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The brain activity associated with processing numerical end values has received limited
research attention. The present study explored the neural correlates associated with
processing semantic end values under conditions of automatic number processing.
Event-related potentials (ERPs) were recorded while participants performed the
numerical Stroop task, in which they were asked to compare the physical size of pairs of
numbers, while ignoring their numerical values. The smallest end value in the set, which
is a task irrelevant factor, was manipulated between participant groups. We focused
on the processing of the lower end values of 0 and 1 because these numbers were
found to be automatically tagged as the “smallest.” Behavioral results showed that
the size congruity effect was modulated by the presence of the smallest end value
in the pair. ERP data revealed a spatially extended centro-parieto-occipital P3 that was
enhanced for congruent versus incongruent trials. Importantly, over centro-parietal sites,
the P3 congruity effect (congruent minus incongruent) was larger for pairs containing the
smallest end value than for pairs containing non-smallest values. These differences in
the congruency effect were localized to the precuneus. The presence of an end value
within the pair also modulated P3 latency. Our results provide the first neural evidence
for the encoding of numerical end values. They further demonstrate that the use of end
values as anchors is a primary aspect of processing symbolic numerical information.

Keywords: end effect, automatic numerical processing, event-related potential (ERP), P3, size congruity effect,
precuneus

INTRODUCTION

When we are asked to compare the values of number pairs, response latencies usually decrease
as the intrapair distance between the numbers increases. For example, responses are faster for
comparing 2 with 7 (i.e., a distance of 5) than for comparing 3 with 4 (i.e., a distance of 1). This
response pattern is known as the distance effect (Moyer and Landauer, 1967). Together with other
behavioral and neural signatures it suggests a compressed scaling of magnitudes (e.g., Dehaene,
2003; Feigenson et al., 2004; Verguts and Fias, 2004), often metaphorically referred to as the
“mental number line.” Another factor that can affect performance in the number comparison
task is whether the pair contains an end value (i.e., the smallest/largest number). The end effect
is characterized by a faster response when comparing pairs involving end values relative to pairs
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involving values from the middle of a given number range (e.g.,
Banks, 1977; Leth-Steensen and Marley, 2000). For comparisons
involving ordered sets of non-numerical items, end effects are
generally quite robust for pairs containing items located at either
end of the ordering. For comparisons of numerical stimuli, this
effect tends to be stronger for lower (e.g., 1 or 2) rather than
upper end values (e.g., 8 or 9) due to the integrated influence of
the size effect, which consists of faster comparative responses for
smaller numbers than for larger numbers (Moyer and Landauer,
1967; Banks et al., 1976). The end effect is explained by assuming
that participants learn the given number range early on in the
experiment (even if it is not explicitly specified) and accordingly
use information regarding which values are at the ends of that
range to help guide their comparative judgments (Schwarz and
Stein, 1998). Moreover, a recent study showed that participants
respond faster to comparisons of the same number pairs under
a smaller versus larger number range, which is consistent with
the idea that the knowledge acquired throughout the experiment
about the given number range adjusts the proximity of the same
numbers along the “mental number line” (Pinhas et al., 2013).

Leth-Steensen andMarley (2000) proposed amodel to account
for several effects that characterize intentional comparisons
made on a fixed, ordered set of symbolic stimuli. Their model
assumes that reaching a decision in such a case is based on two
independent processes that run in parallel, racing against each
other. The first process is an analog comparison process that
encodes which number in the pair is numerically larger/smaller
and evokes the distance effect. The second process is an end
anchor identification process, which is carried out to determine
if the pair contains an end value. When one – or both – members
of the pair are mapped as an end value, the output of the end-
anchor identification process signifies that this number is the
smaller/larger in the pair (e.g., Potts, 1974; Banks, 1977). The
activation from the end anchor module is minimal for pairs that
do not include end values, and therefore the decision is based on
the analog comparison process. In contrast, if the pair includes an
end value, the contribution from the processing of the intrapair
distance turns out to be fairly minimal, and the decision is based
on the end anchor identification process. However, as pointed
out by Leth-Steensen andMarley (2000), distance effects may still
occur in pairs that involve end values if the analog comparison
process finishes before the end anchor identification process. In
fact, there are certain cases in which distance effects for end-value
pairs are predicted by the model (for further discussion of this
point see Leth-Steensen and Marley, 2000).

