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Drowsy driving is a major cause of automobile accidents. Previous studies used

neuroimaging based approaches such as analysis of electroencephalogram (EEG)

activities to understand the brain dynamics of different cortical regions during drowsy

driving. However, the coupling between brain regions responding to this vigilance change

is still unclear. To have a comprehensive understanding of neural mechanisms underlying

drowsy driving, in this study we use transfer entropy, a model-free measure of effective

connectivity based on information theory. We investigate the pattern of information

transfer between brain regions when the vigilance level, which is derived from the driving

performance, changes from alertness to drowsiness. Results show that the couplings

between pairs of frontal, central, and parietal areas increased at the intermediate level

of vigilance, which suggests that an enhancement of the cortico-cortical interaction is

necessary to maintain the task performance and prevent behavioral lapses. Additionally,

the occipital-related connectivity magnitudes monotonically decreases as the vigilance

level declines, which further supports the cortical gating of sensory stimuli during

drowsiness. Neurophysiological evidence of mutual relationships between brain regions

measured by transfer entropy might enhance the understanding of cortico-cortical

communication during drowsy driving.
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INTRODUCTION

According to the 2009 Sleep in America Poll (Foundation, 2009), 54% of adults experience
drowsiness during driving, and 28% of drivers even nod off or fall asleep at the wheel. Driving under
the influence of fatigue/drowsiness often results in serious car accidents. Therefore, to prevent
accidents, a comprehensive understanding of the neurophysiological markers of declining vigilance
in drivers is necessary and it may provide insight into the mechanism underlying the drowsy
driving.

Several neuroscience studies using EEG (Baulk et al., 2001; Lal and Craig, 2002; Banks et al.,
2004; Campagne et al., 2004; Eoh et al., 2005; Lal and Craig, 2005; Rosario et al., 2010; Chuang
et al., 2012) have revealed that changes in alertness during driving are linked to changes in global
brain dynamics. For example, in our previous study (Chuang et al., 2012) we have observed
synchronized EEG spectral dynamics between spatially non-contiguous areas of the brain when
drowsiness occurs. These growing evidences suggest that changes in effective connectivity in a
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specific cortico-cortical pathway may be a sensitive
neurophysiological signature for changes in alertness.

Over the past decade, many studies tried to elucidate the
network level mechanisms of neurocognitive function by using
effective connectivity measures (Korzeniewska et al., 2003;
Blinowska et al., 2004; Astolfi et al., 2007; Supp et al., 2007; Liu
et al., 2010; Vicente et al., 2011; Liu et al., 2012). One of the most
widely used measures to study effective connectivity in cognitive
neuroscience is Granger Causality (GC); (Granger, 1969). GC
and its extensions, such as directed transfer function and partial
directed coherence (Korzeniewska et al., 2003; Blinowska et al.,
2004; Astolfi et al., 2007; Supp et al., 2007; Liu et al., 2010;
Vicente et al., 2011; Liu et al., 2012), essentially model stochastic
processes using regression (Sabesan et al., 2009). However, there
are three prerequisites to ensure a proper use of GC (Vicente
et al., 2011). First, the interaction between two signals should
be approximately linear. Second, the observations should have
relatively low levels of noise. Third, the cross-talk between signals
should be low. However, the interactions between brain signals
are usually non-linear. Moreover, due to volume conduction
the original causally-related brain signal from a single source
and artifacts are mixed into several EEG channels, leading to
difficulty in estimating information flow between brain regions
on a sensor-space. Transfer entropy (TE) is an alternative
measure of effective connectivity for neurosciences (Gourévitch
and Eggermont, 2007; Sabesan et al., 2009; Besserve et al., 2010;
Vakorin et al., 2010; Vicente et al., 2011; Lee et al., 2012). In
contrast to GC, TE is a model-free measure based on information
theory that does not require a model of the interaction. TE has
demonstrated its robustness against volume conduction as well
as its effectiveness in revealing non-linear interactions between
brain regions (Lindner et al., 2011; Vicente et al., 2011).

In this study, we have used transfer entropy to examine
the association between effective connectivity dynamics and
drowsiness-associated performance changes during a sustained-
attention driving experiment. Each subject participated in a
virtual reality based dynamic driving simulator, in which
EEG signals and data on subject’s behavior were recorded
simultaneously. Our study reveals the effective connectivity
between different brain regions using changes in behavioral
data and associated information transfer as measured from EEG
signal.

MATERIALS AND METHODS

Participants and EEG Acquisition
Twelve healthy male adults aged 20–30 years were recruited to
participate in the sustained-attention driving experiment. All
subjects were required to have driving license and good driving
habits. None of the participants had a history of psychological
disorders. All participants were instructed to sustain their
attention to perform the lane-keeping task in the afternoon after
lunch without breaks. Prior to the experiment, all participants
completed a consent form stating their clear understanding of the
experimental protocol which had been approved by Institutional
Review Broad of Taipei Veterans General Hospital, Taiwan.

