structural and dynamic functional
networks.

Validation Analysis
We evaluated whether the main findings were affected by
scanning session or by different analysis strategies (e.g., the
window length, the correlation thresholding strategy for network
construction, and the network type). Given that the main
results were compatible for low-resolution (AAL-90) and high-
resolution (H-1024) brain networks (see Results), the validation
analyses were performed on the low-resolution AAL-90 networks
to reduce the computational burden. The relevant procedures
are described as follows: (i) Scanning session. To validate our
main findings, we performed the same network analysis on the
multiband R-fMRI and DTI dataset in Session 2 of the same
participants, which was scanned approximately 1 week after
Session 1. (ii) Window length. In the current study, a commonly
used sliding window approach was employed to capture the
dynamics of D-FC (Kiviniemi et al., 2011; Jones et al., 2012;
Tagliazucchi et al., 2012b; Hutchison et al., 2013b; Allen et al.,
2014; Zalesky et al., 2014). However, so far, the choice of window
length remains controversial (Hutchison et al., 2013a); various
window lengths have been used in the previous studies (e.g.,
30 ∼240 s in Hutchison et al., 2013b). In the main analyses, we
employed a sliding window with a length of 100 s, to capture
the primary low-frequency BOLD signal fluctuations. Moreover,
two additional window lengths (50–150 s) were considered to
validate the main results. (iii) Correlation thresholding strategy.
During functional network construction, various strategies can
be used to threshold the functional correlation matrix to derive a
connectivity matrix representing the functional network (Wang
et al., 2010). Here, we employed a fixed correlation threshold
for all of the windows, which was determined by a significance
criterion—Bonferroni correction with pcorr < 0.01. To assess the
effect of different correction thresholds, we conducted analyses at
two additional thresholds of significance pcorr < 0.05 and 0.001.
Moreover, we also generated the D-FC brain networks using
different connectivity densities or sparsities (10, 15, and 20%), to
ensure the same number of connections in the D-FC networks
across all of the windows. (iv) Network type. In the main
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analyses, the network analyses were performed on binary brain
networks, ignoring the differences in edge weights or connection
strength. To assess whether our main results depended on the
edge weights, we performed the same graph-based analyses on
weighted D-FC networks and structural networks, where the
weighted D-FC networks were obtained using the Bonferroni
correction approach (pcorr < 0.01), but retaining the correlation
values for the significant connections.

Results

In the current study, we constructed dynamic functional
networks and structural networks using both low-resolution
(AAL-90) and high-resolution (H-1024) parcellations, and
further investigated the dynamic characteristics of the functional
networks and their associations with structural connectivity
features. Given that most of the findings obtained from the
AAL-90 and H-1024 brain networks were compatible, we
mainly reported the results from the AAL-90 brain network
analyses.

Dynamic Functional Connectivity among Regions
Using the sliding window approach, we generated individual
inter-regional D-FC matrices, fluctuating at a sub-second
time scale, for the whole brain. Figure 1A illustrates the
transient D-FC matrices of several windows (i.e., time) for
one representative participant (ID: 9; see Video S1 for all
of the D-FC matrices across time). Notably, although the
D-FC matrices varied across windows, they maintained high
spatial similarity [R(S−FC,D−FC) > 0.7] with the S-FC matrix
(Figure 1B). Similar features were also observed for other
participants (Figure 1C), with the mean R(S−FC,D−FC) across
windows exceeding 0.7, suggesting the existence of intrinsic
rules (e.g., potential structural constraints) underlying the
dynamic functional coordination. To further ascertain the
temporally fluctuating characteristics of these D-FC matrices,

for each participant, we computed the connectivity strength
and temporal variability of each D-FC and obtained the D-FC
strength and variability matrices, respectively (Figures 1D,E).
At the group level, we found that homotopic D-FC showed
significantly greater connectivity strength and smaller temporal
variability than either heterotopic or intrahemispheric D-FC
(both Bonferroni-corrected ps < 0.001, 10,000 permutations).

Dynamic Global Properties of Functional Brain
Networks
To assess the time-varying topological properties of the
functional networks, for each participant, we first generated a set
of binary D-FCmatrices over time using a thresholding approach
(Bonferroni correction, pcorr < 0.01), and then performed graph-
based network analyses. We showed that the global topological
properties (S, Cp, Lp, γ , λ, σ , and α) of the D-FC brain
networks fluctuated over time (Figure 2A and Table S3) and
obtained corresponding normalized histograms across windows
(Figure 2B). First, for all participants, network connectivity
density or sparsity (S) fluctuated within a similar range (0.10–
0.24), with the distribution centered at approximately 0.17.
Out of the 8019 (i.e., 11 participants × 729 windows) D-
FC networks obtained, 97.8% were fully connected, and the
remaining networks had at least 88 nodes connected (Table
S4). Second, all of the D-FC networks exhibited a clustering
coefficient (Cp) above 0.4 and a characteristic path length (Lp)
below 2.4. Compared to matched random networks, these D-FC
networks were more locally clustered (i.e., γ = Cbrain

p /Crand
p >>

1) and had an almost identical path length (i.e., λ = Lbrainp /Lrandp

∼ 1) for all windows, indicating dynamic, but persistent small-
world architecture over time (all σ s > 1.6). Third, the temporal
fluctuations of assortativity (α) had a distribution centered at
approximately 0.35 (all αz−score > 1.64), suggesting that nodes
that possessed a similar number of edges tended to connect with
each other.