Behavioral evidence supporting the involvement of both
processes proposed by Leth-Steensen and Marley (2000) is also
found in the case of automatic number comparisons, that is,
when number values are processed even when determining the
value is not part of the task requirement (e.g., Bargh, 1992;
Tzelgov, 1997; Tzelgov and Ganor-Stern, 2005). The advantage
of studying automatic numerical comparisons is that under
such conditions, the processing is less contaminated by the
specific task demands, allowing us to get an in-depth view of
the underlying mental representations. For example, consider the
physical comparison task (also known as the numerical Stroop
task) in which participants are presented with a pair of digits that

differ both in their font size and numerical values. Participants
are asked to choose the digit that is physically larger. Although
the processing of the number values under such conditions is not
beneficial for the task and participants are instructed to ignore
these values, they usually do not succeed in doing so. Hence,
responses are faster and more accurate for congruent trials (e.g.,
3 vs. 5), where the physically larger digit is also greater in value,
than for incongruent trials (e.g., 3 vs. 5), where the physically
larger digit is smaller in value (Henik and Tzelgov, 1982). The
reaction time (RT) difference between these two conditions (i.e.,
incongruent minus congruent) is referred to as the size congruity
effect (SiCE). The SiCE has been frequently used as a marker
for the automatic processing of numbers and was found to be
enlarged for pairs with larger compared to smaller intrapair
distance (e.g., Henik and Tzelgov, 1982; Tzelgov et al., 1992;
Pansky and Algom, 1999; Schwarz and Ischebeck, 2003; Cohen
Kadosh et al., 2007; Parnes et al., 2012; Pinhas and Tzelgov, 2012).

Recently Pinhas and Tzelgov (2012) argued that the two
processes hypothesized by Leth-Steensen and Marley (2000)
determine the processing speed of the task-irrelevant number
values in the physical size comparison task. The analog
comparison process results in an increase in the SiCE with
the increase in the intrapair distance, and the end-anchor
identification process leads to faster automatic processing of
the relative numerical magnitudes for pairs that contain end
values than for pairs that contain non-end values, resulting in
a larger SiCE for the former type of pairs (for a possible model
see Schwarz and Ischebeck, 2003). To support these claims,
Pinhas and Tzelgov (2012) tested modulation of the SiCE by
two task-irrelevant factors: the numerical intrapair distance and
the presence of the smallest end value in the range within the
pair. They manipulated the stimulus set such that for different
groups of participants 0, 1, or 2 were used as the smallest
numbers in terms of their absolute values.1 They found that
pairs containing the smallest number 0 or 1 resulted in (a) an
enlarged SiCE that in most cases was (b) minimally modulated
by the intrapair distance. This pattern of results was termed
the automatic end effect. In contrast, results obtained for pairs
containing the number 2 when it was the smallest value in
the set resembled those obtained for pairs containing non-end
numbers and did not produce the automatic end effect. The
SiCE in these latter cases was smaller overall and showed the
classical effect of modulation by intrapair distance. Thus, Pinhas
and Tzelgov (2012) found behavioral evidence supporting the
involvement of both the analog comparison process and the end-
anchor identification process in the case of automatic processing
of number values as instantiated by different modulations of the
SiCE.

