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The current study examined the effects of cardiorespiratory fitness, identified with a
continuous graded cycle ergometry, and aerobic exercise on cognitive functioning and
entropy of the electroencephalogram (EEG) in 30 adolescents between the ages of 13
and 14 years. Higher and lower fit participants performed an executive function task
after a bout of acute exercise and after rest while watching a film. EEG entropy, using the
sample entropy measure, was repeatedly measured during the 1500 ms post-stimulus
interval to evaluate changes in entropy over time. Analysis of the behavioral data for
lower and higher fit groups revealed an interaction between fitness levels and acute
physical exercise. Notably, lower fit, but not higher fit, participants had higher error rates
(ER) for No Go relative to Go trials in the rest condition, whereas in the acute exercise
condition there were no differences in ER between groups; higher fit participants also
had significantly faster reaction times in the exercise condition in comparison with the
rest condition. Analysis of EEG data revealed that higher fit participants demonstrated
lower entropy post-stimulus than lower fit participants in the left frontal hemisphere,
possibly indicating increased efficiency of early stage stimulus processing and more
efficient allocation of cognitive resources to the task demands. The results suggest that
EEG entropy is sensitive to stimulus processing demands and varies as a function of
physical fitness levels, but not acute exercise. Physical fitness, in turn, may enhance
cognition in adolescence by facilitating higher functionality of the attentional system in
the context of lower levels of frontal EEG entropy.
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Introduction

Research suggests that both acute bouts of exercise and higher levels of physical fitness
may enhance cognitive functioning (Colcombe and Kramer, 2003; Stroth et al., 2009).
Physical fitness is defined as the ability to carry out tasks without undue fatigue. The
health-related components of physical fitness are cardiorespiratory fitness, muscular fitness,
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muscular strength, body composition, and flexibility. Agility,
balance, coordination, speed, power, and reaction time are
part of the skill-related physical fitness components (Caspersen
et al., 1985). Cardiorespiratory fitness, the body’s ability to keep
up with exercise that challenges the cardiorespiratory system
(heart, lungs, blood vessels) for extended periods of time, is
not only an important component of physical fitness but is
also related to enhanced cognitive functioning (Hillman et al.,
2008; McAuley et al., 2013). Building upon previous research in
the area, the current study focused on the relationship between
physical fitness, acute aerobic exercise and cognitive and brain
functioning in adolescents using a measure of cardiorespiratory
fitness, obtained with a maximal continuous graded exercise test
performed on a cycle ergometer.

Developing and maintaining physical fitness, and
cardiorespiratory fitness in particular, requires regular bouts
of acute exercise. Similar to the effects of physical fitness,
acute bouts of exercise have been associated with enhanced
cognitive functioning. Notably, results from a recent meta-
analysis highlighted that the cognitive benefits of 20 min of
acute exercise are largest for school age children (including
adolescents) relative to the population as a whole (Chang et al.,
2012). However, less is known about the electrophysiological
mechanisms associated with the positive effects of exercise
on cognitive performance in adolescents, and whether
or not the effects of acute exercise are any different for
higher fit and lower fit adolescents. The current study uses
electroencephalography (EEG), that is, the recording of
electrical activity along the scalp, to examine if cardiorespiratory
fitness levels or acute bouts of aerobic exercise influence the
entropy of the EEG in response to cognitive demands in
adolescents, or whether fitness levels interact with acute exercise
to influence EEG entropy and cognitive performance in this
group.

Notably, both correlational and experimental studies have
demonstrated global cognitive benefits of physical exercise in
children and adolescents (Sibley and Etnier, 2003). Exercise
programmes across several weeks have also been shown to
improve cognitive functioning in children and adolescents
(Tuckman and Hinkle, 1986; Hinkle et al., 1993; Davis et al.,
2007). A number of studies in this area have focused on
executive functioning, defined as the ability to coordinate
cognition and action (Norman and Shallice, 1986) and support
action planning, switching, and inhibition (Royall et al.,
2002). In a study that sought to identify electrophysiological
mechanisms associated with the positive effects of exercise
on cognitive performance in children, Hillman et al. (2009)
examined executive functioning and event-related potential
(ERP) differences between higher- and lower-fit pre-adolescent
children (average age 9.4 years). They found that higher
fitness levels were associated with superior executive functioning
performance as measured using the Erikson flanker task, and
also with larger P3 ERP amplitudes in response to stimuli.
Hillman and colleagues suggested that increased allocation of
attentional resources, as indicated by larger P3 amplitudes during
the encoding of stimuli, was related to better performance in
the more physically fit children (see also Hillman et al., 2005).

Research studies confirm that other ERP components associated
with executive control including the N2 ERP component are
modulated by higher levels of physical fitness in adolescence
(Themanson et al., 2006; Stroth et al., 2009). In addition to
fitness levels, acute exercise manipulations have been shown
to affect oscillatory activity in the human EEG (Moraes et al.,
2007; Bailey et al., 2008). For example, studies have reported that
exercise increases oscillatory activity in the alpha range during
subsequent cognitive performance (Petruzzello and Landers,
1994). However, very little is known about the effects of fitness
levels and acute exercise on other EEG measures, such as EEG
entropy.

Historically, entropy is one of the most well established
metrics for quantifying the uncertainty of any (bio-)signal. First
proposed by Boltzmann [1844–1906], entropy is a measure of
the number of microscopic ways that a certain macroscopic state
can be realized. This concept was further extended by Shannon
(Shannon and Weaver, 1963) to the information theory domain
in proposing that the information gained when a measurement
is taken depends on the number of possible outcomes, of which
only one is realized. Systems whose underlying dynamics are
more unpredictable will have greater entropy, whereas lower
entropy systems by definition are more predictable. As such,
EEG entropy measures can be used to provide an index of
complexity that is equivalent tomeasuring the uncertainty or lack
of regularity in a signal (Rezek and Roberts, 1998; Bhattacharya,
2000) and can provide a window into levels of adaptive and
maladaptive system uncertainty at a brain level that are predictive
of key performance differences (Rosso et al., 2011).