FIGURE 2 | Dynamic global topological properties of D-FC brain networks. (A) Time-varying global network properties for all participants, including

sparsity (S), clustering coefficient (Cp), characteristic path length (Lp), normalized clustering coefficient (γ), normalized characteristic path length (λ),

small-worldness (σ), and assortativity (α). (B) Normalized histograms of global properties across windows for all participants. For each metric, a

normalized histogram across windows was estimated for each participant; these histograms were then averaged across participants to generate the

mean histogram. Error bars represent the standard deviation of the normalized histograms across participants. D-FC, dynamic functional connectivity.
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Dynamic Hubs in Functional Brain Networks
Using nodal degree centrality, we assessed the nodal roles in
information communication of the D-FC networks. For each
participant, the degree centrality of brain regions fluctuated
over time, reflecting dynamic reconfiguration of spatial patterns
(Figure 3A and Video S2 for one representative participant,
ID: 9). Further, we identified transient functional hubs (above the
mean) for each sliding window and estimated their occurrence
probabilities across windows. For the participant with ID 9, we
found that several regions appeared as persistent hubs across
time with large probabilities (>0.5), which were mainly located
at the insula, sensorimotor cortex, superior occipital gyrus,
superior temporal gyrus, medial prefrontal cortex, and anterior
andmiddle cingulate cortex (Figure 3A). At the group level, these
regions were also identified as persistent functional hubs over
time (Figure 3B, Table 1). Finally, the across-node correlation
analysis revealed a significant positive association between the
occurrence probability as hubs and the temporal variability of
nodal degree centrality in the D-FC networks (r = 0.41, p <

0.0001; Figure 3B), indicating that functionally persistent hubs
(with denser connectivity across time) tended to exhibit larger
temporal variability.

Relationship between Dynamic Functional
Networks and Structural Connectivity Networks
Connectivity Relationship between D-FC and SC
Using DTI tractography, we reconstructed the white matter fibers
in the whole brain for each participant, and then generated

individual SC networks. Figure 4A displays the whole-brain
white matter fibers and corresponding structural network for
one representative participant (ID: 9). We found that regional
pairs with direct SC exhibited significantly larger D-FC strength
and lower D-FC temporal variability than those without direct
SC (Figure 4A, both ps < 0.0001, 10,000 permutations).
Moreover, for those region pairs with direct SC, D-FC strength
was positively correlated with SC strength (r = 0.24, p <

0.0001), whereas D-FC variability was negatively correlated with
SC strength (r = − 0.14, p < 0.0001). Similar results were also
observed for other participants (Table 2) and for the group-level
analysis based on the SC backbone network (Figure 4B).

Topological Relationship between D-FC and SC

Networks
We calculated both global and nodal topological properties for
individual binary SC networks and examined their associations
with the temporal features of D-FC networks (e.g., temporal
mean and variability of the topological properties across the
sliding windows). First, we found that all of the individual
SC networks exhibited small-world architecture (mean ± std:
σ = 1.98 ± 0.13), characterized by dense local clustering
(γ > 1) and short path length (λ ∼ 1) (Table 3). Meanwhile,
assortative organization was also observed for each participant,
accompanied by αz−score > 1.64 (one-tailed p < 0.05). Notably,
for each global metric (Cp, Lp, γ, λ, σ , and α), its temporal
mean and variability in D-FC networks did not exhibit significant
across-subject correlation (ps > 0.05) with the SC networks.

FIGURE 3 | Dynamic functional hubs in the D-FC brain networks. (A) Time-varying degree centrality and dynamic functional brain hubs for one representative

participant (ID: 9). Transient brain hubs at several windows (e.g., # = 100, 400, and 700) are displayed. Hub probability map was generated by counting the

occurrence probability as hubs across sliding windows for each region. (B) Hub probability map for all participants (left) and scatter plot showing the across-node

relationship between hub probability and temporal variability of functional degree centrality (right). The probability map for all participants was generated by averaging

individual hub probability maps across participants. The surface-based visualizations were made using BrainNet Viewer (http://www.nitrc.org/projects/bnv/, Xia et al.,

2013). D-FC, dynamic functional connectivity.
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TABLE 1 | Functionally persistent hubs in dynamic brain networks

(AAL-90).