A wired EEG cap with 32 Ag/AgCl electrodes, including
30 EEG electrodes and two reference electrodes (opposite
lateral mastoids) was used to record the electrical activity of
the brain from the scalp during the driving task. The EEG
electrodes were placed according to a modified international 10–
20 system. The contact impedance between all electrodes and
the skin was kept <5 k�. The EEG recordings amplified by Scan
SynAmps2 Express system (Compumedics Ltd., VIC, Australia)
were digitized at 500Hz (resolution: 16 bits). Before data analysis,
the raw EEG data were preprocessed by the following steps:
First, we use a digital band-pass (1–50Hz) zero-phase FIR
filter (the eegfilt.m routine from the EEGLAB toolbox, Delorme
and Makeig, 2004) to remove the power line noise and low-
frequency drift. Second, the signals are down-sampled to 250Hz
to reduce the volume of data. Finally, we do manual removal of
some artifacts such as random and persistent disturbance from
body motion, eye movement, eye blinking, muscle activity, EEG
channel malfunction, and environmental noise.

Sustained-attention Driving Experiment
This study adopted an event-related lane-departure paradigm
(Figure 1A) (Huang et al., 2009) in a virtual-reality (VR) dynamic
driving simulator (Figures 1D,E) to quantitatively measure brain
EEG dynamics along with the fluctuation of task performance
throughout the experiment. All subjects participated in the
sustained-attention driving experiment for 1.5 h in the afternoon
(13:00–14:00) after lunch, and all of them were asked to keep
their attention focused on driving during the entire period.
There was no break or resting session. At the beginning of
the experiment, a 5min pre-test was performed to ensure that
every subject understood the instructions and they did not suffer
from simulator-induced nausea. During this 90min sustained-
attention driving task, the experimental paradigm simulated a
nighttime driving on a four-lane highway and lane-departure
events were randomly induced to make the car drift away
from the original cruising lane toward the left or right sides.
Each participant was instructed to quickly compensate for this
perturbation by steering the wheel (Figure 1C). To avoid impacts
of other factors during the task, participants only reacted to the
lane-perturbation event by turning the steering wheel, and they
did not have to control the accelerator and brakes pedals in this
experiment.

A complete trial in this study, including 1 s baseline, deviation
onset, response onset, and response offset, is shown in Figure 1A.
EEG signals were recorded simultaneously (Figure 1B). The next
trial occurs within an interval of 5–10 s after finishing the current
trial in which the subject has to drive back to the center line of the
third car lane. If a subject fell asleep during the experiment, there
was no feedback to alert him up.

Connectivity Estimation by Transfer
Entropy
Transfer entropy (TE), an information-theoretic measure
proposed by Schreiber (2000), is derived from the mutual
information theory to assess conditional transition probabilities
between two paired processes evolving in time. Consider two
simultaneously measured time series generated by random
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FIGURE 1 | Sustained-attention driving task. (A) Event-related lane-deviation paradigm. (B–C) EEG and behavior were recorded simultaneously. (D) The

experimental paradigm was implemented in a VR-based driving simulator, where a 3-D surrounding view simulated a monotonous highway scene and a vehicle was

mounted on a six degree-of-freedom dynamic platform. (E) The car speed was fixed at 100 km/h and the subject was asked to keep the car cruising on the central of

the lane.

processes X and Y. We assume that each of these processes
can be approximated by a stationary Markov Process of finite
order d. Thus, we can reconstruct the state space of the
process X by a delay embedded vector of dimension d with
past values. Representing the two time series as X = xt and
Y = yt, the delay embedded vector is defined as xdt =
(

xt, xt−τ , xt−2τ , · · · , xt−(d−1)τ

)

; similar representation can also

be made for ydt . The dimension of the embedding space is d,
and the delay is τ . Under the assumption that the system X can
be approximated by a stationary Markov process of order d, the
transition probabilities that describe the system are given by:

p(xt+1

∣

∣

∣
xdt ). (1)

The entropy rate of the systemX is the average number of bits that
is required to represent an additional state provided all previous
states are known. Thus, the entropy rate can be computed as
follows
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u is the prediction time, and p(∗) is the probability.
If the two processes are independent, there will be no transfer

of information and p(xt+u

∣
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∣
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xdt , y

m
t ). As proposed

by Schreiber (2000), a measure of deviation from this generalized
Markov property can be computed using Kullback divergence or
mutual information and that is a directedmeasure of information
transfer from Y to X. The amount of information transferred
(i.e., transfer entropy) from process Y to process X, denoted

as TE(Y → X), is computed as (Schreiber, 2000; Hlaváèková-
Schindler et al., 2007; Vicente et al., 2011)
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where ymt =
{

yt, yt−τ, · · · , yt−(m−1)τ

}

indicating that the process
X depends onm states of Y. The Equation (3) can be rewritten in
terms of differential entropy as the following

TE(Y → X) = H(xdt , y
m
t )−H(xt+u, x

d
t , y

m
t )

+ H(xt+u, x
d
t )−H(Xd

t ). (4)

Note that TE is inherently asymmetric, that is TE(Y → X) 6=

TE(X → Y). In addition, when the processes are mutually
independent then TE(Y → X) = TE(X → Y) = 0.

