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There has been a recent surge in the use of electroencephalography (EEG) as a
tool for mobile brain imaging due to its portability and fine time resolution. When
EEG is combined with independent component analysis (ICA) and source localization
techniques, it can model electrocortical activity as arising from temporally independent
signals located in spatially distinct cortical areas. However, for mobile tasks, it is not
clear how movement artifacts influence ICA and source localization. We devised a
novel method to collect pure movement artifact data (devoid of any electrophysiological
signals) with a 256-channel EEG system. We first blocked true electrocortical activity
using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with
electrical properties similar to real human scalp. We collected EEG movement artifact
signals from ten healthy, young subjects wearing this setup as they walked on a
treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the
EEG movement artifact data to quantify how accurately these methods would identify
the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of
the independent components in non-neural locations or lacked dipolar characteristics.
The remaining 1% of sources had locations within the brain volume and low residual
variances, but had topographical maps, power spectra, time courses, and event related
spectral perturbations typical of non-neural sources. Caution should be exercised
when interpreting ICA for data that includes semi-periodic artifacts including artifact
arising from human walking. Alternative methods are needed for the identification and
separation of movement artifact in mobile EEG signals, especially methods that can be
performed in real time. Separating true brain signals from motion artifact could clear the
way for EEG brain computer interfaces for assistance during mobile activities, such as
walking.
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INTRODUCTION

Researchers have made great progress in understanding brain
function over the last century, but we still lack information
on the complex cortical activity underlying everyday tasks
performed by mobile individuals. Studies on immobile subjects
have greatly added to our understanding of brain function
during cognitive and motor tasks (Nddtinen and Picton, 1987;
Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999; Neuper
and Klimesch, 2006; Jerbi et al., 2009). Almost all functional
brain imaging studies have been limited to lying or seated
postures with little body motion. For real world applications
like brain machine interfaces and clinical neurorehabilitation,
a better understanding of changing brain dynamics during
mobile activities like walking would greatly advance current
neuroscience knowledge. This rationale has driven researchers
in recent years to explore possibilities of electroencephalography
(EEG) for mobile brain imaging (Makeig et al., 2009; Gwin
et al, 2010, 2011; Gramann et al, 2011, 2014; Presacco
et al, 2011; Wagner et al., 2012, 2014; Broccard et al., 2014;
Seeber et al., 2014, 2015). However, a current limitation to
these efforts is that we do not know how mathematical
methods developed for processing EEG data collected on
seated or standing subjects will perform on data collected
on mobile subjects that will inevitably contain movement
artifact.

Due to its portability, low cost, and good time resolution,
EEG shows great promise for studying neural activity during
mobile tasks. Analysis of brain dynamics during a walking stride
requires fine temporal resolution because of its relatively short
duration. With millisecond precision, EEG has inherently better
temporal resolution than other brain imaging methods such as
functional near infrared spectroscopy (Villringer and Chance,
1997; Irani et al., 2007). Blind-source separation methods such as
independent component analysis (ICA) combined with inverse
modeling of neural sources can provide EEG spatial resolution of
approximately 1 cm (Makeig et al., 2004a,b). This combination of
good temporal resolution, reasonable spatial resolution, and the
low mass of EEG hardware has led to a plethora of new studies on
electrocortical activity during human walking (Gramann et al.,
2010; Gwin et al.,, 2010, 2011; Presacco et al., 2011; Debener
et al., 2012; Petersen et al., 2012; Severens et al., 2012; Wagner
et al., 2012, 2014; Sipp et al., 2013; Kline et al., 2014; Lin et al.,
2014; Seeber et al., 2014, 2015; Bulea et al., 2015; Malcolm et al.,
2015).