ROI name Hub Degree variability

probability (z-score)

L Rolandic operculum 0.90 0.09

L Superior temporal gyrus 0.87 0.19

R Insula 0.85 1.18

R Rolandic operculum 0.85 0.51

R Superior temporal gyrus 0.84 0.10

L Insula 0.81 1.12

R Heschl gyrus 0.80 −0.22

R Precental gyrus 0.77 0.34

L Heschl gyrus 0.75 −0.03

L Postcentral gyrus 0.74 0.39

L Anterior cingulate and paracingulate gyri 0.73 0.29

R Supplementary motor area 0.71 0.62

R Postcentral gyrus 0.70 0.10

R Lenticular nucleus, putamen 0.67 1.90

R Temporal pole: superior temporal gyrus 0.67 2.34

L Superior frontal gyrus, medial 0.65 −1.10

R Anterior cingulate and paracingulate gyri 0.64 0.53

R Supramarginal gyrus 0.63 0.90

L Lenticular nucleus, putamen 0.63 0.64

L Temporal pole: superior temporal gyrus 0.62 1.42

L Gyrus rectus 0.60 −0.07

L Median cingulate and paracingulate gyri 0.60 1.14

R Superior frontal gyrus, medial 0.59 −1.12

L Superior occipital gyrus 0.58 −0.72

R Superior frontal gyrus, medial orbital 0.57 −1.28

L Superior frontal gyrus, medial orbital 0.57 −1.33

R Superior occipital gyrus 0.55 0.19

L Precental gyrus 0.54 0.44

L Paracentral lobule 0.54 1.08

R Median cingulate and paracingulate gyri 0.53 0.87

R Inferior frontal gyrus, opercular part 0.53 −0.04

L Inferior frontal gyrus, opercular part 0.53 0.62

R Gyrus rectus 0.52 0.35

L Angular gyrus 0.51 −1.09

Functionally persistent hub regions (i.e., probability>0.5) at the group level are listed here.

L, left; R, right. Hub probability represents the occurrence probability as functional hubs

across windows, and degree variability denotes temporal variability of functional degree

centrality across windows, which was further converted to z-score value by subtracting

its mean across the brain and then dividing by the associated standard deviation. Positive

z-score values indicate large temporal variability above the mean value across the brain.

Second, for the SC networks of each participant, we identified
the pivotal hub regions with larger degree centrality (above the
mean). Figure 5A displays the probability map of structural hubs
across individuals: structurally persistent hubs (probability>0.5)
were mainly located in the insula, medial prefrontal cortex,
sensorimotor cortex, precuneus, middle temporal gyrus, and
visual cortex (Table 4). Notably, some of these regions also
appeared as functionally persistent hubs (Figure 3B), including
the insula, medial prefrontal cortex, sensorimotor cortex, and

superior occipital gyrus. Further across-node correlation analysis
revealed that both structural hub probability (r = −0.29, p =

0.0051) and structural degree centrality (r = −0.28, p =

0.0083) were negatively correlated with the temporal variability
of functional degree centrality in the D-FC networks (Figure 5B).

Dynamic, High-resolution Functional Brain
Networks
Using the high-resolution regional parcellation (H-1024), we
examined the temporal characteristics of the D-FC networks and
relevant structural basis on a finer spatial scale (Figure 6 and
Table S5). The main findings in the high-resolution networks
were largely compatible with those observed in low-resolution
(AAL-90) networks, which are outlined below: (i) Spatial patterns
of D-FC. We found that the spatial patterns of the inter-regional
D-FC in the high-resolution brain networks remained relatively
stable over time (see Video S3 for one represent participant,
ID: 9), with homotopic D-FC exhibiting the highest strength
and lowest temporal variability (Figure 6A). (ii) Topological
properties of D-FC networks. For all participants, network
connectivity sparsity (S) fluctuated within a similar range (0.05–
0.15), with the distribution centered at approximately 0.10. Out
of the 8019 (i.e., 11 participants× 729 windows) D-FC networks
obtained, 98.5% were fully connected, and the remaining
networks had 1023 nodes connected (Table S4). We found
that individual high-resolution D-FC networks exhibited time-
varying, but persistent small-world and assortative architecture
(Figure 6B), and possessed functional brain hubs that persisted
over time (probability >0.5) (Figure 6C, and Video S4 for
one representative participant, ID: 9). Notably, the spatial
distribution of persistent hubs in the high-resolution D-FC
networks was largely consistent with the distribution in the
low-resolution brain networks, except that additional functional
hubs were observed in the high-resolution D-FC networks in
the posterior cingulate cortex and precuneus. (iii) Relationship
between the D-FC and SC networks. First, at the connection level,
region pairs with direct SC showed significantly greater D-FC
strength and smaller D-FC variability than those without SC
(both ps < 0.0001, 10,000 permutations; Figure 6D). Moreover,
for structurally connected regions, SC strength exhibited
significant correlations with both D-FC strength (r = 0.32) and
variability (r = −0.29; Figure 6D, Table 2). Second, at the global
topological level (small-world and assortativity properties),
significant across-subject correlation was not observed (ps >

0.05) between individual SC networks and associated temporal
features of D-FC networks. Finally, at the regional level,
several structural brain hubs across individuals also appeared as
functionally persistent hubs over time, such as the insula, medial
prefrontal gyrus, somatosensory cortex, superior occipital gyrus,
and precuneus (Figure 6E).Moreover, structural hubs with larger
SC degree centrality tended to have lower D-FC degree variability
across time (r = −0.11; Figure 6E).

