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Deviant stimuli, violating regularities in a sensory environment, elicit the mismatch
negativity (MMN), largely described in the Event-Related Potential literature. While
it is widely accepted that the MMN reflects more than basic change detection, a
comprehensive description of mental processes modulating this response is still lacking.
Within the framework of predictive coding, deviance processing is part of an inference
process where prediction errors (the mismatch between incoming sensations and
predictions established through experience) are minimized. In this view, the MMN is a
measure of prediction error, which yields specific expectations regarding its modulations
by various experimental factors. In particular, it predicts that the MMN should decrease
as the occurrence of a deviance becomes more predictable. We conducted a passive
oddball EEG study and manipulated the predictability of sound sequences by means
of different temporal structures. Importantly, our design allows comparing mismatch
responses elicited by predictable and unpredictable violations of a simple repetition
rule and therefore departs from previous studies that investigate violations of different
time-scale regularities. We observed a decrease of the MMN with predictability and
interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset.
Following these pre-attentive responses, a reduced P3a was measured in the case
of predictable deviants. We conclude that early and late deviance responses reflect
prediction errors, triggering belief updating within the auditory hierarchy. Beside, in
this passive study, such perceptual inference appears to be modulated by higher-level
implicit learning of sequence statistical structures. Our findings argue for a hierarchical
model of auditory processing where predictive coding enables implicit extraction of
environmental regularities.

Keywords: mismatch negativity, auditory regularity, predictive coding, early deviance response, EEG, P3a

Introduction

Oddball paradigms involve sequences of a repeating (standard) pattern that sets up a regular
environment, and infrequent (deviant) stimuli, which violate this regularity and subsequently elicit
mismatch responses in the brain. They have been extensively employed in humans using non-
invasive electrophysiology recordings, because of their ease of recording, their unique ability to
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reveal mechanisms of perceptual inference and learning (Kujala
and Näätänen, 2010), as well as their clinical relevance (Näätänen
et al., 2012; Morlet and Fischer, 2014). The well-known mismatch
negativity (MMN), first described in Näätänen et al. (1978), is
observed in such paradigms and has been described in several
sensory modalities although mostly studied in audition (for
review, see Näätänen et al., 2007). A large literature is dedicated
to the functional interpretation of the MMN and several models,
resting either on psychological concepts, on computational
frameworks or even on neural adaptation processes have been
proposed [for review, see Näätänen et al. (2007) and Garrido et al.
(2009b)]. Adaptation refers to a decrease of neural responsiveness
after several repetitions of a stimulus, and is widely acknowledged
to contribute to the difference in responses to standards and
deviants. A considerable number of MMN findings argue against
the adaptation model (that implies a full account of the MMN
by adaptation effects) and suggest that this component reflects
an automatic detection of change in the acoustic environment,
with strong support to the MMN as the output of a comparator
between observed and expected sensory inputs (Näätänen et al.,
2007). In the current study, we were interested in recent
theories based on a predictive coding scheme that have been
proposed to account for the generation of the MMN (Friston,
2005) [see also Winkler and Czigler (2012) for a review of
findings compatible with this account]. These theories rest upon
a hierarchical organization of the brain, wherein predictions
regarding incoming inputs are conveyed to lower levels by top-
down messages, while bottom-up prediction errors reflecting
mismatch between observations and predictions are sent back to
higher levels. In this view, the MMN reflects a prediction error
that triggers the update of predictions by means of message-
passing between the different levels of the auditory hierarchy
(Friston, 2005).

Importantly, predictive coding models of mismatch responses
do not entail a single prediction regarding incoming inputs
but multiple ones, generated at different levels of the hierarchy
(Friston, 2005). Precisely, these predictions pertain to the physical
attributes of sound and to the statistical dependencies within
the sound sequence. Accordingly, prediction errors, hence likely
the MMN, should be affected by at least three factors: (1) the
acoustic separation between the predicted and observed stimuli
(also referred to as the deviance magnitude), (2) the variability of
the acoustic features, and (3) the sequence predictability, deriving
from statistical regularities. Factor (1), deviance magnitude,
has already been proved to modulate the MMN. For instance,
Tiitinen et al. (1994) showed that for frequency deviation
spanning above 2% of the standard frequency, the larger
the deviation, the larger the MMN amplitude. The last two
factors affect prediction error through modulations of sound
predictability, by influencing either the predictability of the
sound’s acoustic features [factor (2)], or the predictability of the
stimulus category [standard or deviant, factor (3)]. Importantly,
predictability may influence both the content of the prediction
and its precision or confidence. The two evolve with learning and
could modulate the MMN amplitude, provided that the MMN
reflects a precision-weighted prediction error (Friston and Kiebel,
2009). Consequently, we hypothesized that the MMN amplitude

should be reduced as the occurrence of the deviant stimulus
becomes more predictable.

In the two following sections, we review the findings
describing effects of above-defined factors 2 and 3 on the
MMN amplitude. It reveals that they have been rarely studied
so far, probably because of the methodological difficulties to
disentangle those effects from those of deviance magnitude. Yet,
validating the above hypothesis is required in order to assess the
predictive coding perspective on the MMN and to refine our
functional understanding of this widely used electrophysiological
marker. The present study was carefully designed to overcome
methodological caveats and specifically observe the effect of
sequence predictability on the MMN.

Effect of Acoustic Feature Variability on the
MMN
Among the few studies that investigated the effect of
predictability on the MMN, the majority manipulated the
variability of the acoustic features of standard stimuli. In Daikhin
and Ahissar (2012), the authors used a frequency oddball
sequence with variable standard frequency belonging to a
uniform distribution with a 2% deviation. Compared to a fixed
standard condition, the authors found no significant difference
in average responses to standards but a reduced MMN. This
suggests that conditions with jittered standards yield a blurred
representation of the standard stimulus, producing a less precise
prediction and hence weaker responses to deviance. More
recently, larger deviations were used (Garrido et al., 2013), with
sequences of sounds whose frequencies were drawn from either
a narrow or a broad Gaussian distribution (mean frequency
of 500 Hz with standard deviations of 250 and 1500 Hz,
respectively). Outlier sounds elicited an MMN-like response,
which was reduced in the case of the broad distribution. This
confirms the ability of the brain to extract statistical rules from
sound sequences and gives strong support to the existence of
predictions of future events that would be weighted by their
inferred precision.