Entropy metrics are potentially useful markers of the
enhancement of cognitive functioning due to both acute bouts
of exercise and higher levels of physical fitness. For example,
theoretical models of cognitive performance suggest that an
increase in the level of intra-network variability may be causally
related to poorer cognitive performance (Li and Lindenberger,
1998; Li et al., 2006). Notably, Li and colleagues demonstrated
that there was a greater disruption to a subject’s engaged
performance as the signal-to-noise ratio (SNR) of the system
decreased. One potential implication of this observed reduction
in the SNR is a generalized reduction in adaptive system
uncertainty (i.e., the range of possible states that the system
can achieve in response to adaptive demands is reduced) in the
context of executive functioning tasks (i.e., less overall capacity
to coordinate cognition and action (Norman and Shallice, 1986)
and support action planning, switching, and inhibition (Royall
et al., 2002)). One possibility is that acute exercise and fitness
influence adaptive system uncertainty, which in turn influences
executive functioning.

Importantly, recent research suggests that EEG entropy may
be sensitive to cognitive demands and can be used to predict
group differences in cognitive performance (Hogan et al., 2012;
O’Hora et al., 2013). For example, O’Hora et al. (2013) found
that task sensitivity of frontal EEG during encoding predicted
later retrieval in a sample of younger and older adults, with
reduced task sensitivity of frontal EEG observed in older
adults with cognitive decline. However, no study to date has
examined if fitness levels or acute bouts of aerobic exercise
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influence the entropy of the EEG in response to cognitive
demands, or whether fitness levels interact with acute exercise
in this context. It has been suggested that physical exercise
may improve cognition by modulating temporal functional
dynamics and connections between cell assemblies that support
task performance (Hogan et al., 2013). Although the operation
of neural assemblies is difficult to capture in real time, the
millisecond temporal resolution of EEG and the use of entropy
analysis to examine the complexity of electrical activity across
scalp locations, suggests that EEG entropy measures may offer
insight into the operation of neural assemblies. Therefore,
the current study aimed to establish whether cardiorespiratory
fitness affects baseline event-related sample entropy during the
performance of an executive functioning task and whether
different patterns of event-related sample entropy change due to
acute exercise would be observed in participants with different
fitness levels.

In examining the effects of fitness and exercise on cognitive
and neural function in the current study, we were sensitive
to the fact that different brain regions have been implicated
in different cognitive functions, for example, with frontal lobe
involvement being identified as critical for performance on
executive functioning tasks (West, 1996; Cabeza, 2002; Hogan
et al., 2011). Therefore, to enhance our ability to estimate the
effects of fitness and exercise, we measured average sample
entropy (that is the sample entropy averaged across a group
of regional electrode sites) across the frontal, temporal, and
parietal lobes for both hemispheres, separately. In light of
previous research on the role of the frontal lobe in executive
functioning tasks (West, 1996; Cabeza, 2002), we explored the
possibility that any differences apparent in the resultant sample
entropy measures between higher fit and lower fit adolescents
and between acute exercise and rest conditions would be largest
in the frontal lobes. If such a regionally averaged sample
entropy metric is an index of information complexity, and if
both higher fitness levels and acute bouts of exercise increase
information processing complexity, we predicted increases in
the sample entropy measure from rest to acute exercise, higher
entropy in higher fit relative to lower fit participants, and
further increases in entropy in higher fit relative to lower fit
participants in response to exercise. The alternative hypotheses
with regards to EEG entropy was that greater effort would be
required by the lower fit group and would therefore result in
higher levels of information processing complexity and EEG
entropy in response to the executive performance task used in
the current study (i.e., the Erikson flanker task). Similarly, the
alternative hypothesis predicted that the acute exercise condition
would increase cortical processing efficiency and thus result
in lower levels of EEG entropy in comparison with the rest
condition.

In relation to behavioral measures, as physical fitness
produced more consistent and robust effects in comparison to
acute exercise in previous studies (Lardon and Polich, 1996;
Themanson and Hillman, 2006), we expected that physical
fitness would enhance behavioral performance to a greater
extent than acute exercise. Specifically, it was hypothesized
that higher physical fitness would be associated with shorter

reactions times (RTs) and lower error rates (ER) compared
to lower physical fitness. It was also hypothesized that acute
aerobic exercise would positively affect performance to a lesser
extent.

Materials and Methods

Participants
Thirty healthy adolescents participated in the present study.
Participants were recruited through the local administration
of secondary schools and were invited to participate in the
study by means of an information event at school during
class. Mean age was 14.2 years (SD = 0.5, range = 13–14
years). All participants were right-handed and had normal, or
corrected to normal vision. Participants were carefully screened
and did not show any signs of a history of neurological or
psychiatric disorders or medication intake. Participants were
divided into two groups according to a median split of the
fitness distribution. This was performed for boys and girls
separately in order to keep the gender distribution equal in
each group. Fifteen adolescents (ten boys and five girls) were
classified as ‘‘higher fit’’ and fifteen adolescents (nine boys and six
girls) were classified as ‘‘lower fit’’. With regard to participants’
age, height, and weight no significant differences between the
groups existed. All adolescents received information material
in order to fully inform their parents. They were allowed to
participate after their legal guardian had permitted informed
consent. The present study was carried out in accordance
with the ethical review board at the University of Ulm,
Germany.

Study Design
During a regularly scheduled physical education class,
participants underwent a maximal incremental cycling test
on an electrically braked stationary cycle ergometer to assess
physical fitness via individual maximal exercise performance.
This exercise test was conducted in order to plan an individually
adjusted bout of exercise with heart rate control. Bouts of
exercise were planned at 60% of the individual’s maximal heart
rate, representing about 50–60% of maximum oxygen uptake
(Wasserman and McIlroy, 1964), leading to a workout at a
moderate but brisk intensity.