Validation Results
We validated our results by using different scanning sessions
and different analysis strategies (involving the window lengths,
correlation thresholding strategies and network types). (i)
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FIGURE 4 | Relationship between the D-FC and structural connectivity (SC) networks for one representative participant (ID: 9) (A) and for the whole

group (B). (A) Schematic of whole-brain white matter (WM) fibers and SC matrix (left), and the differences in D-FC strength and variability between region pairs with

direct SC (SC present) or not (SC absent) (right). The WM fibers were estimated from whole-brain tractography, and SC strength was represented by the normalized

streamline number. (B) The SC backbone network across all participants (left) and differences in D-FC strength and variability between region pairs with or without

direct SC (right). Group-level analyses were performed on the 10 participants that possessed both R-fMRI and DTI data, given that the DTI data of one participant (ID:

1) were not available. In (A,B), significant differences in D-FC strength/variability between two groups were tested using permutation tests (**p < 0.0001, 10,000

permutations). Scatter plots (insets) show the correlation between D-FC strength/variability and SC strength, confined to the regional pairs with direct SC. Prior to the

correlation analysis, all of these measures were resampled into a Gaussian distribution, with mean ± std = 0.5 ± 0.1. D-FC, dynamic functional connectivity.

TABLE 2 | Relationship between dynamic functional connectivity and structural connectivity.

Participant ID R(D-FC strength, SC) R(D-FC variability, SC)

AAL-90 H-1024 AAL-90 H-1024

Session 1 Session 2 Session 1 Session 1 Session 2 Session 1

1 n.a. 0.27 n.a. n.a. −0.07 n.a.

2 0.33 0.30 0.20 −0.05b −0.18 −0.13

3 0.28 0.25 0.15 −0.12 −0.14 −0.09

4 0.28 0.23 0.22 −0.18 −0.15 −0.15

5 0.25 0.29 0.21 −0.12 −0.07 −0.12

6a 0.27 0.26 0.21 −0.14 −0.17 −0.13

7 0.30 0.26 0.19 −0.08 −0.10 −0.12

8 0.23 0.33 0.18 −0.07 −0.16 −0.05

9 0.24 0.28 0.21 −0.14 −0.10 −0.14

10 0.28 0.27 0.21 −0.10 −0.10 −0.12

11 0.29 0.37 0.22 −0.17 −0.20 −0.13

Mean ± std 0.28 ± 0.03 0.28 ± 0.04 0.20 ± 0.02 −0.12± 0.04 −0.14± 0.05 −0.12± 0.03

For both low-resolution (AAL-90) and high-resolution (H-1024) brain networks, significantly different D-FC strength and variability were observed between region pairs with direct SC

and those without direct SC for most participants (ps < 0.05, 10,000 permutations). R(D−FC strength,SC) and R(D−FC variability,SC) represent Pearson’s correlations of SC strength vs. D-FC

strength and D-FC variability, respectively, confined to region pairs with direct SC. Significant correlation (p < 0.05) was observed for almost all participants.

For Session 1, the structural and functional relationship was inferred for only 10 participants (ID: 2–11) that possessed both R-fMRI and DTI data. n.a denotes DTI data were not available.
aSignificant difference in D-FC variability was not observed between region pairs with direct SC and those without direct SC (p > 0.05, 10,000 permutations) (ID: 6 in Session 1, in the

AAL-90 brain networks).
bD-FC variability did not exhibit significant correlation with SC strength (p > 0.05).
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TABLE 3 | Summary of global properties of individual structural brain networks (AAL-90).