The findings of an automatic end effect in physical
comparisons of pairs containing the smallest number 0 or 1, but
not for pairs containing the smallest number 2, led Pinhas and
Tzelgov (2012) to conclude that only numbers that are encoded

1Pinhas and Tzelgov’s (2012) stimulus set included positive as well as negative
numbers. However, given that negative numbers are processed in terms of their
absolute values in the physical comparison task (i.e., the minus signs attached to
negative numbers are ignored) 0, 1, and 2 were perceived as the smallest numbers
used for the three different group of participants.
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in long-term semantic memory as “the smallest” (such as 0 or 1)
elicit the end effect when number values are processed, although
their processing is task-irrelevant. In other words, the end effect
in the case of physical size comparisons does not seem to reflect
the episodic serial position of a number at a given experimental
range, as happens with the end effect in numerical comparisons
where number values are intentionally compared to one another.
Rather, it seems that for a number to be automatically perceived
as “the smallest” it has to be semantically encoded as such.
Accordingly, in daily life we usually experience either 0 or 1 (in
the absence of 0) as being the smallest number/the first number: 1
is the most frequently used positive integer that we start counting
from and learn first when we encounter symbolic numbers, and
0 is the smallest non-negative integer that we formally acquire in
early childhood (typically only after children learn themeaning of
the first counted number words, i.e., including 1; e.g., Wellman
and Miller, 1986) and use more in mathematical or abstract
thinking contexts. In contrast, although 2 is a relatively small
number, in life we are not usually exposed to situations in which
it is “the smallest,” and thus it is not perceived this way under
conditions of automatic processing, even if it is indeed used as
the smallest end value in the set (Pinhas and Tzelgov, 2012). The
similar response patterns showing an automatic end effect for
pairs containing the smallest number 0 or 1 cannot be explained
on the basis of familiarity because these numbers do not share the
same level of familiarity. Whereas 1 is by far the most frequent
number, the frequency of 0 is much lower. In fact, the frequency
of 0 is lower than that of the numerals 1–9 and the decades 10–90
(Dehaene and Mehler, 1992). Hence, given these considerations
and based on our earlier findings (Pinhas and Tzelgov, 2012), we
are claiming that the automatic end effect observed in the physical
comparison task can serve as a marker dissociating between
numbers that are semantically tagged as end values (i.e., 0 and 1)
and numbers that are not tagged as such (e.g., 2).

Previous event-related potential (ERP) studies with symbolic
numerosities (e.g., digits, written number words) have used both
the numerical comparison and the physical comparison tasks to
examine the neural processing associated with the distance and
size congruity effects. Modulations of ERPs by numerical distance
typically emerge over parietal sites and occur at both early
and/or later time windows in a variety of tasks (e.g., Dehaene,
1996; Temple and Posner, 1998; Libertus et al., 2007; Szűcs and
Soltész, 2007; Szűcs et al., 2007; Hyde and Spelke, 2009). For
example, early voltage differences (<250 ms) as a function of
intrapair distance were found in the numerical comparison task
over parieto-occipital sites mostly for the P2p (second posterior
positivity) component and in some cases also slightly earlier in
the waveform for the N1 component or in the transition between
the N1 and the P2p (e.g., Dehaene, 1996; Temple and Posner,
1998; Libertus et al., 2007). The N1 is an early sensory component
that is evoked by any visual stimuli. Extensive evidence further
suggests that the N1 reflects a mechanism of attention allocation
(e.g., Hillyard et al., 1990; Luck, 2005). Temple and Posner (1998)
suggested that an earlier distance effect that is already apparent in
the first negativity might be related to greater attention allocation
in cases where the task is less practiced. Distance effects on the
N1 amplitude with non-symbolic numbers (e.g., dot arrays) were

also attributed to attentive object tracking processes found for
small (but not large) numbers (Hyde and Spelke, 2009) and to
differences in sensory processing rather than to distinct number-
related processing (Libertus et al., 2007).