Participants were then randomly assigned to the study with
two separate recording sessions, one following a 20 min bout of
moderate aerobic exercise and one following a 20 min period
of rest (see Figure 1). One group started with an exercise
condition (week 2) followed by a rest condition (week 3)
while the other group started with a rest condition followed
by an exercise session. During both sessions, participants
came into the laboratory and watched a movie, during the
cycling workout as well as during the resting condition.
They participated in both conditions in a random order
within an exact 7 days interval, at the same day of the
week, at the same time of the day to avoid differences
in preceding activities or circadian distortions. During both
sessions, participants were prepared for the EEG recordings
and subsequently performed the 20 min exercise condition or
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FIGURE 1 | Study design.

the resting condition, sitting on the cycling ergometer for 20
min in both conditions to keep them as similar as possible.
Afterwards they performed an Eriksen flanker task with EEG
recordings.

Fitness Testing
To estimate cardiorespiratory fitness, a component of physical
fitness, we used a maximal continuous graded exercise test
performed on a cycle ergometer until voluntary exhaustion.
With such a protocol, there is a high correlation between
exercise time and directly measured maximal oxygen uptake,
allowing for an estimation of fitness (Gupta et al., 2011).
The fitness test was performed 1 week before the recording
sessions started. The participating adolescents completed a
continuous graded maximal exercise test during a regular school
day physical education class, with the test administered by
members of the research team. The testing protocol started
with a resistance of 25 W. After every two minutes, the
watt-load of the dynamometer was then increased by 25 W,
while the participant maintained the pedalling rate constant at
60 rotations per minute. Grades were continuously increased
until the participant reached subjective exhaustion and stopped
pedalling. At each interval (every two minutes) the investigator
recorded heart rates from the monitor the subject was wearing
(Polar Electror, Buettelborn, Germany, Model F6). Heart rate at
each interval up to maximal heart rate, absolute time pedalling
on the bike (in seconds) as well as maximal watt performance
was documented on a record sheet for each subject separately.
Maximal watt performance on the dynamometer was then related
to the body mass index (BMI) to establish a standardized
value for physical fitness (fitness = Watt performance/BMI),

controlling for body mass and size (Armstrong and Welsman,
2007). Participants were then divided by means of a median
split into relatively higher fit and lower fit groups within
our sample. However, as fitness norms are not available for
this test, the absolute fitness level cannot be determined
in our participants. The median fitness score for girls was
7.11 and the median fitness score for boys was 8.42. For
participants’ demographic variables and fitness parameters see
Table 1.

Cognitive Task
We combined a Go/No Go task with an Eriksen flanker
paradigm, which has been used in several earlier studies (e.g.,
Ruchsow et al., 2005). Eight different letter strings (congruent:
BBBBB, DDDDD, VVVVV, and UUUUU; incongruent: BBDBB,
DDBDD, UUVUU, and VVUVV) were presented on a computer

TABLE 1 | Means (SDs) of participants’ demographic and exercise
variables for higher fit and lower fit groups separately, and p-value for
t-test differences between groups.

Higher fit Lower fit p-value
(N = 15) (N = 15)

Age (years) 14.29 (0.48) 14.32 (0.70) 0.86
Bodyweight (kg) 50.81 (9.41) 56.63 (16.25) 0.24
Height (cm) 1.64 (0.07) 1.61 (0.09) 0.45
BMI 19.49 (3.44) 19.90 (3.18) 0.73
Max. duration 616 (154.5) 546 (157.8) 0.22
of exercise (seconds)
Max. watt performance 168 (31.99) 138 (24.76) 0.008
of exercise
Watt/BMI ratio 8.91 (1.21) 6.78 (0.87) <0.0001
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screen in randomized order. Subjects had to focus on the target
letter in the middle of an array and had to press a response
key upon the appearance of the letters B and U (Go-condition)
and to withhold key press upon the appearance of D and
V (No Go-condition). Instructions equally emphasized speed
and accuracy. Responses were executed with the index finger
of their dominant hand. Letter strings were preceeded by a
warning stimulus (fixation cross) presented for 600 ms (ms)
centrally on the screen before the target stimuli appeared. Each
letter combination was presented for a total of 480 ms, with
the target letter in the middle of the array appearing after
a 320 ms delay with a duration of 80 ms. Subjects received
feedback according to their performance 750 ms after key
press. As feedback stimuli we used the German expressions for
‘‘correct’’, ‘‘false’’, and ‘‘faster’’. Feedback stimuli were presented
for 500 ms. The inter-trial-interval was 2600 ms. In each trial,
participants received a reward for correct responses, and were
penalized for errors (5 points per trial). In the end, the greatest
amount of points was calculated and the winner was promised
a reward. Before the main experiment, subjects had a training
period of 12–20 trials. The whole experiment consisted of five
blocks of 120 trials each (300 Go-trials; 300 No Go-trials). The
behavioral data collected was response latency in ms from the
presentation of the target stimulus (Go-trials) and response
accuracy in terms of percentage of correct responses (Go- and
No Go-trials). Participants were seated in a comfortable chair
in a sound-attenuating, electrically shielded booth. The whole
experiment lasted about 3 h, including exercise/rest sessions,
pauses, electrode placement, and removal of electrodes.

EEG Recording and Entropy Calculation
EEG was continuously recorded using 39 channels mounted
in an elastic cap (Easy Cap, Herrsching, Germany). Electrodes
were positioned according to the extended 10–20 system.
All electrodes were referenced to an electrode at the left
earlobe and re-referenced to average reference off-line. Eye
movements were registered by vertical and horizontal EOG.
Electrode impedances were kept below 5 kΩ. The EEG was
amplified by Neuroscan Synamps amplifiers (bandwidth DC-
50 Hz; 50 Hz notch filter) and A/D converted with 12-bit
resolution at a rate of 250 Hz. Subsequent standard pre-
processing of the EEG was carried out to remove ocular
and other artifacts from the raw EEG samples. This process
resulted in data for some subject trials being discarded as they
were too contaminated with artifacts for the artifact removal
algorithms to be successfully applied. The remaining EEG data
was then epoched using the stimulus presentation point as
reference.