Participant ID S Cp Lp γ λ σ α

1 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

2 0.19 0.53 1.78 2.18 1.05 2.08 0.02

3 0.19 0.54 1.86 2.41 1.09 2.21 0.06

4 0.21 0.55 1.77 2.06 1.06 1.95 0.02

5 0.22 0.52 1.72 1.90 1.04 1.83 0.04

6 0.22 0.58 1.76 2.12 1.06 1.99 0.02

7 0.22 0.54 1.75 2.05 1.05 1.95 0.06

8 0.20 0.55 1.81 2.26 1.07 2.11 0.01

9 0.20 0.55 1.78 2.15 1.06 2.03 0.04

10 0.22 0.56 1.74 2.03 1.05 1.92 0.01

11 0.21 0.54 1.73 1.82 1.04 1.75 0.03

Mean ± std 0.21 ± 0.01 0.55 ± 0.02 1.77 ± 0.04 2.10 ± 0.17 1.06 ± 0.01 1.98 ± 0.13 0.03 ± 0.02

For each participant, we calculated global properties of the binary SC network. S indicates the network connectivity density or sparsity. Cp, Lp, γ , λ, σ , and α denote the clustering

coefficient, characteristic path length, normalized clustering coefficient, normalized characteristic path length, small-worldness and assortativity, respectively. For all participants

considered, the SC networks exhibited a small-world (σ > 1) and assortative (α > 0) architecture, with the assortativity coefficient significantly (αz−score > 1.64) higher than those

in random networks. Notably, only 10 participants (ID: 2–11) that possessed DTI data were included in structural network analysis. n.a. denotes DTI data were not available.

FIGURE 5 | Structural brain hubs and their associations with D-FC

networks. (A) Structural hub probability map for all participants, which was

generated by counting the occurrence probability as structural hubs across

participants for each region. (B) Scatter plots showing the across-node

relationship between temporal variability of functional degree centrality in the

D-FC networks and structural hub probability (left) and structural degree

centrality (right). Given the discrete values of structural hub probability,

Spearman’s correlation analysis was used. D-FC, dynamic functional

connectivity.

The effects of different scanning session. We found that most
of the findings reported above were highly reproducible
using the multiband R-fMRI and DTI data obtained from
the same participants during the second scanning session,
which was separately from the first by approximately 1 week

(Table 2, Figure S1). (ii) The effects of window length. We re-
generated the individual D-FC networks using different window
lengths (window length = 50 or 150 s) and found that the
temporal features of the functional organization, including the
connections, global properties and nodal degree, were highly
similar to our main results (Figures S2, S3). Moreover, the
connectivity strength and temporal variability of the D-FC were
significantly correlated with SC strength at different window
lengths, but the relationship was more significant when a smaller
window length was used (Figure S2D vs. Figure S3D). (iii) The
effects of correlation thresholding strategy. We found that the main
results were preserved when different correlation thresholding
strategies were used for D-FC network construction, including
the varying Bonferroni correction thresholds (pcorr< 0.05 or
0.001; Figures S4, S5), and different network sparsity values (S =

10, 15, and 20%; Figure S6). (iv) The effects of network type. We
regenerated weighted D-FC networks, and found that retaining
the edge weights during the brain network analyses did not
change our main findings (Figure S7).

Discussion

Using the sub-second multiband R-fMRI and DTI data, we
comprehensively explored the dynamic topological organization
of human whole-brain functional networks at a finer temporal
resolution (TR = 645ms) and provided the first demonstration
of their underlying structural substrates. The main results were
summarized as follows: (i) The overall D-FC patterns maintained
high spatial similarity with the static connectivity pattern, with
larger connectivity strength and lower temporal variability in
homotopic D-FC than heterotopic and intrahemispheric D-
FC. The D-FC networks exhibited time-varying but persistent
small-worldness, assortativity and functional hubs, with several
regions (e.g., insula, sensorimotor cortex, and medial prefrontal
cortex) emerging as functionally persistent hubs but having larger
temporal variability in degree centrality than other regions. (ii)
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TABLE 4 | Structurally persistent brain hubs across participants (AAL-90).

ROI name Hub Structural

probability degree centrality

L Superior frontal gyrus, dorsolateral 1.00 27.10

L Superior frontal gyrus, medial 1.00 26.60

L Insula 1.00 23.10

R Calcarine fissure and surrounding cortex 1.00 23.80

L Middle occipital gyrus 1.00 27.70

R Superior parietal gyrus 1.00 26.20

L Precuneus 1.00 34.30

R Precuneus 1.00 33.60

L Lenticular nucleus, putamen 1.00 29.00

R Lenticular nucleus, putamen 1.00 33.20

R Superior frontal gyrus, dorsolateral 0.90 29.70

L Superior frontal gyrus, orbital part 0.90 23.80

R Insula 0.90 25.20

L Hippocampus 0.90 25.50

L Calcarine fissure and surrounding cortex 0.90 23.20

R Cuneus 0.90 25.00

R Lingual gyrus 0.90 27.50

R Postcentral gyrus 0.90 22.90

R Caudate nucleus 0.90 22.40

R Middle temporal gyrus 0.90 22.20

L Inferior temporal gyrus 0.90 22.70

R Superior frontal gyrus, orbital part 0.80 23.60

R Inferior frontal gyrus, orbital part 0.80 24.50

R Superior frontal gyrus, medial 0.80 22.80

L Superior occipital gyrus 0.80 23.10

R Superior occipital gyrus 0.80 23.70

L Postcentral gyrus 0.80 21.40

L Superior parietal gyrus 0.80 23.50

L Caudate nucleus 0.80 24.50

L Thalamus 0.80 24.90

L Middle temporal gyrus 0.80 22.30

L Cuneus 0.70 21.80

R Middle occipital gyrus 0.70 20.80

L Lingual gyrus 0.60 20.10

Persistent structural hub regions across participants (i.e., probability >0.5) are listed here.