Pervasive, semi-periodic movement artifact is a major
drawback of using EEG to examine electrocortical activity during
human locomotion (Gwin et al., 2010). Two recent studies have
indicated that movement artifact can lead to high levels of
spectral power, especially at very low and very high frequencies,
during double support (Castermans et al., 2014; Kline et al.,
2015). ICA has proven very effective for separating eye and
muscle artifacts from EEG electrocortical signals during seated
or standing tasks (Jung et al, 2000; Delorme et al, 2007).
Algorithms that model independent components as equivalent
current dipoles, such as DIPFIT, have also been shown to be able
to accurately localize the resultant neural sources (Oostenveld

and Oostendorp, 2002). How algorithms like ICA and DIPFIT
perform in the presence of the semi-periodic movement artifact
inherent to walking is unknown.

Many procedures have been utilized for removing movement
artifact during walking. Using a template regression by
subtracting a moving average of the 20 surrounding strides and
then performing ICA, Gwin et al. (2010) were able to significantly
reduce power at lower frequencies (1.5-8.5 Hz) and recover
event related potentials for a visual oddball task for walking
at 0.8 and 1.2 m/s. More recent research has shown that this
method alone or in combination with wavelet filtering does
not remove all movement-induced fluctuations from data at
speeds from 0.4-1.6 m/s (Kline et al., 2015). More recently, a
more sophisticated algorithm, artifact subspace rejection, has
been developed (Mullen et al., 2013). This method transforms
the data into principal component space and compares the
resulting signals to EEG data during quiet standing to identify
artifact based on amplitude and variance. However, to function
correctly, the thresholds for rejection must be set correctly so
that only movement artifact and not neural data are eliminated.
Further, Seeber et al. (2015) developed a method to separate
overlapping narrow band and broadband frequency activity
in EEG. This process, particularly in combination with this
group’s method for identifying frequencies that show stride-
linked modulation, could be helpful for parsing out neural data
during movement.

There are multiple methods available for separating artifacts
and determining underlying source locations from EEG data.
Many methods stem from blind source separation, which use
mathematical algorithms to determine the underlying sources
from the EEG data using relatively few assumptions about how
the sources were mixed. Of these methods (Bell and Sejnowski,
1995; Belouchrani and Cichocki, 2000; Hyvirinen and Oja, 2000;
Lee et al, 2000), adaptive mixture independent component
analysis (AMICA) has been shown to be most effective at
reducing mutual information between sources (Delorme et al.,
2012). Blind source separation methods do not in isolation
determine neural location, but can be used in combination with
a source localization algorithm, often DIPFIT. Other methods
instead focus instead on solving the inverse problem. While there
are many methods that can be utilized (Gorodnitsky et al., 1995;
Gorodnitsky and Rao, 1997; Grave de Peralta Menendez et al,,
1997, 2004; Baillet, 1998; Genger and Williamson, 1998; Pascual-
Marqui, 1999, 2002; Valdes-Sosa et al., 2000; Liu et al., 2005;
Schimpfetal., 2005), generally standardized low-resolution brain
electromagnetic tomography (sLORETA) has been shown to
have the best balance of computational complexity and accuracy
(Grech et al., 2008). However, head to head, it remains an open
question whether either ICA with DIPFIT or sSLORETA performs
better. Therefore, due to our group’s previous experience with
ICA and DIPFIT, we chose to focus on these algorithms for this
current study.

To test the effect of semi-periodic movement artifact on ICA
and dipole fitting, we devised a novel way to measure only
gait-related movement artifact with EEG electrodes (Figure 1).
We blocked all real electrophysiological signals and collected
only movement artifact with an EEG system while ten healthy
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subjects walked on a treadmill. We applied ICA to this exclusively
movement artifact EEG data. If the combination of ICA and
DIPFIT was robust to movement artifact, it should find only
sources with non-neural locations and characteristics.