Incorrect responses were excluded from the analysis. The
data of participants with fewer than 10 usable epochs for each
condition type were removed from the analysis. This led to
the removal of three participants. The remaining epochs were
separated into stimulus categories. The entropy analysis was
completed by repeatedly applying a 500 ms duration rectangular
window to the samples in each epoch on each recorded EEG
channel. The center point of this window was initially located
at +250 ms post-stimulus and then moved in steps of 100 ms;

the final position of this window would encompass the +1000 ms
to +1500 ms post-stimulus period. It should be noted that any
reference hereafter to the temporal location of the window of
samples for which the sample entropy was calculated refers to
the location of the center of the window of samples which were
analyzed.

The sample entropy was calculated for each of the above
windows of samples (for each channel in each epoch). Entropy
measures can be used to quantify the uncertainty of any (bio-)
signal. Shannon defined entropy in terms of the probabilities of
the system being in each of the allowed system ‘‘micro-states’’
(si), as in (1).

H(s) =
N∑

i = 1

− p(si) ln p(si) (1)

A significant practical challenge in the application of this
definition of entropy to EEG waveforms relates to the estimation
of the probabilities of the micro-states of a system, p(si).
A variety of approaches to address this problem have been
reported in the literature; these include approaches based on
the implementation of time-frequency based decompositions of
the EEG in order to construct a pseudo-probability distribution
function (Rosso et al., 2002) and the estimation of a probability
distribution function using histogram calculated from the time
domain EEG samples (Lofgren et al., 2007; Zhao et al., 2007).
Richman and Moorman (2000) proposed an alternative time
domain based approach which avoided this issue and which
has been successfully applied to different bio-signals, namely
sample entropy. This method of quantifying a signal’s entropy is
based on identifying and then quantifying repetitions of similar
sequences in a signal. In terms of an EEG signal, this formulation
of entropy estimates the uncertainty within an EEG signal epoch
consisting of N samples. The sample entropy (sampEn) of such
an epoch of EEG samples is calculated as the log likelihood that a
block of m consecutive EEG sample values (from the epoch of N
samples) which are similar (i.e., within a tolerance value r using a
defined distance measure e.g., Euclidean distance) remain similar
when the block size is increased tom + 1 samples, as in (2).

sampEn(m, r,N) = − ln
(
Um+1

Um

)
(2)

where Um is the conditional probability that the block of N
samples is similar for a match length of m samples. Abásolo et al.
(2006) applied this estimator to EEG entropy analysis and it is
this measure that is utilized in this study.

In the current study, a number of different combinations of
the (r,m) values used within the sample entropy calculation were
evaluated. The results reported here represent those obtained for
(r = 0.25, m = 2), where the value of ‘‘r’’ refers to a multiplier
value for the standard deviation of the sample values in the
frame being analyzed. Results obtained for other combinations of
(r, m) values showed little significant deviation from the results
reported in this work. The next stage of processing of the sample
entropy values for a given EEG channel was to determine (for
each subject) an average sample entropy value (calculated for
each window location) across all epochs of a given stimulus
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type. Using these values, the final stage of processing involved
the calculation of the mean sample entropy value across six
regional electrode groups. The electrode groups which were used
in this stage covered the left frontal (Fp1, F3, F7), right frontal
(Fp2, F4, F8), left temporal (T7, TP7, FT7), right temporal (T8,
TP8, FT8), left parietal (P3, P7) and right parietal (P4, P8)
regions.

Results

Behavioral Performance
It was expected that greater physical fitness and acute physical
exercise would enhance cognitive performance. Twomeasures of
cognitive performance during the flanker task were employed:
reaction time and errors. For both dependent variables,
lower values indicated better performance. Behavioral measures
(reaction time, error rate) were analyzed using two 2 (Fitness:
low vs. high) × 2 (Exercise: rest vs. exercise) × 2 (Trialtype:
Go vs. No Go) × 2 (Congruency: congruent vs. incongruent)
ANOVAs.

A repeated measures ANOVA on the mean RT (reaction
time) of hits (correct Go-responses) revealed a main effect
of congruency, F(1,28) = 53.60, p < 0.001. In congruent
trials, RT was significantly faster than in incongruent trials,
the classic ‘‘flanker effect’’. In contrast to our expectations,
no main effects of fitness level or acute exercise on RT
were observed. A significant Fitness × Exercise effect was
observed, F(1,28) = 7.27, p = 0.012. Low Fitness participants
exhibited longer RTs in the acute exercise condition compared
to the rest condition, but this effect was not statistically
significant, F (1,28) = 3. 37, p = 0.07. In contrast, higher
fit participants had significantly faster RTs in the exercise
condition in comparison with the rest condition, F(1,28) = 3.90,
p = 0.05; see Figure 2. In summary, the effects of acute
exercise depended upon fitness, enhancing the performance of
fitter participants and degrading the performance of less fit
participants.

Analysis of ER across conditions revealed a main effect of
congruency, F(1,28) = 51.40, p < 0.0001, with lower ER observed

FIGURE 2 | Reaction times for the higher fit and lower fit groups for the
rest and exercise conditions for both congruent and incongruent trials.

in congruent (M = 7.20, SD = 3.84) relative to incongruent trials
(M = 13.10, SD = 7.48), a flanker effect on accuracy. There
was a main effect of Trialtype, F(1,28) = 5.037, p < 0.05, with
lower ER for Go trials relative to No Go trials. In contrast
with expectations, there were no main effects of physical fitness
and physical exercise on accuracy. The interactions Exercise
× Trialtype, F(1,28) = 4.54, p < 0.05; and Fitness × Exercise
× Trialtype, F(1,28) = 17.31, p < 0.001 were significant. The
results of follow-up ANOVAs conducted for Higher Fitness and
Lower Fitness groups separately revealed a significant Exercise
× Trialtype effect for the Lower Fitness group, F(1,14) = 16.90,
p < 0.001, and a non-significant Exercise × Trialtype effect for
the Higher Fitness group, F (1,14) = 2.430, p = 0.141. Post hoc
contrasts revealed that participants in the Lower Fitness group
showed significantly higher ER for No Go relative to Go trials
in the rest condition, F(1,28) = 11.68, p < 0.005; see Figure 3.
In summary, physical fitness and exercise affected aspects of
cognitive performance, but the effects were more complex than
expected.