However, since these studies manipulated the predictability
of the standards in ways that inherently involve changes in the
acoustic parameters, the observed results might be confounded
with deviance magnitude and adaptation effects (induced by
refractoriness) that are likely to differ between conditions.

Effect of Sequence Predictability on the MMN
Sequence (or sound category) predictability refers to rules that
define the statistical dependencies of items within the sequence.
Rules are usually categorized into simple (local) ones resting on
short time-scale dependencies and complex (abstract or global)
ones generating larger time-scale regularities or contingent
relations. The violation of the latter also elicits a MMN (in
both cases of passive and active paradigms) and has largely been
described in the literature (for review, see Näätänen et al., 2010).
Passive studies used the MMN as a marker of rule violation in
order to reveal fairly high-level implicit learning processes (see
for instance Bendixen et al., 2008; Todd et al., 2013). They were,
however, not designed to test the effect of sequence predictability
on the MMN per se.
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Deviant predictability should be distinguished from deviant
probability. The latter refers to the ratio of deviant events within
the sequence, irrespective of its temporal structure, while the
former refers to the statistical nature of the temporal sequence,
irrespective of deviant occurrence frequency. Some studies have
manipulated the deviant probability in order to measure its effect
on the MMN (Sams et al., 1983; Sato et al., 2000). In our study,
we manipulated deviant predictability only, which avoids the
confounding effect of refractoriness inherent to the manipulation
of deviant probability (i.e., varying the number of standards
preceding a deviant).

To date, only a couple of studies have compared MMN
responses elicited by unpredictable sequences (embedding
unpredictable deviants) and predictable ones (embedding
predictable deviants). In Scherg et al. (1989), a fully predictable
sequence (one frequency deviant every fifth tone) was compared
with an unpredictable one with the same global deviant
probability (p = 0.2). The authors found no significant effect
of the predictability manipulation on the MMN amplitude.
They hypothesized that this result was compatible with initial
findings (and widely confirmed since) suggesting that the MMN
derives from an automatic process independent of participant’s
attention (Näätänen et al., 1978, 2010). However, using the
same paradigm but with different temporal characteristics,
Sussman et al. (1998) and Sussman and Gumenyuk (2005) found
a disappearance of the MMN in the predictable condition, which
the authors interpreted as an automatic perceptual effect of tone
grouping that could only occur in the predictable condition.
However, as judiciously pointed by Fishman (2014), this effect
could also be attributable to predictability. Importantly though,
none of these studies rigorously controlled for adaptation
effects as the number of standard preceding a deviant differed
between the regular and irregular conditions. Others studies
proposed oddball sequences embedding predictable deviants
(Jankowiak and Berti, 2007; Bekinschtein et al., 2009) but
their aim was not to measure the effect of predictability on
mismatch responses. In some respect, although using a very
different setting, a few studies already reported MMN-like
responses that were modulated by the predictability of musical
sequences. For instance, in Brattico et al. (2006), out-of-key tone
responses suggest that less probable transitions are processed
like deviants. In Vuust et al. (2009), subtle rhythmic violations
were shown to induce larger magnetic MMN-like responses in
musical experts compared to novices, whereas large violations
induced responses in both groups. In line with those studies,
the current experiment aims at generalizing those findings
by testing the effect of predictability in isolation of deviance
magnitude and independently of acquired skills over the
lifespan.

From the existing literature briefly reviewed here, it is
clear that empirical findings are compatible with the predictive
coding view of the MMN. Nevertheless, direct evidence is
missing and finely controlled sequence predictability appears
as a good candidate to resolve this issue. As reported above,
little is known on the effect of sequence predictability on
the MMN, since it has never been studied genuinely. The
widely acknowledged automaticity of the MMN has possibly

inclined to the worthlessness of searching for any predictability-
driven modulation. Today, recent (computational) theories of
brain function (Friston, 2005; Winkler and Czigler, 2012)
rather suggest that sequence predictability should affect deviance
responses as follows: the more predictable the occurrence of a
deviant sound, the finer the prediction, hence the smaller the
prediction error and the smaller the MMN amplitude. Therefore,
we used a passive oddball paradigm with unpredictable and
predictable sound sequences differing by the transitional
probabilities between sounds within each sequence type. The
strict conservation of the acoustic properties of the sequence
between conditions was achieved by means of a statistical
structure determined over a relatively long time range in the
predictable condition. Our design also includes the appropriate
control for adaptation effects. Furthermore, we used small
deviance magnitudes in a passive oddball paradigm, in order to
limit automatic attention-orienting processes. These processes
are typically reflected by the N2b-P3a complex (brain orienting
response) following the MMN under specific condition of
attention (Näätänen et al., 1982; Morlet et al., 2014). As
mentioned above, the ability of the brain to encode implicitly
large time-scale regularities has been indirectly demonstrated in
several MMN studies, therefore we expected that participants
would learn the statistical rule in the predictable condition.
We hypothesized that predictable deviants would elicit reduced
deviance responses. Conversely, in the absence of any implicit (or
explicit) learning of the rule, no difference between conditions
would emerge. Additionally, as recent studies point to earlier
deviance responses than the MMN (Escera et al., 2014), we used
an analysis strategy that did not make any assumptions regarding
the temporal specificity of predictability effects.

Materials and Methods

Participants
Twenty-seven adults (14 female, mean age 25 ± 4 years,
ranging from 18 to 35) participated in this experiment. All
participants were free from neurological or psychiatric disorder,
and reported normal hearing. One participant had professional
musical education and has been excluded from the analysis
for he did not respect the instruction to ignore the sounds.
All participants gave written informed consent and were paid
for their participation. Ethical approval was obtained from the
appropriate regional ethics committee on Human Research (CPP
Sud-Est IV – 2010-A00301-38).

Stimuli and Sound Sequences
The large use of frequency deviance in MMN studies encouraged
us to choose this acoustic feature to test the prediction error
model of the MMN. However, undesirable adaptation effects
are of particular importance in this particular case because
of the tonotopic organization of the auditory pathways. They
would in particular impact the amplitude of exogenous event-
related potentials (ERPs) in the P50 and N1 wave latency range.
We therefore introduced a supplementary condition in order
to control for such adaptation effects, using intensity deviance
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(see below). Overall, three kinds of sequences were used: (1)
an unpredictable sequence with frequency deviance: UF, (2) a
predictable sequence with frequency deviance: PF, and (3) an
unpredictable sequence with intensity deviance: UI. Note that we
did not considered a predictable sequence with intensity deviance
for the sake of experiment length and also because the feature
specificity of the prediction error model of the MMN is beyond
the scope of the current study. All the sequences shared the same
deviant probability (p = 0.17).