The estimation of parameters and the calculation of TE
were performed by TRENTOOL (version 2.0.4) (Lindner et al.,
2011). Specifically, the TE values were estimated by the k-nearest
neighbor approach (Kraskov et al., 2004; Vicente et al., 2011),
with k = 4 as suggested by Kraskov et al. (2004). The embedding
delay (τ) was determined based on the Cao criterion (Cao, 1997),
and the dimension (d andm) was obtained by an effective search
algorithm (Cormen et al., 2001; Lindner et al., 2011; Vicente et al.,
2011). Theiler correction tries to remove autocorrelation effect
from the density estimation. For the nearest neighbor search, it
discards all samples which are very close in time with respect to a
reference point. Here the Theiler correction window (T) was set
to 1. In this study the prediction time u was set to 5. This was
determined by finding the maximum value of TE over a set of
choices: (5, 10, 20, 40, 60, 80, and 100ms).
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Behavioral Performance
During a 1.5 h-long driving task, participants might suffer from
drowsiness from time to time, which leads to performance
fluctuations. To objectively and continuously measure
participants’ driving performance, the reaction time (RT),
the elapsed time between onsets of deviation and response
(Figure 1A), was calculated. A short RT indicates a good
performance on the driving task and vice versa. In this study,
subjects were instructed to respond to the stimulus as fast as they
could. Therefore, among a group of participants performing the
same task, individual characteristics might lead to differences in
distribution of RT. For instance, the mean RT for some subjects
was found to be lower than 2 s, but for others it was larger
than 2 s.

To overcome the individual difference in behavioral
performance, RTs of each subject were first normalized dividing
by the average of the first 10% of the RTs arranged in ascending
order to obtain normalized RTs (Equation 5). This procedure
guaranteed that all RTs corresponding to the optimal driving
performance (fast RT) collected from different participants
would approximately be one.

Normalized RTi =
RTi

< RT
top 10%
j >

, (5)

where i = 1, ...,N represents the trial index, N is the number of

trials for each subject, and RT
top 10%
j represents the jth RT in the

top 10% of the shortest RTs. The bracket, i.e.,< · >, represents
the average value.

In our experiment design, the simulated vehicle hits roadside
curbs, if the subject does not respond to a perturbation event
within 1.5 s for the left side (or within 2.5 s for the right side).
If the simulated vehicle hits the roadside curbs, the program does
not give any feedback to the driver. Since human physiological
system and the experimental paradigm impose no upper bound
to the RT, the actual RT varies widely, especially for drowsy
subjects. Empirically, if the subjects are under a high vigilance
level, the RTs are usually less than 1 s. Keeping this in mind, if
a normalized RT is less than 1, we set it to 1 as the person is
definitely in an alert state. If the RT is larger than 2.5 s, then the
subject is expected to be in a low vigilance level. In fact, in order
to study the transition of vigilance level from alert to drowsy,
analysis of EEG associated with RT of up to 3 s is very important.
However, we have already mentioned that the actual RT can take
a very high value, even 200 s. Empirically it is also found that if
the RT is more than 4 s, the subject is certainly in a state of very
low vigilance. Therefore, to define an index to assess the driving
performance (DP), we need to transform the RT in such amanner
that RT greater than 4 does not affect much the DP, but the DP is
adequately sensitive to RT when RT varies between 1 and 4. The
Equation (6) involving a logistic transformation indeed achieves
the same. For RT = 1, DP is also 1; when RT = 4, DP is 3.11
and for RT from 3 to infinity, DP varies between 3.11 and 4.08. It
is also interesting to observe that up to RT = 2.5 s, DP follows
almost a linear relation (DP = 2.26 for RT = 2.5 s), which is
indeed desirable. Figure 2 presents the behavioral performances,
including actual reaction times and corresponding derived

driving performance, during a 1.5 h experiment for two subjects.

DPi = −

(

1+ e−0.5

1− e−0.5

)

+

(

2+ 2e−0.5

1− e−0.5

)

(

1

1+ e−0.5×Normalized RTi

)

(6)

EEG Signals of Interest
Researchers, Huang et al. (2009) and Chuang et al. (2014a) have
reported that the independent EEG components corresponding
to frontal, central, right motor, left motor, parietal, and occipital
region are highly correlated with fatigue, drowsiness, and
behavioral lapse. Chuang et al. (2014b) further proposed a
brain–computer interface using these independent components
to effectively predict the change in the cognitive state. The
aforementioned brain regions provide important information
concerning drowsy driving. We aim to investigate the transfer
of information among different brain regions using EEG
signals during drowsy driving. Since volume conduction and
superposition of brain source signals to EEG electrodes is linear
and there is not much delay involved, independent component
analysis (ICA) can be used to find component signals mixed by
volume conduction (Whitmer et al., 2010). Therefore, discarding
the ICs representing artifacts, the effect of volume conduction can
be reduced to some extent. Since in this study, we have used ICA
to remove artifacts (non-physiological), it has reduced the effect
of volume conduction also. Further, we have applied the time-
shift test (Lindner et al., 2011) to identify instantaneous mixing
between artifact-free EEG signals from pairs of channels. In fact,
after performing the time-shift test, which was implemented by
TRENTOOL (version 2.0.4), no instantaneous mixing problem
was found in all artifact-free EEG pairs. It is worth noting,
however, that the same time-shift test when applied on the raw
EEG data (before artifact removal) rejected some pairs of EEG
channels. In order to reduce the number of channels and the
computational complexity, in this work we chose only six EEG
channels, that are the closest to the independent components
mentioned above, i.e., Fz (frontal region), Cz (center region), C3
(left motor region), C4 (right motor region), Pz (parietal region),
and Oz (occipital region).