EEG Entropy
EEG entropy was calculated across three regions of interest
(ROI) frontal, temporal, and parietal—in both left and right
hemispheres. Entropy was binned in 500 ms periods (0–500 ms,
500–1000 ms, 1000–1500 ms), which roughly correspond
to the following sequence of events in one experimental
trial: The 0–500 ms bin covers the stimulus processing,
decision and response execution period, the 500–1000 ms
bin includes feedback expectation, and the 1000–1500 ms
bin covers processing of the feedback itself. The length
of the bins ensures sufficient consecutive data points (125;
sampling rate 250 Hz). Initial analyses indicated that the post-
stimulus change in entropy across these three time intervals
varied across ROIs. As can be seen in Figure 4, there was
a linear decrease across intervals in the temporal region,
but frontal and parietal entropy decreased sharply from the
post-stimulus interval to the 500–1000 ms interval. Entropy
remained at this lower level in the frontal region, but in the
parietal region, entropy rebounded from the second interval

FIGURE 3 | Error rates (ER) for the higher fit and lower fit groups for
the rest and exercise conditions for both Go and No Go trials.
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FIGURE 4 | Post-stimulus EEG entropy for left and right hemispheres across three regions of interest (frontal, temporal, and parietal) of participants
in the higher fit and lower fit groups. Labels on the x axis denote 500 ms time intervals post-stimulus (see text for details). Error bars are bootstrapped
confidence intervals. Plots were developed using Hmisc (Harrell, 2014) and ggplot2 (Wickham, 2009) packages in R Core Team (2014).

(500–1000 ms) to the third (1000–1500 ms), particularly in the
right hemisphere.

Linear mixed effects models (lme4; Bates et al., 2014) were
employed to model the change in entropy across time intervals.
This analysis strategy takes advantage of the multiple data
points available per participant and facilitated modeling different
patterns of time-related change. Due to the different effects of
time across ROIs, separate analyses of each ROI were conducted.
For ease of comparison, a consistent model structure was
employed across regions; the models included random intercepts
and random linear and quadratic estimates of Time for each

participant and fixed effects of linear Time, quadratic Time,
Hemisphere, Fitness, Exercise, Trialtype, Congruency and all
interactions. To test for significant effects these fixed effects and
their associated interactions were gradually removed from the
model (see Tables 2 and 3). All p values were adjusted according
to Hochberg (1988).

In light of previous findings, we were particularly interested
in whether EEG entropy would be increased following acute
exercise. Exposure to acute exercise did not significantly affect
EEG entropy in any of three ROIs in the current study. In the
Frontal and Temporal ROIs, there were also no significant effects
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TABLE 2 | Main and interaction effects of factors retained in the Frontal and Temporal region models.

Frontal Temporal

b SE t p b SE t p

(Intercept) 0.4562 0.0065 69.7449 0.5285 0.0112 47.0183
Hemisphere −0.0120 0.0020 −6.0528 0.004 −0.0006 0.0028 −0.2219 0.8974
Time −0.0198 0.0012 −17.2521 0.004 −0.0200 0.0012 −17.2913 0.005
Time Sq 0.0142 0.0022 6.3401 0.004 0.0035 0.0013 2.6770 0.0666
Fitness −0.0239 0.0131 −1.8241 0.4428 −0.0079 0.0225 −0.3511 0.8974
Hemisphere × Time 0.0019 0.0011 1.6906 0.4545 0.0111 0.0016 6.8850 0.005
Hemisphere × Time Sq 0.0010 0.0016 0.6176 0.7507 0.0037 0.0023 1.6277 0.6216
Hemisphere × Fitness −0.0290 0.0040 −7.2959 0.004 −0.0016 0.0056 −0.2857 0.8974
Time × Fitness −0.0011 0.0023 −0.4756 0.7507 −0.0040 0.0023 −1.7445 0.6216
Time Sq × Fitness −0.0027 0.0045 −0.5992 0.7507 −0.0029 0.0026 −1.1000 0.8974
Hemisphere × Time × Fitness 0.0007 0.0023 0.3177 0.7507 0.0004 0.0032 0.1290 0.8974
Hemisphere × Time Sq × Fitness 0.0058 0.0033 1.7879 0.4428 0.0075 0.0046 1.6503 0.6216

Numbers in bold denote significant effects.

of Congruency or Trialtype. In the Parietal ROI, there were
no significant effects of Congruency, but there were differences
across Go and No Go trials (Trialtype) and this fixed effect
was retained. The flanker effect was not observed in EEG
entropy.

In the frontal region, there was a main effect of Hemisphere
(b = −0.0120), with entropy on the left side significantly lower
than on the right. There was a Hemisphere× Fitness interaction
effect (b = −0.0290), with left frontal entropy significantly lower
for higher fit participants relative to lower fit participants across
all three time intervals (see Figure 4; 0–500 ms: Z = −2.32,
p = 0.027; 500–1000 ms: Z = −2.32, p = 0.027; 1000–1500 ms:

Z = −2.21, p = 0.027). There were no significant differences
between higher fit and lower fit participants in the right
hemisphere (p > 0.05 for all three interval comparisons).