Sound duration was 70 ms (including 5 ms rise-time and
5 ms fall-time) and the stimulus onset asynchrony (SOA) was
fixed to 610 ms. Two different frequencies (f 1 = 500 Hz and
f 2 = 550 Hz) and two different intensities (i1 = 50 dB SL
(sensation level) and i2 = 60 dB SL) were combined to define
the four different stimuli that were used across conditions. In
this (passive) study, we carefully chose the deviance magnitude
in the frequency sequences in order to satisfy a trade-off
between eliciting a deviance response, on the one hand, and
both minimizing refractoriness effects and avoiding to attract the
subject’s attention, on the other hand. Therefore, although even
smaller deviance have been previously used (Sams et al., 1985),
we used a 10% deviance which falls in the lower range of recently
implemented deviance magnitudes [e.g., 8% in (Daikhin and
Ahissar, 2012), 10% in (Schwartze et al., 2013), 23% in (Recasens
et al., 2014), 30% in (Grimm et al., 2011), and 50% in (Todd et al.,
2014)].

To design the predictable sequences (Figure 1), we did not
use a fixed number of standards between two deviants as in
Scherg et al. (1989), because this cannot be mirrored in the
unpredictable sequence without inducing different refractoriness
effects. This issue could be avoided by the construction of a
statistical structure unfolding over a larger time-scale. Precisely,
the rule that we designed increments the number of standards
progressively within a cycle: it starts with one deviant after two
standards, followed by one deviant after three standards and
so on until one deviant after eight standards. From now on,
a chunk with n standards will refer to a series of n standard
sounds ending with a deviant stimulus (n ranging from 2 to 8).
The 42-tone cycle, composed of seven incrementing chunks, was
repeated 16 times in the sequence, thus leading to a total of 560
standards and 112 deviants. For the unpredictable sequences,
each cycle was shuffled so as to permute the order of the seven
chunks with the constraint that no chunk with n standard
was preceded or followed by a chunk with either n−1 or n+1
standards. Additionally, the transition between two cycles was
such that no successive chunks with n standards could occur.
Altogether this randomization allowed to (1) avoid any global
rule to emerge in the unpredictable sequence and (2) have exactly
the same number of chunks with n standards in predictable
and unpredictable conditions. Note that the number of deviants
presented at a 2–3 chunk timescale may differ between UF and
PF (for instance, the set of 16 sounds that precede a “chunk of
8 standards” deviant comprises exactly one deviant in PF and
two deviants on average in UF) but the fact that adaptation
saturates rapidly [2–3 standard repetitions,(Demarquay et al.,
2011)] led us to assume that this particularity did not introduce
any significant adaptation effect difference between PF and UF,

in the current analysis that we conducted with standards just
preceding deviants.

Each sequence type (UF, PF, UI) was delivered twice in
separate blocks resulting in 224 deviants in each condition. For
each type of deviance (frequency or intensity), the sound property
used as the standard (e.g., for frequency deviance, f1) for the first
block was used as the deviant for the second (reverse) block.
The irrelevant feature was constant within a block but changed
between the two reverse blocks [e.g., for frequency deviance,
first block with properties (f1,i1) for standards and (f2,i1) for
deviants, and reverse block with properties (f2,i2) for standards
and (f1,i2) for deviants]. The order of the six resulting blocks was
counterbalanced between participants with the constraint that no
successive sound sequences of the same kind could be delivered.
Additionally, in order to avoid any bias of perceptive association
between frequency and intensity, half of the participants received
the associated properties (f1,i1) and (f2,i2) as standards whereas
the other half received the pairs (f1,i2) and (f1,i2). Altogether
these acoustical matching constraints on stimuli and sequences
were applied to ensure comparisons between conditions with
an optimal control for undesirable effects of specific acoustic
properties.

All stimuli were delivered using Presentation software
(Neurobehavioral Systems, Albany, CA, USA).

Procedure
The present study was conducted using simultaneous EEG and
MEG recordings, although the MEG data will not be analyzed
here. Participants were seated upright in a comfortable armchair
in a sound-attenuated, magnetically shielded recording room,
at a 1 m distance from the screen. Sounds were presented
binaurally through air-conducting tubes using Etymotic ER-3A
foam earplugs (Etymotic Research, Inc., USA). Participants were
instructed to ignore the sounds and watch a silent movie of
their choice with subtitles. Before recordings, participants’ sound
detection thresholds using the sound with (f1,i1) characteristics
were determined for each ear, and the level was adjusted so that
the sounds were presented at 50 dB SL (i1) or 60 dB SL (i2) with
a central position (stereo) with respect to the participant’s head.
Each of the six blocks lasted 7 min resulting in a total recording
time of ∼50 min, including short breaks between sequences. At
the end of the experiment, participants were asked to report to
which extent they had been following the instruction to ignore
the sounds and whether they had noticed the different sound
attributes (e.g., “Did you notice anything in particular about
the sounds?”) and sequence temporal regularities (e.g., “Did you
notice that some sounds were less frequent than others?”, “Did you
notice any regularities in sound presentation?”).

EEG Recordings
EEG recordings were carried simultaneously to MEG ones using
the EEG recording system provided with the MEG equipment
(275-channel whole head system, CTF-275 by VSM Medtech
Inc.). EEG data were collected from 63 electrodes (including
the two mastoids) whose locations were defined by the 10–15
extension of the international 10–20 system. Reference electrode
and ground electrode were placed on the tip of the nose and
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FIGURE 1 | Experimental design. (A) Schematic view of a complete cycle in predictable (left) and unpredictable conditions (right). Rectangles symbolize single
tones with standards and deviants colored in gray and black, respectively. Sound duration was 70 ms with stimulus onset asynchrony (SOA) set to 610 ms. In every
condition, each cycle entails seven deviants, each of them being preceded by a number of standards ranging from 2 to 8. A chunk of n standards corresponds to
n+1 tones (n consecutive standards and the following deviant), as illustrated by the shaded area in condition PF. Chunks are sorted by their size in predictable
condition, whereas these are shuffled in unpredictable ones. (B) Variation of the size of chunks (black circle) within cycles, over sound sequence in predictable (left)
and unpredictable conditions (right). Each sequence is composed of 16 cycles and examples of shuffled cycles are presented for unpredictable conditions. Shaded
areas delineating one cycle in both sequence types highlight their difference with respect to sound predictability.

left shoulder, respectively. One bipolar EOG derivation was
recorded from two electrodes placed on the supra-orbital and
infra-orbital ridges of the left eye. Throughout the recordings,
impedances were below 15 k�. Signal was amplified, band-pass
filtered (0.016–150 Hz), digitized (sampling frequency 600 Hz)
and stored for off-line analysis. Head position relative to theMEG
sensors was acquired continuously (continuous sampling at a rate
of 150 Hz) using coils placed at three fiducial points (nasion, left
and right preauricular points).