EEG Analysis
Our work intends to find the EEG pattern of tonic physiological
changes that are associated with changes in vigilance. The
EEG activities in the baseline period sufficiently represent the
cognitive status in the current trial. For instance, subjects can
react to the event quicker under higher vigilance level and vice
versa. Therefore, we only analyze physiological EEG changes (the
spectral activity and the effective connectivity) in the 1 s baseline
period for each trial (tonic analysis); as shown in the red covered
part of Figure 1B, and the corresponding DP can be used as an
objective index to represent the vigilance level of the current trial.
The power spectral activities of EEG signals were calculated by
fast Fourier transformation (FFT) for each EEG channel, and
the effective connectivity between every pair of the selected EEG
channels was estimated by the TE andGC. In this study, the order
of GC was determined by using Bayesian Information Criterion
(BIC).
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FIGURE 2 | Fluctuations in behavioral performance during a 1.5 h experiment for two subjects (Top panel: S02, and bottom panel: S05). (A) Recorded

RTs; (B) driving performance (DP) converted from RTs using equations (5) and (6).

Statistical Analysis
The TE values of each subject were first normalized by
subtracting the baseline TE value to reduce the individual
difference. Here the baseline TE value was obtained by averaging
TE values over the trials for which the corresponding DPs
were within the best tenth percentile of DP (top 10% DP).
Therefore, the normalized TE values are relative-TE values,
which represent changes in TE values compared to the baseline
TE value. For further analysis, TE values from all subjects
were grouped together and sorted by DPs from the best to the
worst. The performance-related TE dynamic connectivity was
obtained by applying a moving-average filter (window size: 0.5
unit of DP and step size: 0.1 unit of DP) on the DP-sorted
TE value. Then, statistical significance was tested by comparing
TE values from each window with the first window (DP =

1–1.5) by using Wilcoxon rank-sum test. Results of GC and
power spectral activity were also computed in the same manner.
Additionally, linear dependence between EEG spectral activities

and DPs was measured by Pearson’s correlation coefficient (see
Table 2).

Furthermore, for group analysis, for each subject, three
performance groups were defined: optimal (DPs < 2), sub-
optimal (2 ≤ DPs ≤ 3), and poor (DPs > 3). We have
investigated the difference of TE among performance groups
(optimal, sub-optimal, and poor) by One-way repeated ANOVA.
These results are summarized in Table 3. The Wilcoxon signed-
rank test was further used to test the pair wise difference between
different performance groups. In order to account for multiple
comparisons we have computed the false discovery rate (FDR,
Genovese et al., 2002)-adjusted p-values.

EXPERIMENTAL RESULTS

Behavioral Performance
Table 1 presents the descriptive statistics, including the
arithmetic mean, the standard deviation, second quartile, and
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TABLE 1 | Task performance for all subjects.

SC S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12

NOTs 314 465 430 278 424 251 202 232 267 222 526 478

ACTUAL RT (UNIT: SECOND)

Mean 1.60 2.23 1.38 1.81 2.33 2.84 3.27 2.50 1.41 6.78 1.42 0.98

SD. 2.00 2.46 0.68 2.50 2.53 14.56 21.62 16.72 1.45 14.53 2.70 1.13

Q2 0.85 1.17 1.29 1.15 1.22 0.62 0.87 0.95 0.99 1.29 0.69 0.67

Max 11.30 18.32 8.39 22.52 14.04 178.07 304.24 250.98 10.05 150.13 29.62 11.02

DERIVED DP

Mean 1.71 2.19 1.61 1.84 2.41 1.49 1.83 1.37 1.70 2.57 1.66 1.57

SD. 0.88 1.06 0.45 0.75 1.02 0.75 0.83 0.52 0.73 1.17 0.82 0.67

Q2 1.32 1.79 1.56 1.63 2.14 1.22 1.55 1.21 1.47 2.11 1.34 1.32

Max 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

The mean value, the standard deviation, the second quartile, and the maximum value of actual RT and derived DP for all 12 subjects.

SC represents the code of subject. NOTs represent number of trials.

Mean represents the arithmetic mean value. SD represents the standard deviation.