L, left; R, right. Hub probability represents the occurrence probability as structural hubs

across participants, and structural degree centrality denotes the average nodal structural

degree values across participants.

The temporal characteristics (i.e., strength and variability) of the
D-FC were significantly associated with the existence and the
strength of structural connections. The temporal variability of
nodal degree centrality in the D-FC networks was anatomically
constrained by the structural networks. Collectively, these results
provide novel insights into the spontaneous or intrinsic network
dynamics of the human brain and their underlying structural
substrates at a finer time scale (seconds).

Dynamic Functional Connectivity Patterns in the
Resting Human Brain
Traditional static FC analysis using the whole-scan time
courses has greatly advanced our understanding of the intrinsic

functional organization of the brain (Biswal et al., 1995; Fox
and Raichle, 2007; Kelly et al., 2012). However, this approach
cannot capture the time-varying characteristics of functional
organization. Using a sliding window approach, in the present
study, we observed that functional interactions among regions
during rest underwent spontaneous dynamic reorganization
(Figure 1, Videos S1, S3). On the one hand, these diverse D-
FC patterns may be due to the shift of arousal states during the
unconstrained resting scanning (Allen et al., 2014). On the other
hand, and more possibly, the spontaneous fluctuations of D-FC
patterns may be the manifestation of intrinsic brain dynamics
(Hutchison et al., 2013b). Recent empirical (Tagliazucchi et al.,
2012a; Liu and Duyn, 2013) and theoretical (Deco et al., 2011,
2013; Haimovici et al., 2013) studies suggest that the resting
brain may reside near a critical state, supporting a rich repertoire
of functional coordination patterns. Thus, the switch of large-
scale D-FC patterns may reflect the exploration of available
functional configurations, which would benefit the efficiency and
the speed for the configuration selection in response to potential
cognitive demands (Deco et al., 2013). Interestingly, previous
electrophysiological studies (Kramer et al., 2011; Chu et al., 2012)
with long-term recordings (∼ days) in the human brain found
that a network template emerged from short time intervals (∼
100 s) underlying the dynamic functional organization. Here,
we provide evidence that the large-scale D-FC patterns derived
from R-fMRI data persistently exhibited high spatial similarity
with the static pattern (Figures 1C, 6A), indicating that the latter
might serve as a template on which diverse, transient functional
configurations emerge and recede with minor modulations. We
assume that the template for functional coordination may be
manifestation of the influence of anatomical architecture, the
detection and the physiological meaning of which require further
elucidation.

Dynamic Small-World and Assortative Functional
Brain Networks
Small-world brain networks serve as an attractive model for
brain organization, because they supports efficient information
segregation and integration through dense local clustering and
yet short path length between any pair of nodes (Watts and
Strogatz, 1998). A number of studies have consistently found
small-world architecture in static functional brain networks
across diverse imaging modalities (e.g., fMRI, EEG, and MEG)
(for reviews, see Bassett and Bullmore, 2006; Bullmore and
Sporns, 2009, 2012; He and Evans, 2010), suggesting that it
is a general principle of brain organization. Using a sliding
window approach, we observed that although the measure
of small-worldness fluctuated substantially over time, small-
world topology was preserved across all of the windows
in company with low sparsity (i.e., wiring costs; Figures 2,
6B), indicating that the human brain maintains a dynamic
balance between efficient local and global communications to
meet changeable environments. More specifically, although the
functional connections attached to each node were variable
across time (Figure 3A), the functional connection patterns
across the whole brain maintained significant assortativity
(Figures 2, 6B). As a consequence, high-degree hub nodes
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FIGURE 6 | Dynamic characteristics of high-resolution (H-1024) D-FC brain networks and their structural associations. (A) Spatial similarity between

the S-FC and the D-FC matrices over time (left) and the spatial-dependence of D-FC strength and variability for all participants (right). **Bonferroni corrected

p < 0.001, 10,000 permutations. (B) Time-varying small-worldness and assortativity of D-FC networks. (C) Functional hub probability map for all participants

(left) and scatter plot showing across-node relationship between functional hub probability and the temporal variability of functional degree centrality in the

D-FC networks (right). (D) Differences in D-FC strength (left) and temporal variability (right) between region pairs with or without direct SC. **p < 0.0001. Scatter

plots (insets) represent the across-connection relationship of D-FC strength (left) and D-FC variability (right) vs. SC strength, confined to the regional pairs with

direct SC. Relevant statistical analyses were performed for all participants based on the SC backbone network. (E) Structural hub probability map for all

participants (left) and across-node relationship with the temporal variability of functional degree centrality (right). The hub map was generated by counting the

occurrence probability as structural hubs across participants for each region. SC, structural connectivity; S-FC, static functional connectivity; D-FC, dynamic

functional connectivity.

preferentially connected with each other, constituting a relatively
resilient “connectivity core.” Assortative topology has been
readily observed in static functional networks of the human
brain (Eguíluz et al., 2005; Park et al., 2008; Braun et al., 2012).
Maintaining this feature during dynamic organization could be
beneficial for continual information processing among hubs,
and could thus promote a fast response to changing cognitive
demands and increase the resilience to potential pathological
attacks.