The P2p ERP distance effect is obtained in numerical
comparisons of both symbolic and non-symbolic number
formats in adults as well as in children, and thus it was suggested
to reflect the neural activation of an abstract and notation-
independent number processing mechanism that is already
present early in development (e.g., Dehaene, 1996; Temple and
Posner, 1998; Libertus et al., 2007; Hyde and Spelke, 2009, 2012).
Neuroimaging studies associate the brain locus of this number
system with the parietal cortex, specifically with the horizontal
segment of the intraparietal sulcus (IPS). This area is found
to be modulated by the distance between numerals (e.g., Pinel
et al., 2001; Dehaene, 2003; Feigenson et al., 2004; Ansari et al.,
2005; Kaufmann et al., 2005; Hyde and Spelke, 2012), as well as
by the congruity relations between numerical and physical size
dimensions (Dehaene et al., 2004; Cohen Kadosh et al., 2007).
Similar ERP distance effects were also reported in the physical
comparison task – where the processing of the number values was
task-irrelevant – between 140 and 320 ms poststimulus (Szűcs
et al., 2007; Szűcs and Soltész, 2007).

Studies that have tested the ERPs associated with the SiCE in
the physical comparison task reported that the effect is expressed
in the P3 (known as the P300 or P3b) component. The P3
is distributed over centro-parietal electrodes, with decreased
amplitude and delayed latency for the incongruent compared
to the congruent condition. Furthermore, the P3 negatively
correlates with RT such that faster responses (typically for
congruent trials) are associated with increased P3 amplitudes
(e.g., Schwarz and Heinze, 1998; Cohen Kadosh et al., 2007;
Szűcs and Soltész, 2007; Szűcs et al., 2007, 2009; Parnes et al.,
2012). More generally, the P3 is considered to reflect stimulus
categorization and evaluation processes that vary between tasks.
P3 amplitude was shown to be sensitive to target probability and
P3 latency was linked to the amount of time required to evaluate
a stimulus (e.g., Kutas et al., 1977; McCarthy and Donchin, 1981;
Kok, 2001; Polich, 2007, 2012). Furthermore, P3 congruency-
related effects were considered to be evidence for conflict at the
stimulus level, although both stimulus and response conflicts
were found to contribute to the SiCE (Schwarz and Heinze, 1998;
Cohen Kadosh et al., 2007; Szűcs and Soltész, 2007; Szűcs et al.,
2007, 2009).

The goals of the present study were twofold. The first goal
was to explore the electrophysiological correlates associated with
processing semantic end values under conditions of automatic
number comparisons and distinguish them from those associated
with numerical-distance-based processing. The second goal was
to explore the neural generators of processing semantic end
values. For these purposes, ERPs were recorded for two groups of
adult participants who were asked to physically compare pairs of
digits. We manipulated the task-irrelevant factor of the smallest
number in the set so that for one group of participants it was
0 and for the other it was 1. We focused on the processing
of lower end values for several reasons. As mentioned, we
recently demonstrated that only numbers that are semantically
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encoded as “the smallest” (i.e., 0 and 1, but not 2) produce end
effects when number values are processed automatically (Pinhas
and Tzelgov, 2012). Furthermore, prior work shows that the
minus sign is ignored when negative numbers are physically
compared, so that numbers are processed automatically in terms
of their absolute and not real values (Tzelgov et al., 2009; Pinhas
and Tzelgov, 2012). It follows that 0 serves as the lowest end
value that can be perceived as such when performing physical
comparisons. In contrast, there is no definitive “upper limit”
for larger number values because numbers do not really end.
Consequently, potential upper end values within the single-digit
number range are presumably not expected to be semantically
tagged as the “largest.” In fact, recent behavioral work from our
lab confirmed that prediction, revealing that pairs that contained
the largest number within the single-digit range (e.g., 8 or 9)
did not produce automatic end effects (Goldman and Tzelgov, in
preparation).