Data Preprocessing
The software package for electrophysiological analysis (ELAN1)
developed at the Lyon Neuroscience Research Center (Aguera
et al., 2011) was used for ERP computation and statistical analysis.

EEG and MEG data were preprocessed independently but
for the sake of a combined analysis, which will be reported in
a further study, we only used time epochs that survived the
procedures applied for artifact rejection for both techniques.
A total of 5 participants out of 27 had to be excluded from
the group. For two participants, raw MEG recordings were
contaminated by ferromagnetic artifacts caused by metallic
elements, which created a temporally stationary artifact at the
participant’s respiratory frequency. One participant’s EEG data
had a very bad SNR. One participant had individual MR images
that disclosed a ventriculomegaly. Finally, as mentioned above,
one participant did not ignore the sounds as instructed but
counted them leading to an explicit detection of the predictable
rule in PF sequences. Preprocessing of raw data for the remaining
22 participants comprised the following successive steps: (1) an
initial rejection of data segments corrupted by head movements
above 15 mm within each sequence was automatically performed
(in prevision of future MEG data analysis), (2) three stop-band

1http://elan.lyon.inserm.fr

filters centered on 50, 100, and 150Hz (with bandwidth of±2Hz)
were applied to get rid of the power line artifact in the EEG
data, (3) using EEGlab routines2, an independent component
analysis (ICA) correction for ocular artifacts was achieved (largest
possible time windows – free from artifacts from all origin but
ocular – were selected from continuous stop-band filtered data to
derive ICA components) for all participants but one for whom
ICA correction failed to improve the SNR of EEG and MEG
data, (4) individual recordings were automatically inspected from
−200 ms to 410 ms with respect to the onset of each sound; trials
with signal amplitude range exceeding 2000 fT for MEG data
and 150 µV for EEG data over the 610 ms time-window at any
sensor were excluded from the analysis (for the participant whose
data did not receive any ICA correction, a threshold of 100 µV
was used for the EOG signal range), (5) a 2–45 Hz band-pass
digital filter (bidirectional Butterworth, fourth order) was applied
to EEG and MEG data. It should be noted here that most MMN
studies rely on filtered data with lowpass cutoff frequency lower
than 45 Hz (20 or 30 Hz are commonly used), leading to smoother
baselines and ERPs.

Event-Related Potential (ERP) Computation
Data collected within the first 20 s of each block was excluded
from averaging to ensure that no transitory effect could bias the
ERPs. Responses to standards just preceding a deviant and to
deviants were considered for averaging within an epoch of 610ms
including a pre-stimulus period of 200 ms. Baseline correction
was achieved by subtracting the mean value of the signal during
the pre-stimulus period. ERPs for each stimulus type (standard
and deviant) were first computed per block. The two reverse
blocks for each condition (UF, PF, and UI) were then pooled by
averaging corresponding ERPs. Difference response (also referred

2http://sccn.ucsd.edu/eeglab/index.html
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to as deviance response) was obtained by subtracting the standard
ERP from the deviant one.

Statistical Analysis
We applied permutation tests based on a t-statistic at the group-
level at each sample of each electrode of the ERP time series
in bandwidth 2–45 Hz, correcting for multiple comparison in
the temporal dimension (Blair and Karniski, 1993; Besle et al.,
2008). For each test, we ran 100,000 permutations by randomly
redistributing the ERPs of the two conditions to be compared.
We tested for (1) an effect of deviance in the three conditions
(i.e., standard vs. deviant in UF, UI, and PF), (2) an effect of
predictability (i.e., PF vs. UF) in difference, deviant and standard
responses, (3) an effect of acoustic features (i.e., UF vs. UI) in
the difference, deviant, and standard responses. Finally, since the
first analysis above revealed a significant effect of deviance at both
early and late latencies as well as a smaller effect at the P3a latency,
we also conducted further analysis in tests (2) and (3) in three
local time windows [0, 80] ms, [100, 210] ms and [250, 350] ms.
Hence, permutation tests were run both on the entire time series
[−200, 410] ms for each effect of interest (1, 2, 3) and on specific
local time windows for (2, 3).

Adaptation Effect Characterization
To isolate the effect of predictability on genuine mismatch
responses in conditions UF and PF, we had to characterize the
effect of adaptation. Our experiment was designed to minimize
this effect and we hypothesized that, if present, it would be the
same in the UF and PF conditions. To this aim, we used a small
deviance magnitude to reduce refractoriness effect as much as
possible and imposed strong acoustical constraints on sound
sequences such as a strict balancing of the number of standards
preceding a deviant across conditions. Moreover, we introduced
a third condition using an intensity deviance (condition UI)
as a control condition for these possible adaptation effects.
Adaptation effects for intensity deviance cannot be ruled out,
although their existence remains rather controversial [but see
Bilecen et al. (2002)]. We assumed that the MMN to intensity
would not be contaminated by refractoriness, or at least to a
far smaller extent than the MMN to frequency. Furthermore,
we carefully matched the intensity and frequency deviance
magnitude thanks to a prior behavioral deviance detection
task so that frequency and intensity MMN would have similar
amplitudes. Consequently, comparison between UI and UF
difference responses should help characterizing (in the temporal
and spatial dimensions) the undesired adaptation effects possibly
entering UF and PF difference responses.

Control for Possible Filtering Confounds in
Early Effects
As early effects were revealed by statistical tests in both the
deviant vs. standard and the predictable vs. unpredictable
comparisons, additional analysis were needed to control for their
validity. As explained in Acunzo et al. (2012), the bidirectional
low-pass filter that we applied on our data may have generated
artifactual responses preceding the sharper deflections of the
ERPs, namely the N1 and MMN components. In order to

test whether our early effects were of such artifactual origin,
we repeated the whole ERP analysis (using the statistical
analysis described above) on unfiltered data to control for
any bias induced by filtering (particularly low-pass filtering).
These unfiltered data correspond to the data recorded by the
acquisition system (0.016–150 Hz acquisition bandwidth) with
further application of three stop-band filters and ICA correction
as described in the Data processing section. Trials averaged for
both ERP types (standard and deviant) were those retained for the
analysis in the 2–45 Hz bandwidth. Note that this complementary
analysis also allows to check that the 2 Hz high-pass filter that
we used for the main analysis did not obscure some differences
between conditions, e.g., in the very low frequencies.