Persistent but Flexible Functional Brain Hubs
We found that brain regions exhibited substantial fluctuations
across time in their nodal degree centrality values (Figure 3A,
Videos S2, S4), indicating their variable functional roles at a
short time scale. Of note, several regions emerged as functionally
persistent hubs (i.e., >50% of the windows) over time
(Figures 3B, 6C), which were mainly located in the sensorimotor
cortex, default-mode network (e.g., medial prefrontal cortex,
angular gyrus, posterior cingulate gyrus and precuneus) and
the cingulo-opercular control system (e.g., anterior cingulate

cortex and insula). The majority of these regions have been
identified as functional hubs in previous static network studies
(Achard et al., 2006; Buckner et al., 2009; Liang et al., 2013;
Liao et al., 2013; van den Heuvel and Sporns, 2013) and are
supposed to be crucial for efficient functional coordination across
spatially distributed regions. Notably, our findings highlight
their enduring contributions to global information integration
and provide insights into their functional roles in dynamic
network integrity. Interestingly, previous studies of the human
brain (Allen et al., 2014; Zalesky et al., 2014) suggest that
functional connectivity involving these regions is highly variable
over time. Here, using quantitative degree centrality analysis,
we demonstrated that the functionally persistent hubs tended to
exhibit larger temporal variability in functional degree centrality
than other regions, regardless of the spatial resolution considered
(Figures 3B, 6C). Interestingly, highly variable functional hubs
have also been observed in macaque cortical networks using
both simulation (Honey et al., 2007) and empirical (Shen et al.,
2015) data, in which functional hubs were estimated from longer
time periods (∼ minutes). In a task-based fMRI study, Cole
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et al. (2013) pointed out that the flexible fronto-parietal hub
regions may update their functional connectivity patterns rapidly
according to different task states. Using multiband R-fMRI, we
further demonstrated the dynamic characteristics of functional
brain hubs during rest, including their persistence and flexibility
across time. These persistent hubs dynamically adjust their global
functional connections involving multiple systems, to enable
adaptive information exchange and integration.

Structural Substrates of Dynamic Functional
Organization
Simulations of macaque brain networks have shown that inter-
regional functional connectivity at multiple time scales (e.g.,
seconds to minutes) is shaped by the anatomical architecture
(Honey et al., 2007). Very recently, using R-fMRI in macaques
Shen et al. (2015) provided an empirical demonstration that
more stable functional connections are observed between region
pairs with direct anatomical connections obtained from axonal
tract tracing. However, for the human brain, the majority of
studies have focused mainly on the structural substrates for
static functional connectivity or networks, and the structural
constraints on spontaneous evolution of functional networks
are still unclear. Based on multiband R-fMRI and DTI data
of the same participants, we provided crucial evidence for
the structural substrates underlying the large-scale dynamic
functional organization of the human brain on the order of
seconds, at both connection and network levels.

At the connection level, we found that both the connectivity
strength and the temporal variability of D-FC were dependent
on the spatial interrelationships (Figures 1D, 6A), which agrees
well with previous studies on S-FC (Stark et al., 2008) and
D-FC that fluctuates on a scale of minutes (Gonzalez-Castillo
et al., 2014). One possible reason is that as homologous regions
possess similar functional roles (Toro et al., 2008; Crossley et al.,
2013), homotopic FC between them may manifest as continual
functional interaction, with less temporal variation. In contrast,
heterotopic and intrahemispheric FC usually connects regions
involved in specialized functions, yielding occasional inter-
regional functional coupling with larger temporal variability.
Moreover, the direct SC, corpus callosum, linking homologous
regions (Gong et al., 2009; van den Heuvel et al., 2009) may
promote the temporal stability of homotopic FC. Although
prior studies have shown that SC may shape the functional
interactions or S-FC (Hagmann et al., 2008; Honey et al.,
2009; van den Heuvel et al., 2009; Goñi et al., 2014), the
structural influences on the temporal characteristics of functional
couplings are usually ignored. Here, we highlighted that D-FC
fluctuating on a scale of seconds was shaped by the underlying
SC: the larger the structural connectivity strength, the greater the
functional coupling with less temporal variability (Figures 4, 6D
and Table 2), which extends our understanding of the structure-
function relationships in the human brain at shorter time scales.