MATERIALS AND METHODS

Movement Artifact Data Collection and

Initial Processing

Ten subjects participated in the study. All subjects were young
and healthy, had no known muscular or neurological deficits,
and provided informed consent to the protocol approved
by the University of Michigan Internal Review Board before
participation. We had the subjects wear a non-conductive
silicone swim cap to block all true electrophysiological
signals. Over the silicone layer, we placed a simulated
scalp with impedance similar to actual human scalp, which
consisted of a very short wig soaked in conductive gel.
We measured the resistances between the ground and the
electrodes on the simulated scalp using a multimeter (0.9
+ 0.4 Mohm). This is within an order of magnitude of
the values of real human scalp (Fish and Geddes, 2003).
We then set up the EEG system as usual (Figure 1).
Subjects walked at four different speeds (0.4, 0.8, 1.2, and
1.6 m/s) for 10 min each while we recorded movement
artifact at 512 Hz using a 256-channel active electrode array
system (BioSemi Active 2; Amsterdam, Netherlands). We
simultaneously recorded kinematics using a 10-camera motion
capture system (Vicon Nexus, Oxford, UK) and ground reaction
forces using a custom-built, force-instrumented treadmill.
Calcaneus marker and ground reaction force data were used to
calculate gait events. Specific data collection methods for this
portion of the study have been previously reported (Kline et al.,
2015).

Our movement artifact processing was similar to previous
EEG walking studies (Gwin et al.,, 2011; Kline et al., 2014). After
collection, we first filtered the movement artifact data above
a frequency of 1 Hz. We then merged trials for all walking
conditions into one data set for each subject.

Independent Component Analysis

We rejected noisy channels before performing ICA on the
merged data sets for each subject. We identified noisy channels
using similar methods to previous studies, thresholding channels
by standard deviation, correlation with neighboring channels,
and kurtosis (Gwin et al., 2011; Sipp et al.,, 2013; Kline et al.,
2014). We modified the standard deviation cutoffs for each
subject, rejecting channels with standard deviation values (2.3
=+ 0.9) that were clear outliers by visual inspection. We used
consistent cutoffs for kurtosis and correlation (Kline et al,
2014). Using these cutoffs only eliminated 10’s of channels.
This process left an insufficient sample to channel-squared
ratio (18.8 + 0.1, when 30+ is recommended) to guarantee
our ICA algorithm’s convergence. We therefore took a spatially
distributed subset of the remaining channels, leaving 125.6 +
8.2 (range 119-148) channels and a sample to channel-squared

ratio of 79.0 + 8.6. We then performed an ICA on the
merged set using the AMICA algorithm. The AMICA algorithm
combines infomax and multiple mixture methods to separate
EEG signals into maximally independent components fixed in
space (Palmer et al., 2006, 2008). AMICA was chosen because
it has shown to reduce the shared mutual information more
fully than other blind source separation algorithms (Delorme
et al, 2012), but the results were virtually identical if the
CUDAICA algorithm was substituted for AMICA. We calculated
equivalent dipole models for each of the resulting components
via the DIPFIT function (Oostenveld and Oostendorp, 2002).
For components with residual variance (RV) values less than
15% and dipole locations inside the brain, we calculated
topographical maps, power frequency spectra, average time
course for a stride, and event-related spectral perturbations
(ERSP).

We additionally performed a split-half comparison to
examine how reliably AMICA identified movement artifact
related independent components with RV’s <15% and
consistent, neural locations (Groppe et al., 2009). We split
the data into two equal halves. The first set consisted of the
first half of the data at each speed, concatenated into a single
20-min data set. The other set consisted of the second half of the
data at each speed, concatenated into a single 20-min data set.
We performed AMICA on each set of data and compared the
locations and RVs of the resulting independent components to
those found using the full set of data.

For the spectral analysis, we used EEGLAB’s “spectopo”
function, which employs Welch’s power spectral density estimate
method. We used a window of length 512 samples (1 s), an
ftt length of 1028, and no overlap between the windows. For
comparison, these same methods were employed in calculating
spectra for components in the middle sensorimotor cortex for
subjects performing a cognitive task while standing and walking
at the same four speeds (Kline et al., 2014).