Q2 represents second quartile (median). Max represents the maximum value.

the maximum value of RTs and DPs. Figures 3A,B show the
distributions of the RT recorded from all sessions and the
corresponding values of the DP derived by Equations (5) and
(6), respectively. For visual simplicity, we display herein just
15 s on the x-axis (RT)—the actual maximum is about 300 s (see
the maximum actual RT of S07 in Table 1). Since subjects were
instructed to minimize the reaction time in response to vehicle
perturbations, one could predict that the distribution of the RT
as well as the DP would be positively skewed. The averages of all
RTs and DPs from 12 subjects were 2.38 ± 6.91 (SD) and 1.83 ±
0.81 (SD), respectively. The standard deviations are indicative
of the variability of the RTs and DPs. Additionally, due to the
constraint on the RT-DP conversion, the distribution of the
DP is found to be less skewed than that of the RT. Thus, the
transformation of RT to DP is a useful trick to deal with the
individual difference in driving performance, and the DP can
be used as an objective behavioral measurement to characterize
vigilance level.

DP-sorted EEG Spectral Perturbations
We would like to justify the relationship between EEG spectral
activities and DPs. For this, in Table 2 we present the Pearson’s
correlation coefficient between four band powers (delta (1–
4Hz), theta (5–7Hz), alpha (8–12Hz), and beta (13–20Hz)
band) and DPs. Figure 4A presents the DP-sorted EEG spectra
of Pz and Oz, which are estimated by FFT. Figure 4A reveals
that the fluctuations in DP are correlated with concurrent
perturbations in EEG power spectra. Figure 4B depicts the trends
of the DP-sorted delta (1–4Hz), theta (5–7Hz), alpha (8–12Hz),
and beta (13–20Hz) band spectral power. DP-sorted delta and
theta spectral activities exhibit a strong positive correlation,
and DP-sorted beta spectral activities exhibit a strong negative
correlation, with changes in DPs for all EEG channels considered.

DP-sorted EEG Connectivity Changes
Figure 5 shows the dynamics of the strength of connectivity
[i.e., TE values (red color) and GC values (blue color)] between

all pairs of EEG channels across different levels of driving
performance. In Figure 5, compared with the baseline TE,
significant DP-related TE perturbations are highlighted with
bold line (Wilcoxon rank-sum test, FDR-adjusted p < 0.001).
An inverted-U shaped change in TE values is observed in Fz-,
Cz-, C3-, C4- and Pz-associated connectivity. These connectivity
strengths peak at DP = 2.5 and begins to peak-off with decline
in performance. Another interesting observation is that the
information transfer monotonously decreases with the decline
in DP for most of the Oz-related connectivity pairs, especially
in Pz-Oz, and Oz-Pz. It is worth noting here that GC did not
exhibit much change when DP varied from the best to the
worst.

Differences in Connectivity between
Distinct Categories of Driving Performance
As mentioned in the previous section, we have observed two
interesting phenomena from the DP-sorted EEG connectivity
in Figure 5. Further, in this study we provide a group
analysis considering the three performance groups: optimal,
sub-optimal, and poor. Table 3 presents the F-ratio and p-
value from One-way repeated measures ANOVA considering
the three driving performance groups. Table 3 reveals that for
17 of the 25 pairs of channels, the p-value is less than 0.05.
The Wilcoxon signed-rank test is further used to test the
pair wise difference between performance groups. For dealing
with the problems of multiple comparisons, we have used
corrections for false discovery rate (FDR) to obtain the FDR-
adjusted p-value. Figure 6 depicts the significant difference
(Wilcoxon signed-rank test) in connectivity magnitude between
any two performance groups. Figure 6 also provides strong
evidences in support of the inverted-U shaped relation from
high to low DP in most of the discovered connections
(except the Oz-related pairs). The strength of connectivity
in Oz-related pairs declines monotonously from high to
low DP.
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FIGURE 3 | Distribution of reaction time (RT) and driving performance (DP). (A) Histogram of RT. (B) Histogram of DP. Top panel presents the distribution for all

subjects, and bottom panel presents the distributions for each subject.

TABLE 2 | Pearson correlation coefficient between the band power and

the DP.

Fz Cz C3 C4 Pz Oz

Delta 0.8475 0.8329 0.8629 0.8436 0.7783 0.8852

Theta 0.6465 0.5091 0.4479 0.6232 0.4995 0.6705

Alpha −0.8261 −0.7792 −0.7907 −0.8869 −0.7373 −0.3510

Beta −0.7056 −0.7048 −0.9427 −0.9465 −0.7795 −0.4771

DISCUSSION

Behavioral Indicator of Drowsiness
In this study, a 90min driving experiment was designed on a
stimulated monotonous driving task to realize drowsy driving.
Our data were collected in the early afternoon (13:00–14:00) after
subjects finished their lunch when the circadian rhythm related
to sleepiness was at its peak (Ferrara and De Gennaro, 2001).
Most drivers experience fatigue and exhibit low vigilance during
a long and monotonous driving at nighttime (Campagne et al.,

2004) or after lunch without any rest (Takahashi and Arito, 2000).
When people are fatigue, they usually experience difficulty in
maintaining the performance on the task at an adequate level
(Boksem et al., 2005; Liu et al., 2010), and consequently fail in
engaging in the task (Huang et al., 2009; Moeller et al., 2012).
The reaction time is also found to be positively related with
the Karolinska sleepiness scale (KSS), which is commonly used
for assessment of sleepiness and fatigue (Baulk et al., 2001). In
this study, the video surveillance and the driving reaction time
also indicated that it was difficult for the participants to sustain
their attention on the driving task in this simulated driving
environment. Additionally, when vigilance was high (a very low
RT), subjects were hardly unaware of lane-perturbation events
accompanying visual and kinesthetic stimulus generated from the
immersive virtual-reality experiment. On the other hand, severe
decline in vigilance as well as falling asleep leading to roadside
collisions were found to occur when the RT was high (slow
response).