Results

Post-experimental debriefing with the 22 participants whose
data were retained for statistical analysis (11 female, mean
age: 25 ± 5 years, ranging from 18 to 35) revealed that 15
of them noticed that sounds could take different intensities,
12 noticed that sounds could take different frequencies
and nine noticed that some sounds were less frequent
than others. Critically, none of them reported to have
inferred the global rule of the PF sequence. Given our
design, this implies that any difference between deviance
responses in UF and PF reflects implicit learning of a global
rule in PF.

On average per subject, the number of retained standard
trials (standard sounds just preceding a deviant sound) was
177 ± 16 for the UF sequence, 174 ± 18 for the UI sequence and
172 ± 17 for the PF sequence. Similarly for deviants, the number
of retained trials was 174 ± 17 for the UF sequence, 172 ± 22 for
the UI sequence and 172 ± 21 for the PF sequence.

Multiple Deviance-Specific Responses
Figure 2 displays ERPs (with bandwidth 2–45 Hz) at electrodes
Fz and TP9, for the standard, deviant, and difference responses,
in each experimental condition. It also shows the statistically
significant patterns in the deviance responses and the
corresponding scalp topographies at relevant latencies. In
every condition, the standards just preceding a deviant elicited
a N1 component peaking around 95 ms, associated with
a negativity distributed over fronto-central electrodes and
followed by a fronto-central P2 component peaking around
155 ms. As shown on Figure 2, testing for deviance effects
revealed three significant time-windows for the unpredictable
sequences and two for the predictable one: an early time-window
(within 70 ms after stimulus onset) for conditions UF and UI,
and for the three conditions, we could detect a MMN and a P3a.

At early latencies, larger responses were elicited with deviants
in condition UF compared to standards, leading to a positive
difference response spanning from about 10 to 90 ms over the
frontal and central areas. It was confirmed statistically significant
from 11 to 28 ms at six adjacent electrodes located in left fronto-
central area (−0.2 and 0.6 µV at Fz at 20 ms for standards
and deviants, respectively). In condition UI, the deviant response
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FIGURE 2 | Deviance effects. (A) Grand-average ERPs (n = 22 participants) elicited by standards just preceding a deviant (solid line), deviants (dotted line) and
difference responses (bold solid line) at electrode Fz and TP9 in bandwidth 2–45 Hz for condition UF (left column), PF (middle column), and UI (right column). Main
components in standard (N1, P2) and difference responses [mismatch negativity (MMN), P3a] are shown for condition UF. (B) Statistical maps obtained with
non-parametric tests (n = 100,000 permutations) when comparing standard and deviant responses, at each electrode and each latency of the whole trial. Three
intervals of significance were revealed for unpredictable sequences (UF, UI) at early latencies, and at the latency of the MMN and the P3a whereas only two were
observed for condition PF at the latency of the MMN and P3a. Electrodes are sorted by spatial clusters (left column, from top to bottom: LF, left frontal, RF, right
frontal, FC, fronto-central, CP, centro-parietal, LT, left temporal, RT, right temporal, PO, parieto-occipital). (C) Scalp topographies of the grand-average difference
ERP, at the early effect (left column), the MMN (middle column) and the P3a (right column) latencies, for each condition. The MMN significant (positive) inversion is
visible in each condition. Similarly, early deviance effect in condition UF and UI also entail a (negative) inversion but this does not reach significance.

was very similar to the one in UF, thus leading to very similar
difference responses (deviant – standard) in those two conditions.
Statistical analysis for UI revealed a significant interval occurring
from 16 to 38 ms on left frontal and fronto-central areas. On
the contrary, in condition PF, no significant effect was found at
this early latency range. Because at this early latency there is an
overlap of slow components (such as the P50) and fast Middle
Latency Responses (MLR), we ran a complementary analysis with
two different filtering (2–15 and 15–45Hz) to further characterize

this deviance effect. As shown on Figure 3, statistical analysis in
the bandwidth 2–15 Hz confirmed the significant early deviance
effect measured in UF (from 13 to 58 ms) whereas statistical
tests in the bandwidth 15–45 Hz did not reveal any significant
effect. A similar pattern was observed for condition UI (data
not shown). Altogether, these results suggest that early deviance
effects measured here in UF and UI pertain to a slow component
at the latency of the P50 and do not concern the peaks of the MLR
per se.
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FIGURE 3 | Early responses. Traces at electrode Fz in the time interval [−50, 100] ms, with original [−200, 0] ms baseline correction. Fast components,
bandwidth 15–45 Hz (top row). Grand-average ERPs elicited by standards just preceding a deviant (solid line) and deviants (dotted line) for condition UF (left
column) and PF (middle column). Data were re-referenced to the average of both mastoids to facilitate the identification of Middle Latency Responses (MLR)
components. Fast MLR components are indicated for condition UF with corresponding scalp topographies (from standard ERPs, with original nose reference
allowing for the visibility of temporal polarity inversion) at the latencies 13, 26, 36, 50, and 68 ms for P0, Na, Pa, Nb, and Pb, respectively. Right column:
Grand-average ERPs corresponding to difference responses (bold lines) for condition UF and PF. Slow components, bandwidth 2–15 Hz (bottom row).

In the MMN latency range, difference response in condition
UF showed a typical MMN peaking around 165 ms, with large
negativity over the frontal electrodes (−1.9 µV at Fz) combined
with a positivity at the mastoids (the MMN inversion), with
both deflections ending at the same latency. A similar difference
response was observed in condition UI. The emergence of the
MMN was statistically significant from 125 to 205 ms over 33
fronto-central electrodes and mastoids for UF, and from 128 to
205 ms over fronto-central electrodes, mastoids and occipital
electrodes for UI. In condition PF, the difference response
revealed the MMN inversion starting around 100 ms over the
parieto-occipital areas, followed by the MMN per se (−1.4 µV
at Fz), peaking at about 156 ms with a large negativity over
frontal electrodes. Statistical tests confirmed the emergence of the
MMN inversion (from 105 to 200 ms over mastoid and occipital
electrodes) and of the MMN proper (from 120 to 200 ms over
fronto-central electrodes and parieto-occipital electrodes). In all
three conditions, the MMN inversion ended at the same latency
than the frontal negativity deflection, suggesting that the N2b
component, which does not invert in polarity at the mastoids, was
negligible if any.