Given that electrophysiologically the SiCE is reflected in the
P3 component and that behaviorally the effect is enlarged for
pairs that include semantic end values, we expected that the end-
anchor identification process would be expressed in increased
P3 congruity effect (incongruent minus congruent) amplitudes
for pairs that contain the smallest end value in the set (termed
“smallest” pair type) compared to pairs that contain non-end
numbers (termed “non-smallest” pair type). Similar to previous
studies, we also manipulated the irrelevant numerical intrapair
distance. We expected that an analog comparison process would
be reflected by an early distance ERP effect that would be
apparent for the P2p component and possibly also for the earlier
N1 component (e.g., Dehaene, 1996; Temple and Posner, 1998;
Libertus et al., 2007; Szűcs and Soltész, 2007; Szűcs et al., 2007).

MATERIALS AND METHODS

Participants
Thirty-two undergraduate students from Ben-Gurion University
of the Negev participated in the experiment for payment. All were
native Hebrew speakers with no history of neurological illness
and all had normal or corrected-to-normal vision. Participants
were randomly assigned to one of the two experimental groups.
Data of four participants were discarded from the final analysis
due to insufficient artifact-free correct trials for signal averaging.
The average age of the remaining 28 participants was 24.54 years
(SD = 3.05, all right-handed, 19 females). This research was
approved by the Helsinki Committee of the Ministry of Health.
All participants gave written informed consent prior to the
beginning of the experiment.

Apparatus and Stimuli
The experiment was conducted on a personal computer running
Windows XP with a 15-inch monitor. E-Prime v1.2 software
controlled the presentation of stimuli (Schneider et al., 2002).
Participants responded by pressing the two extreme outer keys
(out of four aligned keys) on the E-prime serial response box with
their left and right index fingers.

The stimuli were generated from single-digit integers (from 0
to 9). Number pairs were designed to fit close (i.e., an average of
the intrapair distances of 1 and 2) and far (i.e., an average of the
intrapair distances of 4 and 6) distances, in four pair types: “0
pairs” (0 paired with 1, 2, 4, and 6), “1 pairs” (1 paired with 2, 3,
5, and 7), “2 pairs” (2 paired with 3, 4, 6, and 8), and “3 pairs” (3
paired with 4, 5, 7, and 9). This created a total of 32 pairs, given
that each number appeared once on the left and once on the right
side of the computer screen. Two sets of stimuli were created
out of the 32 pairs: one for the congruent condition, where the
numerically larger number was also physically larger, and one for
the incongruent condition, where the numerically larger number
was physically smaller. Each pair was repeated 30 times in each
condition for a total of 1,920 pairs. All pairs were presented for
the group of participants in which 0 was used as the smallest
number (i.e., 16 pairs × 2 left/right side × 2 congruencies × 30
repetitions = 1,920). However, 0 pairs were excluded for the
group of participants in which 1 was used as the smallest number,
resulting in a total of 1,440 pairs (i.e., 12 pairs × 2 left/right
side × 2 congruencies × 30 repetitions = 1,440). Thus, 2 pairs
and 3 pairs were presented for both groups and were always used
as non-end pairs. Pairs containing the smallest end value in the set
were termed “smallest” pair type (i.e., 0 pairs/1 pairs for the group
in which 0/1 was used as the smallest number, respectively). Pairs
that did not contain the smallest end value in the set were termed
“non-smallest” pair type (i.e., 1 pairs, 2 pairs, and 3 pairs/2 pairs
and 3 pairs for the group in which 0/1 was used as the smallest
number, respectively). Supplementary Table S1 lists all pairs used
in the experiment.

The distance between the two presented numbers was 1.15◦,
assuming a viewing distance of 60 cm. Numbers appeared in
“Courier New” bold font that was colored white on a black
background on both sides of the center of the screen in either
small (about 0.9◦ high and 0.6◦ wide) or large (about 1.05◦ high
and 0.8◦ wide) sizes.