To investigate the relation between fluctuations in driving
performance and the concurrent changes in the EEG spectrum,
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FIGURE 4 | Relationship between the DP and the EEG power spectra. (A) DP-sorted EEG spectra of Pz and Oz. (B) Trends of the DP-sorted delta, theta, alpha,

and beta band spectral power of Fz, Cz, C3, C4, Pz, and Oz. The power spectral estimates of all trials are horizontally staked according to the DP from high to low

(i.e., from DP = 1 to DP = 4).

our study revealed evidences in support of close and specific links
between cortical brain activities (via changes in EEG spectral
power) and driving performance. The correlations of DP with
delta and theta spectral power are particularly found to be strong
for the posterior and occipital channels, which are consistent with
findings in similar recent studies (Lal and Craig, 2002; Huang
et al., 2009; Lin et al., 2012; Chuang et al., 2014b; Wascher
et al., 2014). Therefore, these evidences demonstrate that the
DP is correlated with EEG patterns of drowsiness and DP is a
reasonable indicator for representing vigilance levels.

Task Performance-related Changes of
Connectivity
During the transition from optimal to poor task performance,
subjects suffered from declining vigilance and fatigue and
struggled to avoid behavioral lapses. Under such circumstances,
more efforts were needed by subjects to keep themselves
engaged in the task, as evidenced by the inverted-U shape
of the connectivity magnitude across most connections of
the anterior brain regions. The similar brain response was
also found after sleep deprivation (Szelenberger et al., 2005;
Czisch et al., 2012). Additional compensatory resources (Portas
et al., 1998; Drummond et al., 2000, 2001, 2004; Drummond
and Brown, 2001; Szelenberger et al., 2005) were required

for the enhancement of couplings between distinct brain
regions. One of the functions of the parietal cortex is to
integrate sensory information with motor signals from the motor
cortex to accomplish sensorimotor transformations for motor
planning and sensory guidance of movements (Fogassi and
Luppino, 2005). Therefore, these inverted U-shaped changes
in connectivity magnitudes observed around Cz, C3, C4, and
Pz sites might imply that the neurophysiological activity of
the sensorimotor areas enhanced the brain connectivity to
prepare for upcoming traffic events when subjects were under
a transition state from high to low vigilance level. In the poor
performance group, inspection of the video revealed that subjects
were in a drowsy state and even closed their eyes, and often
did not respond to perturbations. The results of the DP-sorted
connectivity magnitude observed in the occipital area showed a
monotonic descending trend of the connectivity, which might be
related to the fading of consciousness (Massimini et al., 2005).
These reductions of cortico-cortical connectivity might produce
a cortical gate that disconnects the brain from the external
environment and blocks sensory inputs (Esser et al., 2009).

Comparison of Causality Measures
Most EEG studies estimated the independent EEG activations,
which are associated with brain source activations, by ICA
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FIGURE 5 | DP-sorted connectivity magnitudes between pairs of EEG channels estimated by transfer entropy (red trace) and Granger causality (blue

trace) analyses, where causality is from rows to columns. Each cell plots changes in connectivity magnitude (y-axis) from high (DP = 1) to low (DP = 4) task

performance (x-axis). Bold line indicates that the FDR-adjusted p-value is less than 0.001.

(Huang et al., 2009; Vakorin et al., 2010; Chuang et al., 2012;
Lin et al., 2012; Liu et al., 2012). However, ICA assumes
that the subcomponents are statistically independent of each
other, and therefore, finding a probabilistic dependence between
brain regions using statistically independent signals seems to
contradict the hypothesis per se! It is questionable that TE, a
measure of mutual dependence between two processes assessed
by conditional joint probabilities, is an appropriate tool to
measure information transfer between independent components.
One could expect that TE would find no transfer of information
between independent components. To validate this hypothesis,
TE between independent EEG components was computed. As
expected, the permutation tests showed that the estimated TE
between independent EEG components was not significantly
different from zero. Regarding causality measurement, most
studies have applied Granger causality analysis (Blinowska et al.,
2004; Supp et al., 2007; Liu et al., 2010, 2012) in the field
of neuroscience to understand the interactions of activated
brain regions. We have also applied GC in estimating the
changes of performance-related connectivity (see Figure 5). The

volume conduction limits the interpretability of sensor-space
connectivity while using Granger causality analysis (Haufe et al.,
2013). On the contrary, consistent with the findings in a previous
study (Vicente et al., 2011), TE showed its robustness against
false positives caused by volume conduction. Compared with
GCmeasurement, the performance-related dynamic connectivity
could be well-described by TE.