Frontal EEG entropy changed across time, with significant
linear (b = −0.0198) and quadratic (b = −0.0120) main effects
of time observed. As can be seen in Figure 4, for both higher
fit and lower fit participants, left and right frontal entropy
decreased from the post-stimulus interval (0–500 ms) to the
500–1000 ms interval (Left: Mdiff = −0.045, t29 = −11.24,
p < 0.0005; Right: Mdiff = −0.046, t29 = −12.86, p <

0.0005), but there was no difference between entropy in
the 500–1000 ms interval and entropy in the 1000–1500 ms

TABLE 3 | Main and interaction effects of factors retained in the Parietal region model.

Parietal

b SE t p

(Intercept) 0.4139 0.0061 67.9005
Hemisphere 0.0066 0.0018 3.7278 0.0046
Time −0.0267 0.0023 −11.5451 0.009
Time Sq 0.0322 0.0025 12.6503 0.009
Fitness −0.0164 0.0122 −1.3481 0.986
Go-No Go −0.0033 0.0018 −1.8945 0.9312
Hemisphere × Time −0.0052 0.0010 −5.1444 0.009
Hemisphere by Time Sq −0.0113 0.0014 −7.8936 0.009
Hemisphere × Fitness 0.0034 0.0035 0.9715 0.986
Time × Fitness −0.0120 0.0046 −2.5883 0.1632
Time Sq × Fitness 0.0013 0.0051 0.2459 0.986
Hemisphere × Go-No Go −0.0026 0.0035 −0.7380 0.986
Time × Go-No Go −0.0036 0.0010 −3.5873 0.0066
Time Sq × Go-No Go −0.0013 0.0014 −0.9275 0.986
Fitness × Go-No Go 0.0022 0.0035 0.6328 0.986
Hemisphere × Time × Fitness −0.0000 0.0020 −0.0176 0.986
Hemisphere × Time Sq × Fitness −0.0040 0.0029 −1.3794 0.986
Hemisphere × Time × Go-No Go −0.0029 0.0020 −1.4197 0.986
Hemisphere × Time Sq × Go-No Go −0.0015 0.0029 −0.5208 0.986
Hemisphere × Fitness × Go-No Go −0.0003 0.0070 −0.0455 0.986
Time × Fitness × Go-No Go −0.0032 0.0020 −1.5684 0.986
Time Sq × Fitness × Go-No Go −0.0020 0.0029 −0.6996 0.986
Hemisphere × Time × Fitness by Go-No Go 0.0009 0.0041 0.2279 0.986
Hemisphere × Time Sq × Fitness by Go-No Go 0.0015 0.0057 0.2647 0.986

Numbers in bold denote significant effects.
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FIGURE 5 | Post-stimulus EEG entropy during Go and No Go trials across three regions of interest (frontal, temporal, and parietal) of participants in
the higher fit and lower fit groups. Labels on the x axis denote 500 ms time intervals post-stimulus (see text for details) and error bars indicate bootstrapped
confidence intervals.

interval (Left: Mdiff = −0.001, t29 = −0.24, p = 0.81; Right:
Mdiff = −0.004, t29 = −1.12, p = 0.55). A complete summary
of the remaining non-significant effects can be found in
Table 2.

Temporal EEG entropy decreased more gradually in the left
temporal region than in the right temporal region (b = 0.0111) for
both higher fit and lower fit participants (see Figure 4). In both
hemispheres, entropy decreased from the post-stimulus interval
(0–500 ms) to the 500–1000 ms interval (Left: Mdiff = 0.026,
t29 = 9.36, p < 0.0005; Right: Mdiff = 0.034, t29 = 12.27, p <

0.0005), and from the 500–1000 ms interval to the 1000–1500 ms
interval (Left: Mdiff = 0.009, t29 = 3.22, p = 0.003; Right:
Mdiff = 0.028, t29 = 7.60, p < 0.0005).

As can be seen in Figure 5 in the Parietal region, the change
in entropy over Time was different across Go and No Go trials
(b = −0.0036) and across Hemispheres (Hemisphere × Time:
b = −0.0052; Hemisphere × Time Sq; b = −0.0113). Post hoc t-
tests revealed differences in the time-related change in entropy
across Go and No Go trials. In both Go and No Go trials,
entropy reduced significantly from the post-stimulus interval to
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the 500–1000 ms interval (Go: Mdiff = −0.081, t29 = −18.52,
p < 0.0005; No Go: Mdiff = 0.079, t29 = 18.18, p < 0.0005). The
increase from the 500–1000 ms interval to the 1000–1500 ms
interval was only significant for No Go stimuli (Go:Mdiff = 0.013,
t29 = 2.20, p = 0.11; No Go:Mdiff = 0.019, t29 = 3.53, p = 0.007).

Differences in time-related change in entropy were observed
across Hemispheres in the parietal region. Entropy reduced
significantly from the post-stimulus interval to the 500–1000 ms
interval in both hemispheres (Left:Mdiff = −0.075, t29 = −17.62,
p = 0.003; Right: Mdiff = −0.086, t29 = −16.49, p < 0.0005), but
entropy increased significantly from the 500–1000 ms interval
to the 1000–1500 ms interval on the right side (Mdiff = 0.027,
t29 = 4.03, p = 0.002), and not on the left (Mdiff = 0.004, t29 = 0.82,
p = 0.41). Main effects of linear (b =−0.0267) and quadratic time
(b = 0.0322) were also observed. Entropy reduced from the post-
stimulus interval to the 500–1000 ms interval then stabilized or
rebounded from the 500–1000 ms interval to the 1000–1500 ms
interval. A summary of effects can be found in Table 3.

Discussion

The current study examined the EEG entropy and behavioral
performance of higher fit and lower fit adolescent participants
during an executive control task after both acute exercise and
a resting condition watching a film. Analysis of behavioral data
revealed an interaction between fitness levels and acute physical
exercise for both RT and error rate data. Notably, lower fit, but
not higher fit, participants had higher ER for No Go relative
to Go trials in the resting condition. Furthermore, higher fit
participants had significantly faster RTs in the exercise condition
in comparison with the rest condition. Although there was a
general flanker congruency effect in the RT data, this effect was
neither modulated by fitness level nor by exercise.