For the ERSP analysis, we epoched the data from ~0.5 s
before to 3 s after right heelstrike. This epoch length was
chosen to assure that each epoch captured a full stride plus
a sufficient time buffer for spectral calculations even for
the slowest speed. We used three cycle Morlet wavelets to
compute log spectrograms for each individual stride. We then
timewarped all strides so that initial right heel strike, left
toe off, left heelstrike, right toe off, and the subsequent right
heel strike occurred at the same times. For the ERSP values,
we timewarped to the mean of these median values and
subtracted the mean spectral power over the stride time at each
frequency to calculate only the fluctuations around the mean
value (Gwin et al., 2011; Sipp et al., 2013). We again used
the same methods to calculate ERSP’s around a cognitive task
performed while walking at the same four speeds (Kline et al.,
2014).

We additionally analyzed how average correlation and mutual
information across channels (or components) changed over the
analysis process for both artifact data and for data from subjects
performing a cognitive task while standing and walking (Kline
et al., 2014). We used methods consistent with Delorme et al.
(2012) to find the mean mutual information between different
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FIGURE 1 | Experimental setup and channel location illustration. (A) lllustration of the process of isolating and measuring gait-induced movement artifact in
EEG recordings. A simulated conductive scalp permits the electrodes to measure voltage differences resulting from gait dynamics while a silicone swim cap blocks
true electrocortical signals. (B) Schematic of experimental setup and channel locations. Subjects walked on a custom split-belt force measuring treadmill at four
speeds (0.4, 0.8, 1.2, and 1.6 m/s). Calcaneus marker positions were recorded using motion capture.
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channel pairs by averaging first over channel pairs and then
subjects. The mutual information:

Mij = h(xi) + h(x)) — h(x;, x;)

where hi(x;) represents the entropy of the time series of a random
variable x;. We used the typical binning method with a fixed
number of bins to create histograms followed a simple Riemann
approximation of the integrals to approximate these entropies.

Specific details of these methods can be found in the “Methods”
section at the end of Delorme et al. (2012).

We compared the mean mutual information between
disparate pairs of channels at four different stages: 256 channels
of raw data with a common reference; 256 channels of
data re-referenced to the average; just the channels that
went into the ICA re-referenced to their average; and the
component data. There was some increase with speed
in common information shared between non-referenced
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channels for the artifact data, whereas we found no
difference with speed in the EEG data. We consequently
show different speeds for the artifact data, but not the EEG
data.

RESULTS

Our AMICA results revealed few components that displayed
neural characteristics. The components did not have the
combination of low RVs, superficial cortical locations, clear
dipolar topographical maps, and clean neural spectra commonly
displayed by neural sources. Over all subjects, there were a
total of 72 components with RVs less than 15%, and 63 of
these sources were located outside the brain (Figure 2). There
were nine components from as many subjects with RVs lower
than 15% in the brain, eight of which were in the cortex
(Figure 2).

Seven of the nine components with RVs below 15% and
locations in the brain shared similar locations and topographical
characteristics (Figure 3). However, two revealed differences in
location and topographical map characteristics from the other
seven. These seven sources were generally located along the
midline in the sensorimotor and parietal areas (Figures 2, 3).
They displayed topographical maps that appeared somewhat
dipolar, but possessed asymmetries and abnormalities that are
not typical of true neural sources.

The two remaining sources revealed locations in the
cerebellum (Subject 2, Component 2) and the very front of the
cortex (Subject 5, Component 70) and maps that did not possess
the symmetric, circular pattern typical of dipolar components
(Figure 3).