Procedure
The task was always a physical comparison. Participants were
randomly assigned to one of two groups, which differed
according to the smallest number that was presented to them:
0 or 1. The participants sat on a chair in front of the monitor
with their index fingers on the response keys. Each trial started
with the presentation of a fixation dot at the center of the screen
for 250 ms, followed by a blank screen randomly presented for
200, 250, or 300 ms, followed by a pair of numbers that remained
visible until a response was made. After response, a blank
screen was randomly presented for 500, 600, or 700 ms before
the next trial started. Because the pair of numbers remained
visible on the screen until response the duration of the visual
stimulus presented differed between trials. In turn, these duration
differences are expected to result in differences in the latency
of the visually evoked potentials for target offset. However,
these potentials would likely be occurring only after ∼450 ms
poststimulus, that is, later than the time windows used in the ERP
analyses (for details see EEG Recording and Analysis).

Participants were instructed to ignore the numerical values
and to select the number that appeared physically larger on the
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screen as quickly and as accurately as possible. They were asked
to press the outer left/right key on the response box if they
chose the number on the left/right, respectively. A short training
session was presented first, followed by 32/24 successive blocks
of 60 trials each for the group in which 0/1 was used as the
smallest number, respectively. Feedback of accuracy percentage
and mean RT of the correct responses was provided at the end
of each block. A self-paced break was presented after each block.
During training a short error beep was sounded in cases where an
incorrect response was made. Trials were randomly ordered.

Behavioral Analysis
Reaction times shorter than 100 ms (six trials) were excluded
from all analyses. Error rates were quite low (averaged 2.9%,
ranging from 1 to 7%) and preliminary analysis suggested
no speed-accuracy trade-offs across subjects. Mean RTs of
correct responses were submitted to a four-way repeated
measures analysis of variance (ANOVA) with the smallest
number (0, 1) as a between-participants variable and congruency
(congruent, incongruent), pair type (smallest, non-smallest), and
distance (close, far) as within-participants variables. Furthermore,
a separate repeated-measures ANOVA was conducted for
each smallest number group with congruency (congruent,
incongruent) and pair type (0/1/2/3 pairs for the group in which 0
served as the smallest number; 1/2/3 pairs for the group in which
1 served as the smallest number) as within-participants variables.
The significance level was defined as p < 0.05.

EEG Recording and Analysis
The ongoing EEG was recorded in a sound-attenuated,
electrically shielded room from 128 scalp sites using the
EGI Geodesic Sensor net and system (Tucker, 1993). Four
anterior channel pairs were used to detect eye blinks, and an
additional anterior-lateral channel pair was used to detect eye
movements. Recordings were referenced online to the VREF (Cz)
channel, band-pass filtered at 0.1–100 Hz and digitized with a
250 Hz sampling rate using a 16-bit A/D converter. Electrode
impedances were maintained below 40 k�, an acceptable level
for this system (Ferree et al., 2001).

Offline the data were processed in Net Station 4.4.1 (Electrical
Geodesics, Oregon, OR, USA). A 40 Hz digital low-pass filter was
first applied to the data. Then the same trials as included in the
behavioral analysis were segmented into epochs starting at 200ms
before the onset of the number pair to 600 ms poststimulus. The
resulting epochs were subjected to an automated artifact and bad
channels detection procedure. The artifact parameters used in
this procedure were adjusted and verified visually by looking at
∼20% randomly selected epochs of each of the individual data
sets. Artifacts were identified based on the following parameters:
(a) ocular artifacts - a max–min amplitude difference higher
than 115 μV from eye blink channel pairs and a max-min
amplitude difference higher than 85 μV from an eye movement
channel pair, and (b) bad channels – each channel with a
max–min amplitude difference higher than 140 μV. Epochs
detected as containing ocular artifacts and/or those with 15
or more bad channels were excluded. Artifact-free trials were
averaged to experimental conditions of interest (i.e., all eight

congruency × pair type × distance combinations) for each
participant and baseline corrected to the average amplitude
from −200 to 0 ms before stimulus onset. Prior to baselining,
all channels were referenced to a PARE-corrected overall average
to compensate for the polar average reference effect (PARE;
Junghöfer et al., 1999) caused by uneven surface sampling.
On average, 167.69 (SD = 35.26) trials were retained for each
participant per a given congruency × pair type × distance
condition. Data from four participants were excluded because
they had fewer than 60 usable correct trials for one or more
conditions. Accordingly, 28 participants were included in the
final analysis: 15 in the “0 as smallest” group and 13 in the “1 as
smallest” group. Finally, grand averages and topographical maps
across all participants, as well as for the two different “smallest
number” groups, were generated.