Significant EEG entropy differences between higher fit and
lower fit participants were also observed. Notably, in the frontal
region, left hemisphere entropy was significantly lower for higher
fit participants relative to lower fit participants. Conversely,
there were no statistical differences between higher fit and lower
fit participants in the right hemisphere. Interestingly, previous
studies have reported that exercise increases oscillatory activity
in the alpha range during subsequent cognitive performance,
often localized to the right frontal hemisphere (Petruzzello
and Landers, 1994). This activity is thought to reflect a state
of decreased cortical activity associated with relaxation and
decreased anxiety (Boutcher, 1993). What the current study adds
is the suggestion that levels of physical fitness may also alter
brain dynamics in left frontal areas, with lower entropy possibly
reflecting higher levels of efficiency in terms of information
processing, or the requirements for higher levels of adaptive
system uncertainty in the context of executive functioning tasks.
Previous studies have shown that task-sensitivity of entropy is
associated with poorer cognitive performance when younger and
older adults are compared (O’Hora et al., 2013). Specifically,
the reduction of EEG entropy from more disordered to less
disordered in line with task demands predicted later retrieval.
The results of the current study, which focus exclusively on
younger cohorts, are consistent with our alternative hypotheses

with regards to EEG entropy. Specifically, it may be that greater
effort is required by lower fit adolescents, possibly linked to
higher levels of information processing complexity and EEG
entropy in response to the Erikson flanker task. Alternatively,
lower fit adolescents may differ from higher fit adolescents on
other biological factors such as their brain metabolism, aspects
of fitness that may influence EEG oscillations, attention and
vigilance. Further research is needed to explain these EEG
entropy differences between higher and lower fitness groups. At
the same time, while we also hypothesized that the acute exercise
condition would increase cortical processing efficiency and thus
result in lower levels of EEG entropy in comparison with the
rest condition, we did not find any evidence in support of this
hypothesis.

A number of other interesting effects were observed. For
example, in the parietal region, results indicated that while
entropy reduced significantly from the 0–500 ms post-stimulus
interval to the 500–1000 ms interval in both hemispheres,
entropy increased significantly from the 500–1000 ms interval
to the 1000–1500 ms interval in the right hemisphere, but not
in the left hemisphere. Also, in the temporal region, entropy
decreased more gradually in the left temporal region than in
the right temporal region for both higher fit and lower fit
participants. These findings suggest that entropy measures may
reveal differential responses of the right and left hemispheres to
stimulus processing demands over time and offer a window into
hemispheric specialization for different cognitive performance
tasks.

As noted above, one interpretation of the frontal lobe EEG
entropy findings in the current study is that the lower fit group
exerted a greater amount of effort than the higher fit group.
The higher levels of cardiorespiratory fitness in the higher fit
group may have facilitated greater cortical efficiency, and greater
performance efficiency, with fewer cognitive resources needed to
maintain performance in comparison with lower fit individuals
(Aberg et al., 2009; Stroth et al., 2009; Hillman et al., 2014;
Khan and Hillman, 2014). As performance differences between
higher fit and lower fit participants were less pronounced after
20 min of aerobic exercise, this suggests that acute exercise might
improve cognitive performance efficiency particularly in lower
fit individuals (see also Colcombe and Kramer, 2003; McAuley
et al., 2013). This interpretation is consistent with the finding
that lower fit, but not higher fit adolescents had higher ER for
No Go relative to Go trials in the resting condition, whereas
in the acute exercise condition there were no differences in
ER between groups. This behavioral effect is significant as it
suggests that the negative effects of lower levels of physical
fitness in adolescents may possibly be ameliorated in the short
term by increased aerobic activity, a finding that resonates
with the meta-analytical findings of Chang et al. (2012), which
found that the cognitive benefits of 20 min of acute exercise
are larger for school age children relative to the population
as a whole. However, this behavioral effect was not coupled
with an effect of acute exercise on EEG entropy in the current
study, thus further research is needed to investigate whether or
not EEG entropy is sensitive to effects of acute exercise and
predictive of changes in cognitive performance that arise in the
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context of acute exercise manipulations. Although the sample
size of the current study was small, which had implications
for the power of our statistical analyses, the behavioral and
entropy effects observed suggest that lower fit adolescents
may perform cognitive tasks at the same level as higher fit
participants in certain conditions (exercise condition, go trials),
but possibly at the expense of greater cortical effort reflected in
higher entropy. Although the task was reasonably difficult in
general, with ER of 15–30% across conditions, one possibility
is that lower fit participants with higher EEG entropy in left
frontal regions may have found different aspects of the task
more or less difficult in different conditions. Future research
should seek to examine if physical fitness training interventions
serve to increase cortical efficiency and cognitive performance,
specifically, by altering the entropy of electrical activity across
scalp locations.

The effects of aerobic exercise interventions have been
examined in the context of both their potential to affect
the developmental and scholastic achievement trajectory of
children and adolescents, as well as their potential to delay
the neurocognitive effects of aging in older adult populations
(Erickson et al., 2011; Anderson-Hanley et al., 2012). In this
burgeoning field, the effects of physical fitness (Chaddock et al.,
2011, 2012b) and exercise interventions have primarily been
assessed through behavioral performance measures and the use
of neuroimaging modalities such as MRI (Chaddock et al., 2012a;
Chaddock-Heyman et al., 2014) and the modulation of ERPs
(ERPs) in EEG (Hillman et al., 2011).

Acute bout studies conducted with children have shown
that a session of moderate intensity aerobic exercise facilitates
resolution of response conflict and processing speed (Drollette
et al., 2014), and has selective effects on inhibitory control
processes and reading comprehension (Hillman et al., 2009).
Acute bout studies with adolescents have reported mixed
findings, with some studies indicating that inhibitory processes
may no longer be as sensitive to a session of aerobic exercise
in adolescence (Stroth et al., 2009), while other studies have
reported greater improvements in inhibition and working
memory among preadolescents when compared to younger
children (Chen et al., 2014). This highlights the need to employ
a nuanced developmental approach when considering the effects
of exercise and how effects are moderated by age.