At the network level, we found that the dynamic functional
networks and structural networks shared common global
properties (e.g., small-worldness and assortativity; Figure 2 and
Table 3), which was compatible with prior static FC studies
(Bullmore and Sporns, 2009, 2012). Moreover, we observed

that regions that possessed larger structural degree centrality
or structural hub probability tended to exhibit less temporal
variability of functional degree centrality, which could be due
to the structural constraints on temporal variability of D-
FC (Figure 4), as mentioned above. Of note, this negative
relationship between structural degree centrality and the
temporal variability of functional degree centrality is different
from that for functional hubs, which may result from the
different spatial patterns of the probability maps observed for
functional hubs (Figure 3B) and structural hubs (Figure 5A).
Although several hub regions in common (e.g., insula, medial
prefrontal cortex) were found, we also observed that several
structural hub regions (e.g., middle temporal gyrus and visual
cortex) exhibited small probability as functional hubs, and several
functionally persistent hubs (e.g., anterior cingulate cortex)
possessed small structural degree centrality. These discrepancies
in nodal centrality may be partially attributed to the fact that
strong D-FC can also exist between region pairs without direct
SC, as illustrated by the red outliers in Figure 4B (middle panel).
As suggested by several static FC studies (Honey et al., 2009;
Adachi et al., 2012), this unexpected D-FC could be mediated
by indirect SC, making the inference of functionally persistent
hubs from structural hubs via one-to-one mapping unfeasible.
Additionally, the estimation of global network topology involves
the large-scale connectivity patterns across the whole brain; thus
the quantitative correspondence between structural and dynamic
functional networks becomes difficult.

Recently, based on empirical SC data, several computational
model studies point out that not only the anatomical structure
but also the dynamics of local regions can affect the inter-regional
functional coupling (Honey et al., 2009; Deco and Jirsa, 2012;
Deco et al., 2013; Hansen et al., 2015). Through an enhanced
non-linear mean-field model, Hansen et al. (2015) simulated
the brain activities at a subcritical regime, and reproduced the
spontaneous switches of FC states. These studies suggest that the
behavior of D-FC cannot be understood in terms of SC alone,
and incorporating computational models in future studies can
obtain mechanistic insights into the complex structure-function
relationship in the brain.

Further Considerations

Several issues should be considered further. First, the limited
number of participants used for this study (11 participants)
may restrict the statistical power of the results. Although the
main results were replicated here by using repeated dataset
(two sessions) of the same participants acquired around 1 week
apart, it would be worthy to replicate the present findings
based on a larger dataset in the future. Second, to capture
the dynamics of functional networks, a commonly used sliding
window approach was used here. However, to date, there is no
universally accepted criterion for window selection (Hutchison
et al., 2013a). To ensure the robustness of our results, three
window lengths, 50, 100, and 150 s, were considered in the
current study. Because, increasing attention has been paid to
the time-varying functional organization of the brain (Hutchison
et al., 2013a; Calhoun et al., 2014), a methodological framework
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for the choice of more appropriate windows (e.g., window
type and window length) should be established with future
efforts. Third, we found some differences across different
parcellation schemes considered, such as additional functional
hubs in the posterior cingulate cortex and precuneus in
the high-resolution (H-1024) networks. These discrepancies
could be due to that some specific ROIs (e.g., precuneus)
in the AAL-90 parcellation are functionally inhomogeneous.
Thus, the potential influence of different parcellation schemes
on evaluating functional network dynamics deserves further
investigation. Fourth, previous studies have suggested that
head motion may introduce artificial functional connections
(Power et al., 2012; Van Dijk et al., 2012; Satterthwaite et al.,
2013). Several motion correction strategies have been recently
proposed, including the widely used scrubbing approach (Power
et al., 2012). Notably, data scrubbing involves the removal or
interpolation of contaminated time points, which may damage
the temporal continuity of time courses and thereby affect the
estimation of D-FC patterns. Therefore, in the present study, we
used a 24-parameter autoregression model (Friston et al., 1996)
during data preprocessing to partially reduce themotion-induced
artifacts while maintaining the temporal continuity of data.
Future studies of developing new motion correction strategies
are important to evaluate the potential influence of head motion
on dynamic functional networks. Fifth, we employed a sub-
second (TR = 645ms) multiband R-fMRI technique for brain
network dynamics, which captures fine temporal information
of BOLD activities and partially removes the influence of

respiratory signals (∼0.3Hz). Further works using advanced

imaging protocols with higher sampling rates and simultaneous
physiological signal recordings would be important to better
infer the brain dynamics and further diminish the effects of
non-neural signals (e.g., cardiac rhythms). Finally, we showed
the dynamic features of functional brain networks and their
structural correlates. These patterns could be modulated by
different cognitive tasks and during normal development, aging
and neuropsychiatric disorders, all of which are of interested for
future studies.
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