Limitations
Despite its usefulness, the use of TE in this study has certain
limitations thatmay be amajor obstacle in interpreting the results
in terms of physiological changes. The EEG activity of the brain
is generally non-stationary and is accompanied by noise that is
neither Gaussian nor white (Friman et al., 2001; von Bünau et al.,
2009). The measured EEG signals are non-stationary because of
the inherent non-stationary dynamics of the brain (von Bünau
et al., 2009). Therefore, applying advanced techniques, such as
ensemblemethod (Wollstadt et al., 2014), might bemore effective
in analyzing such non-stationary data. Although TE is reasonably
robust to volume conduction it is not completely immune to
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TABLE 3 | Results of One-way repeated measures ANOVA, and the factor

is groups defined by driving performance.

Sink

Fz Cz C3 C4 Pz Oz

Source Fz 2.1445

(0.1332)

6.4832

(0.0042)

8.9318

(0.0008)

3.0847

(0.0591)

6.1103

(0.0055)

Cz 4.1317

(0.0250)

8.3834

(0.0011)

12.3923

(0.0001)

1.5133

(0.2351)

8.4316

(0.0011)

C3 4.0315

(0.0271)

15.9315

(0.0000)

7.5128

(0.0020)

2.2705

(0.1192)

7.0710

(0.0028)

C4 5.0909

(0.0118)

7.5706

(0.0020)

7.4827

(0.0021)

3.8722

(0.0309)

6.6885

(0.0036)

Pz 2.9248

(0.0677)

3.9157

(0.0298)

12.0976

(0.0001)

2.5512

(0.0933)

19.8243

(0.0000)

Oz 2.8563

(0.0718)

1.8480

(0.1735)

1.0822

(0.3506)

7.4341

(0.0022)

9.8100

(0.0005)

The value in each cell is the F-ratio with degrees of freedom (2, 33), and the number inside

the bracket is the p-value. Gray background color indicates that the p-value is less than

0.05.

it. Faes et al. (2013) considered instantaneous effects as non-
physiological because primarily they are caused by artifacts
of volume conduction and suggested corrections for volume
conduction. In this study, we have used ICA to remove such
artifacts (non-physiological) and that has mitigated the effect of
volume conduction.

CONCLUSION

TE analysis was applied to EEG signals to detect changes in
the effective connectivity and to correlate these with changes
in the driving performance in a sustained-attention driving
experiment. This study has demonstrated that EEG pattern of
cortico-cortical connectivity correlated with behavioral lapses
is a reasonable indicator for representing vigilance levels. The
results obtained using TE have revealed that an inverted U-
shaped change in the strength of connectivity dominated during
the transition from alert to drowsy state. This result provides
evidences in support of a recruitment mechanism to establish
couplings between broad regions of the brain to maintain
behavioral performance against declining vigilance. Additionally,

FIGURE 6 | Comparison of connectivity magnitude between three performance groups estimated by transfer entropy, where causality is from rows to

columns. Each cell plots changes in connectivity magnitude from optimal group (O; red marker) through sub-optimal group (S; blue marker) to poor group (P; yellow

marker). Error bars indicate standard deviations. *FDR-adjusted p < 0.05 and **FDR-adjusted p < 0.01.
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a monotonically decreasing magnitude of the Oz-Pz connectivity
was observed suggesting suppression of propagation of brain
activity resulting in a disconnection between internal awareness
and the external environment. Neurophysiological evidences
of changes in connectivity provided further insight into the
distributed brain dynamics, which ultimately shed light on
the characteristics of brain-behavior relations in an operational
environment.
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Korzeniewska, A., Mańczak, M., Kamiński, M., Blinowska, K. J., and Kasicki, S.

(2003). Determination of information flow direction among brain structures

by a modified directed transfer function (dDTF) method. J. Neurosci. Methods

125, 195–207. doi: 10.1016/S0165-0270(03)00052-9

Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual

information. Phys. Rev. E 69:066138. doi: 10.1103/physreve.69.066138

Lal, S. K. L., and Craig, A. (2002). Driver fatigue: electroencephalography

and psychological assessment. Psychophysiology 39, 313–321. doi:

10.1017/S0048577201393095

Lal, S. K. L., and Craig, A. (2005). Reproducibility of the spectral components of the

electroencephalogram during driver fatigue. Int. J. Psychophysiol. 55, 137–143.

doi: 10.1016/j.ijpsycho.2004.07.001

Lee, J., Nemati, S., Silva, I., Edwards, B., Butler, J., andMalhotra, A. (2012). Transfer

entropy estimation and directional coupling change detection in biomedical

time series. Biomed. Eng. 11, 1–17. doi: 10.1186/1475-925X-11-19

Lin, F.-C., Ko, L.-W., Chuang, C.-H., Su, T.-P., and Lin, C.-T. (2012).

Generalized EEG-based drowsiness prediction system by using a self-

organizing neural fuzzy system. IEEE Trans. Circuits Syst. I 59, 2044–2055. doi:

10.1109/TCSI.2012.2185290

Lindner, M., Vicente, R., Priesemann, V., and Wibral, M. (2011). TRENTOOL: a

Matlab open source toolbox to analyse information flow in time series data with

transfer entropy. BMC Neurosci. 12, 1–22. doi: 10.1186/1471-2202-12-119

Liu, J.-P., Zhang, C., and Zheng, C.-X. (2010). Estimation of the cortical functional

connectivity by directed transfer function during mental fatigue. Appl. Ergon.