Given this perspective, numerous acute bout studies have
focused on the cognitive effects and neuroelectric indices of
aerobic fitness, in addition to its interaction with aerobic
exercise in adolescents. The P3 and N2 are ERP components
have been found to be particularly sensitive to the effects
of fitness level and exercise. They are associated with the
allocation of attentional resources and conflict monitoring,
respectively (Patel and Azzam, 2005). For example, Stroth et al.
(2009) conducted an acute exercise study with a sample of
35 higher and lower fit adolescents to determine the effects
of exercise on response inhibition and task preparation in
the same modified version of the Eriksen flanker task used
here (Ruchsow et al., 2005). In addition to the N2 and P3
ERP components, the authors were also interested in the
contingent negative variation (CNV). This ERP component

serves as an index of task preparation, as it reflects anticipation
of an upcoming complex cognitive task in response to a
stimulus that invokes effortful task preparation in the interval
preceding target presentation. The authors observed increased
CNV amplitudes in the higher fit adolescents coupled with
decreased N2 amplitudes, when compared to their lower fit
counterparts. Taken together, their findings indicate aerobic
fitness and not an acute bout of exercise facilitates enhanced
task preparation and expectancy resulting in more efficient
conflict monitoring. Similarly, the current study did not reveal
any changes in EEG entropy as a result of acute exercise;
rather we found that fitness level influenced cortical processing
as evidenced by significantly lower left frontal entropy of
the higher fit adolescents when compared to the lower fit
adolescents.

Moreover, Pontifex et al. (2011) conducted a study to
determine the effects of cardiorespiratory fitness on cognitive
control and the flexible adaptation of cognitive resources among
preadolescent children completing a modified Flanker task,
with incompatible stimulus-response conditions designed to
induce even greater interference. The authors were particularly
interested in the N2, P3 and ERN components. The ERN,
error-related negativity, occurs post error commission and
is thought to reflect the activation of action-monitoring
processes which recruit further top-down processing in response
to an error of commission. They reported enhanced P3
amplitudes, decreases in P3 latency, and a greater modulation
of the P3 amplitude between compatible and incompatible
conditions in higher fit participants when compared to lower
fit participants. Another interesting set of findings indicating
more flexible modulation of cognitive control among the
higher fit participants relative to lower fit participants included
smaller ERN amplitudes in the compatible condition, and
greater modulation of the ERN between compatible and
incompatible conditions. Again, these findings suggest that
the higher fit children were able to more flexibly recruit
and adjust cognitive control processes based on task demand
and difficultly. One possibility is that lower left frontal
entropy for higher fit, relative to lower fit, participants in the
current study is related to increased flexibility and control
in response to task demands. The idea that physical fitness
may relate to EEG entropy points to a possible mechanism
underlying fitness-related differences in ERP indices of cognitive
flexibility. However, further research is needed to examine these
relationships.

As discussed above, there are numerous examples in the
extant literature where the effects of aerobic exercise on the P3
component have been investigated. EEG entropy could serve
to enrich our understanding of the neural dynamics related
to physical activity and its effects on neuroelectric indices
related to cognitive functioning. Research conducted by Quiroga
et al. (2001) found a significant correlation between decreases
in wavelet entropy (WS) and P3 component amplitudes in
stimulus-locked intervals of the EEG. The authors contend that
this correlation demonstrates the transition of the EEG activity
and the multiple frequencies present from a more ‘‘disordered
state’’ to a more ‘‘ordered state’’.
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At the same time, there are a number of limitations of
the current study that should be noted. First, the sample
size in the current study was relatively small and thus effects
should be interpreted with caution. The small sample impacted
on the power of our analysis and may explain why we
observed no significant relationships between entropy levels
and indices of cognitive performance. The effects of fitness
and acute exercise on brain and behavioral function should
be replicated in larger samples of children and adolescents
while controlling for a variety of other factors that might be
related to both fitness levels and brain and behavioral measures,
including socioeconomic status, health status, intelligence,
academic achievement, personality and motivation. Also, given
that the increased level of arousal induced by physical activity
may mediate performance effects observed in cognitive testing
situations (Davranche and Audiffren, 2004), future studies need
to examine if the arousal effects of exercise differ for children,
adolescents and adult samples. Second, future studies should
use standardized fitness measures and established norms in
efforts to distinguish high fit from low fit groups. More precise
measurements such as the oxygen uptake (VO2) measure should
be used in future studies to categorize fitness groups. While the
fitness measurement is a limitation of the current study, we had
to analyze fitness levels in the school context and in this context

only the continuous graded exercise test performed on a cycle
ergometer was possible to estimate student’s fitness levels in
relation to BMI.

In conclusion, the present study revealed an interaction
between an acute bout of exercise and physical fitness in
adolescence. Notably, higher fit, but not lower fit, participants
had significantly faster reaction times in the exercise condition in
comparison with the rest condition. Furthermore, performance
differences between higher fit and lower fit participants were
less pronounced after 20 min of aerobic exercise. Specifically,
lower fit, but not higher fit, participants showed higher ER
for No Go relative to go trials in the rest condition. In
the acute exercise condition there were no differences in ER
between groups. At the neural level, higher fit participants
had lower levels of EEG entropy in left frontal regions,
possibly indicating greater efficiency of cognitive resource
allocation to the task demands. The results suggest that
physical fitness may enhance cognition in adolescence by
facilitating higher functionality of the attentional system in the
context of lower levels of frontal EEG entropy. The present
study also highlights the potential benefits of intervention
programs providing physical exercise for adolescents, which may
improve attention and cognitive performance at school and in
everyday life.
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