For most components, the spectral power and event related
spectral perturbations revealed evidence of movement artifact
(Figures 4-6). Spectral power showed artifact in the form
of peaks at approximately the resonant frequencies of the
step frequency (~2 Hz for 1.6 m/s; ~1.8 Hz for 1.2 m/s;
1.5 for 0.8 m/s; 1 Hz for 0.4 m/s). These peaks were
more prominent at faster speeds, such as 1.2 and 1.6 m/s,
than at slower speeds (Figure 4). In all cases, these spectral
peaks were large compared to the changes found in neural
components, though the neural data at 1.6 m/s seems to
reveal some contamination (Figures 5, 6). The ERSPs generally
revealed broadband synchronizations and desynchronizations.
The ERSPs also showed generally consistent patterns within a
subject across speeds, though there were minor changes as speed
increased (Figure 5).

The pattern of shared information reduction over analysis
differed for artifact data than for true neural data, and
neural data during walking was far more similar to neural
data during standing than to artifact data (Tables 1, 2).
Much of the common information across channels for the
artifact data was eliminated by re-referencing to the average,
whereas this re-referencing increased common information
for the cognitive data. Despite this reduction in information
due to re-referencing, ICA still reduced correlation and
mutual information by almost an order of magnitude for the
artifact data. For the cognitive data, both eliminating noisy

channels and ICA led to a significant reduction in shared
information.

The split-half comparison revealed that cortically located
movement artifact components with RV’s < 15% were reliably
identified for about half the subjects. AMICA identified reliable
components with RV’s of <15% and consistent neural locations
for Subjects 1, 3, 4, 7, 8, and 10. For these subjects, components
were found for all sets that had an average distance (as measured
in Talairach coordinates) between components of 11 Talairach
units or less and RV’s of less than 15%. For Subjects 2, 5, 6, and
9, either one or more sets revealed no components with RV’s of
<15%.

DISCUSSION

We performed ICA and dipole fitting on data collected using
a novel technique that blocks neural signals and records only
pure gait-related artifact. Our ICA and inverse head modeling
results identified 99% of components as not being neural
based solely on the basis of location and RV above 15%.
The remaining 1% of the components had cortical locations
and RVs below 15%. These sources were mostly located in
cortical areas where one would expect activity during walking.
A reliability analysis revealed that these components show
consistent locations and low RV’s for about half the subjects.
Power spectra and ERSPs of the these components need to be
examined to better differentiate some independent components
as non-neural sources (Onton et al, 2006). Spectral power
peaks at stride frequency and broadband synchronization
and desynchronization can help to identify EEG components
that are primarily related to movement artifacts rather than
electrocortical activity.

The cortically located components were generally found in
locations where we would expect neural activity during walking,
such as the sensorimotor and posterior parietal cortices. Neural
activity has been found previously in the sensorimotor and
posterior parietal cortices both in EEG and fNIRS studies
during human locomotion (Suzuki et al., 2008; Kurz et al,
2012; Wagner et al., 2012, 2014; Sipp et al., 2013; Koenraadt
et al.,, 2014; Gramann et al., 2014; Seeber et al., 2014, 2015).
These other observations suggest that there is likely ongoing
real electrocortical activity in these locations during human
locomotion.

Analysis of power spectra and ERSPs clearly distinguished
the cortically located movement artifact components as non-
neural despite their neural locations (Figures 4-6). Their
power spectra revealed artifact at low frequencies that was
particularly identifiable for a normal walking speed, 1.2 m/s,
and a fast walking speed, 1.6 m/s (Figure 4). Further, for all
speeds, the ERSPs for these components generally demonstrated
broadband synchronization and desynchronization patterns that
are consistent with movement artifact (Figure 5) rather than
cognitive changes (Figure 6). These broadband changes made
gait-related artifact components identifiable for all speeds.
Components from walking data that exhibit these spectra and
ERSP patterns should be identified and excluded from any neural
analysis.
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RVs < 15% with locations inside the brain are shown in red.