42, 114–121. doi: 10.1016/j.apergo.2010.05.008

Liu, Z., Zhang, Y., Bai, L., Yan, H., Dai, R., Zhong, C., et al. (2012). Investigation

of the effective connectivity of resting state networks in Alzheimer’s disease:

a functional MRI study combining independent components analysis and

multivariate Granger causality analysis. NMR Biomed. 25, 1311–1320. doi:

10.1002/nbm.2803

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., and Tononi, G.

(2005). Breakdown of cortical effective connectivity during sleep. Science 309,

2228–2232. doi: 10.1126/science.1117256

Moeller, S. J., Tomasi, D., Honorio, J., Volkow, N. D., and Goldstein, R. Z.

(2012). Dopaminergic involvement during mental fatigue in health and cocaine

addiction. Transl. Psychiatry 2, e176. doi: 10.1038/tp.2012.110

Portas, C. M., Rees, G., Howseman, A. M., Josephs, O., Turner, R., and Frith, C. D.

(1998). A specific role for the thalamus inmediating the interaction of attention

and arousal in humans. J. Neurosci. 18, 8979–8989.

Rosario, H. D., Solaz, J. S., RodriìGuez, N., and Bergasa, L. M. (2010). Controlled

inducement and measurement of drowsiness in a driving simulator. IET Intell.

Transp. Syst. 4, 280–288. doi: 10.1049/iet-its.2009.0110

Sabesan, S., Good, L. B., Tsakalis, K. S., Spanias, A., Treiman, D. M., and

Iasemidis, L. D. (2009). Information flow and application to epileptogenic focus

localization from intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 17,

244–253. doi: 10.1109/TNSRE.2009.2023291

Schreiber, T. (2000). Measuring information transfer. Phys. Rev. Lett. 85, 461–464.

doi: 10.1103/PhysRevLett.85.461

Supp, G. G., Schlögl, A., Trujillo-Barreto, N., Müller, M. M., and Gruber, T. (2007).

Directed cortical information flow during human object recognition: analyzing

induced EEG gamma-band responses in brain’s source space. PLoS ONE 2:e684.

doi: 10.1371/journal.pone.0000684

Szelenberger,W., Piotrowski T Fau -Dabrowska, A. J., andDabrowska, A. J. (2005).

Increased prefrontal event-related current density after sleep deprivation. Acta

Neurobiol. Exp. (Wars). 65, 19–28.

Takahashi, M., and Arito, H. (2000). Maintenance of alertness and performance by

a brief nap after lunch under prior sleep deficit. Sleep 23, 813–819.

Vakorin, V. A., Kovacevic, N., and McIntosh, A. R. (2010). Exploring transient

transfer entropy based on a group-wise ICA decomposition of EEG data.

Neuroimage 49, 1593–1600. doi: 10.1016/j.neuroimage.2009.08.027

Vicente, R., Wibral, M., Lindner, M., and Pipa, G. (2011). Transfer entropy–a

model-free measure of effective connectivity for the neurosciences. J. Comput.

Neurosci. 30, 45–67. doi: 10.1007/s10827-010-0262-3

von Bünau, P., Meinecke, F. C., Király, F. C., and Müller, K.-R. (2009). Finding

stationary subspaces in multivariate time series. Phys. Rev. Lett. 103:214101.

doi: 10.1103/PhysRevLett.103.214101

Wascher, E., Rasch, B., Sänger, J., Hoffmann, S., Schneider, D., Rinkenauer, G.,

et al. (2014). Frontal theta activity reflects distinct aspects of mental fatigue.

Biol. Psychol. 96, 57–65. doi: 10.1016/j.biopsycho.2013.11.010

Whitmer, D., Worrell, G., Stead, M., Lee, I. K., and Makeig, S. (2010). Utility of

independent component analysis for interpretation of intracranial EEG. Front.

Hum. Neurosci. 4:184. doi: 10.3389/fnhum.2010.00184

Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F. J., and Wibral,

M. (2014). Efficient transfer entropy analysis of non-stationary neural time

series. PLoS ONE 9:e102833. doi: 10.1371/journal.pone.0102833

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Huang, Pal, Chuang and Lin. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 12 October 2015 | Volume 9 | Article 570

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Identifying changes in EEG information transfer during drowsy driving by transfer entropy
	Introduction
	Materials and Methods
	Participants and EEG Acquisition
	Sustained-attention Driving Experiment
	Connectivity Estimation by Transfer Entropy
	Behavioral Performance
	EEG Signals of Interest
	EEG Analysis
	Statistical Analysis

	Experimental Results
	Behavioral Performance
	DP-sorted EEG Spectral Perturbations
	DP-sorted EEG Connectivity Changes
	Differences in Connectivity between Distinct Categories of Driving Performance

	Discussion
	Behavioral Indicator of Drowsiness
	Task Performance-related Changes of Connectivity
	Comparison of Causality Measures
	Limitations

	Conclusion
	Funding
	Acknowledgments
	References