Finally, in the P3a latency range, a large positive deflection at
fronto-central electrodes could be seen for difference responses
of all conditions. These typical P3a components were maximal
at around 316, 295, and 290 ms for UF, UI, and PF, respectively
(with corresponding peak amplitude at Fz: 1.4, 0.8, and 1.0µV for
UF, UI, and PF, respectively). For condition UF, the emergence
of the P3a was statistically significant from 238 to 270 ms over
12 frontal and fronto-central electrodes, and from 295 to 355 ms
over 31 fronto-central and centro-parietal electrodes (including
Fz, FCz, Cz, and CPz). Similarly, for condition UI, emergence
was significant from 245 to 303 ms over 26 fronto-central and

centro-parietal electrodes (including Fz, FCz, Cz, and CPz). For
condition PF, statistical significance was measured from 265
to 281 ms over nine temporal and parieto-occipital electrodes
(including TP9, P0z, and Iz), and from 280 to 303 ms over 13
frontal and fronto-central electrodes.

Predictability Modulates the Early Deviance
Response, the MMN and the P3a
Figure 4 displays difference responses for conditions UF and
PF at electrode Fz, as well as scalp topographies of the double
difference waveforms (UF difference response – PF difference
response). The effect of predictability was first assessed by
comparing the difference responses obtained with the predictable
and unpredictable sequences (PF vs. UF). Second, in order to
disentangle the relative contribution of standard and deviant
stimuli, we further assessed the effect of predictability on those
two responses, separately.

Difference responses (Figure 4) differ as early as around 35 ms
due to a weak (non-significant) deviance response measured
in PF whereas a large significant fronto-central positivity was
measured in UF (see above). It was confirmed significant from
55 to 65 ms on 13 electrodes, with more positive potentials
in UF compared to PF (at 60 ms, 0.6 and −0.04 µV at Fz
for UF and PF, respectively). Moreover, statistical analysis in
the bandwidth 2–15 Hz revealed a significant effect from 46 to
68 ms (14 electrodes). No significant effect was found in the
15–45 Hz frequency band (Figure 3). Following this early effect,
the scalp topography of the double difference (Figure 4) shows
that the MMN peak is larger in the UF condition than in the
PF one (from 163 to 190 ms over 15 fronto-central electrodes).
We also observed a tendency for the MMN inversion in the PF
condition to start earlier than in the UF condition (from about

Frontiers in Human Neuroscience | www.frontiersin.org 8 September 2015 | Volume 9 | Article 505

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Lecaignard et al. Deviance detection and predictability

FIGURE 4 | Predictability effect (UF vs. PF). (A) Statistical maps of the permutation tests comparing difference responses between condition UF and PF, at each
electrode and each latency of the whole trial. Black and gray areas indicate significant differences (p < 0.01) resulting from whole trial [−200, 410] ms and local tests,
respectively. Results revealed three intervals of significant difference: at early latencies (13 electrodes), at the latency of the MMN (15 electrodes) and at the latency of
the P3a (7 electrodes). (B) Grand-average ERPs elicited by difference responses at electrode Fz in bandwidth 2–45 Hz for condition UF (red) and PF (green). Shaded
areas display the windows of statistical significance (at any electrode). (C) Scalp topographies of the difference responses in bandwidth 2–45 Hz, at the latency of
the predictability effect, for the early effect (left column), the MMN (middle column) and the P3a (right column), in conditions UF and PF. The range of voltage values
used for the color scale is mentioned for each map.

100 to 130 ms) and to be enhanced at parieto-occipital electrodes
from about 150 to 210 ms, but these effects were not statistically
significant. Finally, the statistical analysis also revealed a larger
P3a component in UF compared to PF (at 315 ms, 1,4 and 0.3µV
for UF and PF, respectively at Fz), with significance spanning
from 310 to 320 ms over seven electrodes (Fp2, AF3, Fz, F2, F4,
F6, F8).

In response to deviants, permutation tests confirmed that
more positive potentials were recorded in UF compared to PF
in the early latency range (at 65 ms, 1.1 and 0.7 µV for UF
and PF, respectively at Fz), with significance spanning from
58 to 72 ms over 18 fronto-central and left centro-parietal
electrodes. Moreover, the negative deflection following the N1
was significantly larger in UF from 178 to 190 ms at electrodes
F1, F3, Fz, FC1, FCz, and FC3 (at Fz: −1.2 µV at 185 ms for UF,
and −0.8 µV at 205 ms for PF). These two effects observed for
the deviant thus mirrored those observed in the difference wave
tests. At the latency of the P3a, no significant difference between
UF and PF could be measured.

In response to standards, no significant effect of sequence
predictability could be observed in the ERPs of standards
just preceding a deviant. Larger N1 and P2 components were
observed in the UF compared to the PF condition (see Figure 2,
standard traces at electrode Fz for UF and PF) but this tendency
did not reach significance.

To sum up, an effect of predictability was observed, not
only at the latency of the MMN but also earlier, within 70 ms
after deviant onset. These two effects go as expected: the more
predictable the sequence, the smaller the deviance response.
The P3a component was also modulated by the sequence
predictability, with larger amplitude observed in UF. The first
two effects seem to derive mostly from a deviant response
contribution, the P3a one could not be statistically attributed to
either standard or deviant responses only.

Controls for Non–Predictability based Biases
in UF and PF Responses
First, characterization of undesirable adaptation effects in
frequency deviance sequences (UF and PF) was achieved by the
comparison between UF and UI conditions. Statistical tests did
not reveal any significant effect neither on the difference response
(with the exception of TP9 and TP7, from 136 to 148 ms), nor on
the deviant and standard responses taken separately, suggesting
that the deviance effects observed in UF are, at least to a large
extent, not resulting from undesirable refractoriness effects on
exogenous ERPs (P50, N1 in particular).