FIGURE 2 | Component locations. (A) All components with RVs > 15% with locations outside the brain are shown in green. (B) All components with RVs > 15%
with locations inside the brain are shown in yellow. (C) All components with RVs < 15% with locations outside the brain are shown in blue. (D) All components with

A split-half comparison showed that the cortically located
movement artifact components with RV’s < 15% identified by
AMICA were unreliable in slightly less than half the subjects.
Two of the components identified as unreliable had locations
in the cerebellum and the very front of the frontal cortex,
so this method may provide a consistent, algorithmic method
for eliminating movement related artifacts with unlikely neural

locations, such as the cerebellum. However, while a split-half
comparison was effective at identifying non-neural components
for some subjects, AMICA still found independent components
with RVs < 15% and reliable neural locations for over half
of the subjects. Further, AMICA occasionally split similar
components from one set to another, so other algorithms, such
as CUDAICA, may be still less effective at identifying these
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RV=13.76 (None, None)%

FIGURE 3 | Cortical component characteristics. Cortical locations, topographic maps, residual variance (RV) values for the full set and for each half set for the
split-half comparisons (in parentheses), and average distance between analogous components for the full-set and each half set in Talairach coordinates are shown
for the nine components with RV < 15% and neural locations for the full set. The word “None” appears when there were no components with neural locations and
RVs < 15% for a given set. Components that were reliably identified for all three sets are labeled with a red “R.” Alone, these characteristics are not enough to

declare all of these components non-neural.

RV=14.91 (14.40, 14.51)%

Av Dist=3.6

components using reliability measures. Therefore, though a
split-half analysis may be used to filter out these components
for some subjects, is not sufficient for the identification
of cortically located movement artifact components for all
data.

There are a number of possibilities for why we find cortical
locations when no cortical dipolar sources were present. Cortical
locations of the IC’s from the movement artifact data could
result from a violation of one of the assumptions necessary
for ICA analysis: independence of the source signals. Because
the gait artifact related changes in electrode voltage are stride-
linked, they likely occur with similar timing. Recent testing in
our lab on a motionless phantom head has revealed that, if
two spatially disparate sources have as little as 50% temporal
overlap in activity, ICA with DIPFIT will locate a single
source with a spatial location in between the two actual

sources. Consequently, if we have movement artifact related
signals that occur at different locations around the head with
similar timing, this could lead to spatial superposition of
these locations during the dipole fitting process. This process
could make it appear as if there is a dipole within the brain
volume, rather than multiple non-dipolar sources outside of
it. Other additional sources could be slight cap movements
or electrode tensioning. These results were found only for
DIPFIT, and results may differ for other source localization
models.

The results from ICA and dipole fitting analysis on pure gait-
related movement artifact can offer some insights into how to
interpret ICAs performed on walking data. Our results indicate
that components can be found in cortical areas where activity is
expected during walking, even with pure artifact data as an input,
and that for about half the subjects, these components can be

Frontiers in Human Neuroscience | www.frontiersin.org

December 2015 | Volume 9 | Article 639


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive

Snyder et al.

£ 2
250 3, 90

S1 g0 S7 =
E S 40

IC 1 % IC4 2
=0 g 30

o (<]

o

10 20 30 40

Frequency (Hz) Frequency (Hz)
= 50 = 50
] 2
S2 g4 S8 g40
IC2 2 IC 1 £ 30
[ [
] S
2 2 20

10 20 30 40

10 20 30 40

10 20 30 40

Frequency (Hz) Frequency (Hz)
N’;‘ 60 a
3950 = 60
S3 2 59 g 50
Ay =)
IC1 8 40 IC 2 g 40
ok § 30
10 20 30 40 10 20 30 40
Frequency (Hz) Frequency (Hz)
N’: 60 N; 70
a2 o
o 50 g 60
S4 g %0 S1 O :_3 55
IC1 % IC1 &
g 30 g 40
10 20 30 40 10 20 30 40
Frequency (Hz) Frequency (Hz)
i Cognitive Data
= 40
35 ‘8?_ Ni:' 60
) )
E 20 % 50
10 20 30 40 s
Frequency (Hz) &
10 20 30 40
Frequency (Hz)

ICA of Movement Artifact

FIGURE 4 | Cortical component spectra. Power spectra for the artifact data show large spectral peaks at the stride frequency and resonant frequencies thereof,
particularly at speeds of 1.2 and 1.6 m/s. The peaks of the movement artifact data are large compared to those found in neural data, but neural data at 1.6 m/s does
show some signs of movement contamination.

reliably found across different data sets. However, examination
of power spectra and ERSPs can help determine whether sources
in these locations are neural or caused by movement artifact.