The selection of ERP components and latencies for analysis
was guided by previous research (e.g., Dehaene, 1996; Temple
and Posner, 1998; Schwarz and Heinze, 1998; Cohen Kadosh
et al., 2007; Libertus et al., 2007; Szűcs and Soltész, 2007;
Szűcs et al., 2007, 2009; Hyde and Spelke, 2009, 2012; Parnes
et al., 2012) and confirmed by visual inspection of the grand-
average waveforms and topographical maps across participants.
We identified three time windows corresponding to the three
observed ERP components of interest: N1 (covering the first
posterior negative-going deflection that follows the P1; 165–
200 ms), P2p (covering the second posterior positive-going
deflection; 230–280 ms), and P3 (covering an extended positive-
going deflection over both centro-parietal and posterior sites;
300–370ms). Two groups of electrodes were defined for statistical
analysis: a parieto-occipital group and a centro-parietal group.
The first group included nine central adjacent parieto-occipital
electrodes surrounding electrodes O1 and O2 of the 10–20
international standard system. The second centro-parietal group
of electrodes included three adjacent midline electrodes from
Cz to Pz of the 10–20 international standard system, as well as
three immediately adjacent electrodes to the left and right of
this midline (see Figure 1). As seen in Figure 1, these scalp site
groupings overlapped with chosen electrode sites from previous
ERP studies of number processing using an average reference (N1
and P2p: Dehaene, 1996; Temple and Posner, 1998; Hyde and
Spelke, 2009, 2012; P3: Cohen Kadosh et al., 2007; Szűcs et al.,
2007, 2009; Parnes et al., 2012).

Visual inspection of the difference waves of the various
experimental conditions of interest (e.g., smallest vs. non-smallest
pairs; close vs. far) did not reveal differences as a function of
pair type over the parieto-occipital group of electrodes. Thus, in
order to simplify the data analyses, three-way repeated-measures
ANOVAs with the smallest number as a between-participants
variable and congruency and distance as within-participants
variables were used for testing the mean amplitudes of the N1 and
P2p components over the parieto-occipital group of electrodes.
For the analysis of the widely distributed P3 component we
used both centro-parietal and parieto-occipital electrode groups.
The mean amplitudes of the P3 were analyzed using a five-
way repeated-measures ANOVA with the smallest number as a
between-participants variable and congruency, pair type, distance,
and electrodes location as within-participants variables. An

Frontiers in Human Neuroscience | www.frontiersin.org 5 November 2015 | Volume 9 | Article 645

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Pinhas et al. ERP Semantic End Values

FIGURE 1 | Schematic drawing of 128-electrode locations on the EGI Geodesic Sensor Net. The two groups of electrodes used for averaging and analysis
are marked.

additional analysis testing onset latency (in ms) of the P3 was
conducted by analyzing 50% of P3 peak amplitude, spanning
from 250 to 500 ms poststimulus, using the same five-way
ANOVA design. Compatible follow-up analyses were conducted
when needed. Significance was inferred for Greenhouse-Geisser
corrected p-values < 0.05.