Second, statistical analysis of unfiltered ERPs confirmed every
significant effect reported above in bandwidth 2–45 Hz. However,
it should be noted that the spatial and temporal extents of those
effects were reduced with unfiltered data, which is perfectly
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sensible at lower SNR. In the Supplementary material, we provide
the unfiltered difference responses for conditions UF and PF
at electrode Fz, as well as the corresponding statistical maps
obtained from the permutation tests.

Discussion

In this study, we measured different deviance responses elicited
by oddball sequences only differing by their statistical temporal
structure, referred to as predictability. Our results indicate that
sequence predictability modulates deviance responses such that
the more predictable the deviant stimulus, the smaller the
deviance response. This modulation affects not only the MMN
but also earlier slow responses, at the latency of P50 and the
auditory MLR components, thereby arguing in favor of various
mismatch responses reflecting prediction errors and updates
at different levels of the auditory hierarchy. In addition, the
measured modulation of the P3a is consistent with unpredictable
deviants inducing a larger attentional capture effect. Importantly,
these effects were elicited while participants were unaware of the
sequence structure. This substantiates the ability of the brain to
implicitly monitor statistical properties of the environment such
as sequence predictability.

Deviance Effects are not Confounded with
Adaptation Effects
Regarding deviance responses, refractoriness state difference
between UF and PF should be minimized by the sequence
design, which involves the same number of stimulus chunks of
each size for both conditions. Moreover, UI and UF deviance
responses did not significantly differ, suggesting that not only
these responses are similar for both features but also, and
more importantly, that frequency deviance of a small magnitude
(50 Hz) did not elicit any refractoriness effect detectable in
the EEG with our analysis strategy. These findings ensure that
observed significant differences between deviant and standard
responses are genuine deviance effects. We can thus assume that
the significant difference between deviance responses observed in
condition UF and PF is not confounded with adaptation effects.

Sequence Predictability Reduces MMN
Amplitude
Contrary to Scherg et al. (1989), we measured a significant
modulation of the MMN amplitude by sequence predictability,
which we interpret as reflecting a smaller prediction error
due to a more predictable deviance occurrence. In Scherg
et al. (1989), the absence of effect has been interpreted as a
result of the automaticity of the MMN, which would prevent
this component from being modulated by high-level cognitive
processes such as rule extraction. It should be noted that their
result derived from a preliminary study conducted with only five
participants and relied on a statistical analysis focusing on the
MMN amplitude at electrode Fz. Visual inspection of deviance
responses for a deviance magnitude of 50 Hz (see Figure 3
in Scherg et al., 1989) shows a difference between regular and
irregular sequences which is compatible with our findings. It

then appears plausible that a more comprehensive analysis, over
all sensors and time bins, would reveal a significant modulation
by predictability. However, their experimental design was not
adapted to characterize the effect of predictability in isolation
from any possible refractoriness confound.

The reduction of the MMN amplitude when predictability of
deviance occurrence increases is in line with predictive coding
or the Bayesian brain hypothesis (Knill and Pouget, 2004;
Friston, 2005). It allows formulating interpretations regarding
the underlying mechanisms of prediction updating. UF and PF
sequences only differ by their statistical regularities (brought by
the global rule). In condition PF, exposure to at least two or three
incrementing chunks is required in order to start inferring the
regularity of the sequence; with the more chunks, the stronger
the confidence in that rule. Perceptual learning - here defined as
the process by which the brain encodes over trials the statistical
structure of a sensory environment (Friston and Stephan, 2007)
-by contrast with the process of learning of new perceptual skills
[like in Alain et al. (2007) for instance]- could thus explain the
observed modulation of the MMN in the PF compared to UF
condition. Predictions, which are updated dynamically through
sequential exposure to the stimuli, could indeed be refined in
PF through the learning, although approximate, of sequence
statistical dependencies. Importantly, none of the participants
did report being aware of the differences between experimental
conditions. As instructed, they obviously paid little attention
to the sounds. This interpretation is consistent with the small
amplitude measured for the N2b and P3a components, as
we know that they typically follow the MMN under specific
condition of stimulus salience or attention orienting toward the
stimulus. Altogether, these findings strongly suggest that those
perceptual learning processes are implicit. A large number of
studies have proposed that the MMN elicited by the violation of
complex rules indirectly evidence the implicit learning capacities
of the brain. Beside oddball paradigms, the brain ability to
track and learn abstract rules without awareness has been
straightforwardly evidenced by a large number of studies in
the fields of implicit and statistical learning (Perruchet and
Pacton, 2006). In line with these accounts, our data argue for
a unified implicit learning process that optimizes predictions at
different levels. Hence the brain would be constantly tracking
the regularities of the environment by means of statistical
and implicit learning so as to infer the hidden causal rule(s)
governing incoming sensations. Throughout this inference
process, mismatch responses would reflect the dynamics of
prediction updating, which is guided by the minimization of
prediction errors (Friston, 2005). The decrease of mismatch
responses observed for the predictable sequence gives support
to the idea that the brain optimizes its predictions, even
independently of awareness. The MMN has already been
proposed to be weighted by the confidence about predictions
established through stimulus exposure (Winkler et al., 2009; Todd
et al., 2014). Interestingly, the presence of an MMN in condition
PF suggests that prediction errors were not abolished for the
fully predictable sequence. This could be due to the predictions
derived from the approximate learning of the global rule but also
to the fact that the local (repetition) rule in UF is still valid in PF

Frontiers in Human Neuroscience | www.frontiersin.org 10 September 2015 | Volume 9 | Article 505

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Lecaignard et al. Deviance detection and predictability

sequences. Despite the existence of high-level predictions derived
from the learned global rule, low-level predictions integrating
incoming information on a short time-scale might still generate
prediction error signals. This is in line with Horváth et al. (2001)
who demonstrated the simultaneous integration of different rules
at different time-scales, and with Kiebel et al. (2009) pointing to
different time-scale prediction errors, corresponding to different
levels of an internal hierarchical model.

Under the predictive coding view of the MMN, one could
expect the predictability effect to affect both responses to deviants
and standards. However, for the latter we only observed a
tendency of smaller N1 and P2 responses to predictable standards
but no statistically reliable difference. One possible explanation
for this lack of significance relates to the passive nature of this
paradigm that induces rather small responses to standards, thus
yielding a poor signal-to-noise ratio when comparing PF and UF.

Note that in the current study, we manipulated simple
perceptual stimuli and observed a modulation of automatic
sensory processes by temporal predictability. It would be
interesting to replicate our paradigm with conceptual stimuli to
test whether this contextual modulation also operates on higher-
level processes. Our prediction is that the same effects would be
observed and likely express on later components related to more
abstract processes like those pertaining to semantic information
for instance.