Previous studies have shown different patterns of spectral
perturbations during walking (Gwin et al, 2011; Wagner
et al, 2012, 2014; Seeber et al, 2014, 2015). Data from
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Gwin et al. (2011) show broadband frequency changes over
the course of a stride, whereas others have shown more
narrow band fluctuations (Wagner et al,, 2012, 2014; Seeber
et al., 2014, 2015). Additionally, Petersen et al. (2012) showed
coherence between the motor cortex and the tibialis anterior
at narrow-band frequencies of 8-12 Hz, and 24-40 Hz,
approximately 700-200 ms before heelstrike. The 24-40 Hz

range matches the results of some studies (Wagner et al,
2012, 2014; Seeber et al, 2014, 2015). The 8-12 Hz range,
found predominantly at the more typical rather than the slower
walking speeds, overlaps with the results found by Gwin et al.
(2011).

Additionally, broadband spectral fluctuations are not specific
to movement artifact and can also occur due to neural
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FIGURE 6 | Cognitive event related spectral perturbations. Spectral perturbations for subjects performing a Brooks spatial memory task show much smaller
fluctuations within a smaller frequency band than the artifact data. Data was epoched around the stimulus (number) presentation, with solid vertical lines indicating

data (Miller et al., 2014). Broadband fluctuations have been
shown at theta, alpha, and beta frequencies in response to
postural perturbation (Varghese et al., 2014), and phase-
locking of theta and alpha frequencies has been found in
memory tasks (Klimesch et al, 2004). This is especially
important to consider in light of the differences between the
studies in question. There are different speeds, with Gwin
et al. combining speeds of 0.8 and 1.25 m/s and Wagner
et al. and Seeber et al. having slower speeds ranging from
0.5-0.61 m/s.

There are also different walking conditions. Gwin and
colleagues had subjects walking freely on a treadmill, whereas
the other studies had subjects walking in a Lokomat. It is quite
possible that the different results stem from a source other than
movement artifact, such as increased sensory input in subjects
walking at more typical walking speeds without a robotic device.
Petersen’s results suggest narrow band coherence can be found at
speeds of 1-1.1 m/s, as well as slow speeds (0.35 m/s), but did not
include the time during heelstrike. The cause of the differences
between the study results therefore remains unknown.
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TABLE 1 | Mutual information and correlation at various stages of analysis
for the artifact data for individual speeds.

Mutual Raw Average Pre ICA Post ICA
information (m/s) data ref (channels) (components)
0.4 0.38 0.046 0.044 0.0105
0.8 0.45 0.064 0.060 0.0113
1.2 0.53 0.074 0.069 0.0121
1.6 0.61 0.090 0.086 0.0123
Correlation

0.4 0.64 0.15 0.15 0.017
0.8 0.71 0.21 0.21 0.027
1.2 0.76 0.24 0.23 0.030
1.6 0.78 0.27 0.27 0.032

Additionally, in recently completed research out of our lab, a
phantom head with electrical characteristics similar to a human
head with controllable embedded source signals was subjected
to walking-like movement with a setup almost identical to that
from Gwin et al, and ICA recovered ground truth signals
even when the head was moved up to 6 cm fluctuations at
frequencies up to 2 Hz (Gwin et al,, 2011; Oliveira et al,
2015). These results indicate that ICA is capable of separating
walking-like movement artifact from simulated neural signals. It
remains to be shown that it performs similarly on actual neural
data.

Though our results offer insights into walking data, there
are conflicting pieces of evidence as to how compromising
gait-related movement artifact is to ICA analysis of neural
data. Our ICA results, taken alone, suggest that caution should
be exercised with data that contain gait-related movement
artifact, but our mutual information offers more insight.
Simply re-referencing all channels to the average eliminated
most of the shared information in the movement artifact
data. Very little additional mutual information reduction
occurred due to ICA. This suggests that most movement
artifact data is similar across all channels. It also suggests
that ICA may not perform as well on this data because,
when most of the common information has been removed
by re-referencing, the resulting inputs may not appear to
be the mixed inputs assumed by the ICA algorithm, leading
ICA to perform sub optimally. Further, re-referencing the

TABLE 2 | Mutual information and correlation at various stages of analysis
for the EEG data for just walking, walking with a cognitive task, and
standing with a cognitive task.

Cognitive data

Mutual Raw Average Pre ICA Post ICA
Information data ref (channels) (components)
Walking 0.26 0.44 0.23 0.016
Cog walking 0.29 0.36 0.22 0.016
Cog standing 0.27 0.39 0.23 0.016
Correlation

Walking 0.42 0.47 0.29 0.019
Cog walking 0.42 0.47 0.30 0.018
Cog standing 0.4 0.47 0.31 0.016

cognitive data to the average did not reduce shared mutual
information for walking or standing data, with or without
a cognitive task. If the movement artifact in this data is
consistent across channels, as was found for the artifact data,
this suggests that little of the common data across channels,
even during walking without a cognitive task, seems to be
related to gait patterns. However, ICA performed on walking
data, especially at fast speeds or over uneven surfaces that
induce more head acceleration, produces components with
spectral fluctuations consistent with walking-related artifact.
It therefore remains an open question as to how neural
data containing gait-related movement artifact is separated
by ICA.

To determine how ICA parses out neural and movement
artifact data, a next step should be combining known neural
data with known movement artifact data and analyzing how
ICA parses out the two separate contributions. This would
consist of collecting clean, seated neural data, collecting
pure movement artifact data collected using a setup similar
to that used in this study, summing the two resulting
signals, and performing ICA on the combined time series.
By including both signals, we could determine whether ICA
will parse out movement artifact as separate components
similar to the ones found in our study or into components
containing both neural and movement artifact elements.
In practice, this would likely involve varying the relative
amplitudes of these two series to determine whether there is
a threshold past which gait-related movement artifact becomes
problematic.

The best way to fully separate movement artifact without
compromising neural data during walking remains an open
question in EEG research and may involve a combination
of different hardware or software methods. One hardware-
based solution consists of interspersing channels collecting pure
movement artifact with channels collecting both neural and
movement artifact data. Researchers could then interpolate
the artifact only channels to calculate artifact alone at the
locations that recorded both movement artifact and neural
data, and subtract the artifact data out. Additionally, using
an inverse-based model, rather than a blind source separation
method, may allow for better identification of movement
artifact sources that result in fluctuations that overlap in time
and/or frequency with those resulting from neural sources.
Alternatively, there are ways to combine the software-based
noise rejection methods that have been used previously.
For instance, Bulea et al. (2015) combined ICA/DIPFIT
with artifact subspace rejection to obtain results on how
different parts of the brain activate when changing speed.
Further, multiple methods developed by Seeber et al. (2014),
including gait phase modulation, which determines what
particular frequencies are modulated across a stride, and
muscle artifact correction, in which PCA methods are used
to distinguish muscle from cortical contributions in similar
frequency ranges, could be utilized in concert with artifact
subspace rejection, particularly its thresholding capabilities,
to distinguish between stride linked signals due to cortical
activity, artifact, and muscle. Integrating multiple algorithms
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with ICA could allow for additional artifact identification
and rejection. More research needs to be done on these
methods in combination to establish the optimal method for
distinguishing neural data from artifact in EEG during human
walking.
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