Early Markers of Deviance Detection and
Deviance Predictability
Contrary to the majority of MMN studies, we conducted our
statistical analysis on entire epochs (from −200 to 400 ms)
and this strategy revealed earlier markers of mismatch than the
MMN for the unpredictable sequences (UF, UI), within 70 ms
after deviant onset. We could identify a statistically significant
deviance effect at low frequencies (below 15 Hz). It is worth
noting that our set-up and experimental design was not adapted
for a fine characterization of fast MLR components, which can
also be modulated in oddball paradigm (see below), as there
were only ∼175 trials retained on average per stimulus type
(typically over 1000 for MLR studies), and an upper bound of
bandwidth limited to 45 Hz (typically 150 Hz or 200 Hz for
MLR studies). Critically, the genuineness of these early responses
had to be controlled with regard to adaptation effects and high-
pass filtering bias. Results of these tests, namely an absence of
significant difference between UF and UI responses and all effects
measured in the bandwidth 2–45 Hz retrieved significantly with
unfiltered data, allow us to conclude with high confidence in favor
of genuine deviance responses for every early effect reported in
this study.

Recent findings have already confirmed deviance processing
within 50 ms after stimulus onset (for review see Grimm and
Escera, 2012; Escera et al., 2014). Contrary to the current results,
these findings pertain to the rapid components of the MLR
with for instance, an enhancement of the Nb component elicited
with pure tone frequency deviants measured with EEG (Grimm
et al., 2011) and MEG (Recasens et al., 2014) recordings. Such
early mismatch responses complement single-neuron recordings
(in animal studies) showing novelty detection responses within

midbrain, thalamus and primary auditory cortex (Ulanovsky
et al., 2003; Ayala and Malmierca, 2012). Interestingly, Escera
and Malmierca (2014) proposed a model of the auditory system
dedicated to deviance detection processing at the latency of
the MLR that unifies scalp and neuron level findings. Together
with the current results, these findings suggest that deviance
processing expresses very early and affects both the fast and slow
components of the deviant response at early latencies.

Predictable and unpredictable deviance responses were also
measured significantly different from about 60 ms over temporo-
parietal electrodes. As for the MMN modulation by sequence
predictability, we propose that implicit learning is the key
mechanism that explains how such early components can be
shaped by a global rule. The predictability effect at both early
and late latencies could reflect a modulation of high-level
predictions on low-level ones within the deviance processing
hierarchy. Besides, our results confirm sequence predictability
as a suitable tool to characterize the different components of
deviance response properly.

Interestingly, previous studies of early deviance effects failed
to measure such early ERPs after a global rule violation (Cornella
et al., 2012; Althen et al., 2013; Recasens et al., 2014). Escera
et al. (2014) and Escera and Malmierca (2014) suggest that
these findings corroborate the hierarchical organization of the
auditory system, where the different time-scales defining the
regularities of the environment would be processed in a forward
direction. This model is totally in accordance with a predictive
coding implementation (Kiebel et al., 2009), where early deviance
responses and the MMN would reflect prediction errors and
updates at different levels. However, this view cannot explain the
reduced (and thus non-significant) early deviance response in PF
as no global rule violation occurs in this condition: mismatch
responses are elicited by local rule violation just as they are in
the unpredictable sequences. Hence, perceptual learning of the
global context may be a plausible explanation to account for
the results in PF, with high-level predictions controlling lower
level ones. Hence our study provides a new (complementary)
contribution to the characterization of the hierarchical auditory
system, highlighting top-down (backward) modulations within
this hierarchy.

Modulation of the P3a by Sequence
Predictability
Following theMMN, the P3a is widely acknowledged as reflecting
attention-orienting processes (Polich, 2007). Despite the small
frequency and intensity deviance magnitudes that were used, a
small but significant P3a component was observed in each of
the three experimental conditions. However, its small amplitude,
smaller than the MMN deflections, (see Figure 2), suggests
that the automatic orientation toward the deviants remained
rather limited. Note that since the presence of a P3a cannot be
interpreted as the signature of an explicit engagement of attention
[for instance, it was measured during sleep (Ruby et al., 2008)
and with patients with disorders of consciousness (Morlet and
Fischer, 2014)], this finding remains compatible with the absence
of awareness of the sequence structure as inferred via verbal
report in every participant. Interestingly, sequence predictability
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also induced a significant modulation of the P3a with larger
responses to unpredictable deviants. This further suggests that
the P3a also reflect a (third) prediction error. This is definitely in
keeping with the predictive coding model of deviance processing,
where unexpected stimuli trigger a cascade of prediction errors
(conveyed from lower levels to higher ones) that induce in turn
adjustments of predictions within each level of the hierarchy.
The Dynamic Causal Modeling (DCM) study of Garrido et al.
(2007) supports this view, as the authors showed that frontal-
to-temporal connections become necessary to explain auditory
deviance responses up to the latency of the P3a. An alternative
(but compatible) interpretation is that the smaller P3a in the
case of predictable deviants reflects a smaller automatic shift of
attention.

Conclusion

The recent prediction error model of the MMN yields new
expectations regarding its modulations by specific experimental
factors, and one of them, sequence predictability, was employed
here to refine our understanding of deviance processing. Indeed,
we proposed a passive auditory oddball paradigm allowing
for the measurement of this effect on genuine deviance
responses. We observe a decrease of deviance responses induced
by sequence predictability, which directly relates these ERPs
to prediction errors and thereby substantiates the predictive
coding scheme. Moreover, the threefold predictability effect
observed at early and late latencies gives strong support to
an auditory hierarchy computing prediction errors at different
levels. The statistical structure of sound sequence could be
encoded implicitly, possibly through a bayesian inference and
learning process implemented within the hierarchy (Kiebel et al.,
2009), and large time-scale regularities could induce high-level
predictions that modulate both the content and the precision
of lower-level ones. These new findings thus raise questions
regarding the neural implementation of the predictive coding

scheme and the dynamics of deviance processing within the
dedicated hierarchy. Hence, further use of our paradigm, in
conjunction with generative modeling approaches (Garrido et al.,
2009a; Wacongne et al., 2012; Lieder et al., 2013) as well as
suitable design optimization methods to compare such models
(Sanchez et al., 2014) should help shedding light onto the
neurocomputational mechanisms underlying rule learning and
deviance processing.
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