Post hoc source localization of the P3 component was
performed using the standardized low-resolution brain
electromagnetic tomography (sLORETA; Fuchs et al., 2002;
Pascual-Marqui, 2002; Jurcak et al., 2007, p. 20), a technique
which provides a solution without the need to assume a starting
model of dipole locations. The technique extracts current density
estimates (sLORETA values) on a space of 6,239 voxels (voxel
size: 5 mm× 5 mm× 5 mm), as defined by the digitized MNI152
template. The region of interest (ROI) was determined using
a 5,000 iteration bootstrap method that compared between
conditions in the P3 mean amplitude analysis time window (i.e.,
300–370 ms poststimulus) over the centro-parietal electrodes
group. This randomization method performs voxel-by-voxel
t-tests for dependent measures that are corrected for multiple
comparisons. The selected ROI was the centroid voxel that
showed maximum difference between conditions in the peak-
latency time-window. We then analyzed the sLORETA values to
reveal the potential difference in the electric neural generators
for the P3 component between conditions of interest.

RESULTS

Behavioral Results
Main effects of congruency, F(1,26) = 78.08, MSE = 363,
η2p = 0.75, p < 0.01, and pair type, F(1,26) = 50.54,

MSE = 77, η2
p = 0.66, p < 0.01, indicated faster responses

to congruent (332 ms) versus incongruent (354 ms) trials,
and to pairs containing non-smallest numbers (339 ms) versus
pairs containing the smallest number (347 ms), respectively.
A main effect of distance, F(1,26) = 4.52, MSE = 29, p < 0.05,
η2
p = 0.15, indicated significantly faster responses to close

versus far distances, though there was only 2 ms difference
between these conditions (342 vs. 344 ms, respectively). As
expected, congruency interacted with distance, F(1,26) = 28.06,
MSE = 45, p < 0.01, η2

p = 0.52, so that although the
SiCE was significant in both distance conditions [close:
F(1,26) = 72.01, MSE = 122, η2

p = 0.73; far: F(1,26) = 72.86,
MSE = 285, p < 0.01, η2

p = 0.74], it was larger for
physical comparisons of far (27 ms) versus close (18 ms)
number values (Figure 2A). Importantly, congruency interacted
with pair type, F(1,26) = 35.57, MSE = 190, p < 0.01,
η2
p = 0.58, demonstrating a larger SiCE for pairs containing

the smallest number [34 ms; F(1,26) = 63.69, MSE = 493,
η2
p = 0.71] versus pairs containing non-smallest numbers [12 ms;

F(1,26) = 61.79, MSE = 60, p < 0.01, η2
p = 0.70], replicating

our previous findings (Pinhas and Tzelgov, 2012). Furthermore,
as depicted in Figure 2B, a significant congruency × pair
type × smallest number interaction, F(1,26) = 6.99, MSE = 190,
p < 0.01, η2

p = 0.21 demonstrated that although the
modulation of the SiCE by pair type was significant for
both smallest number groups [F(1,14) = 5.28, MSE = 214,
p < 0.05, η2

p = 0.27 and F(1,12) = 40.44, MSE = 163,
p < 0.01, η2

p = 0.77, for 0 and 1, respectively], it was
more pronounced in the group in which 1 served as the
smallest number. All other effects in the analysis were not
significant.
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FIGURE 2 | (A) Mean reaction times (RTs) as a function of congruency and
distance. Error bars denote 0.95 confidence intervals. (B) Mean RTs as a
function of congruency, pair type, and the smallest number. Error bars denote
0.95 confidence intervals.

To further investigate the sources of the interaction depicted
in Figure 2B and to provide additional support for the idea of
semantic end-value effects, a separate analysis was conducted for
the group in which 0 served as the smallest number. This analysis
revealed a congruency × pair type interaction, F(3,45) = 17.15,
MSE = 78, p < 0.01, η2

p = 0.53, demonstrating that although the
SiCE was significant for each pair type (ps < 0.003), it was more
enlarged for 0 (30 ms) and 1 pairs (34 ms) than for 2 (9 ms) and
3 pairs (11 ms), F(1,15) = 36.27,MSE = 434, p < 0.01, η2

p = 0.71.
Most importantly, SiCE for pairs containing the smallest number
0 did not differ from the SiCE found for pairs containing 1 when
it was not used as an end value (F < 1), suggesting that 1 was
automatically processed as an end value even when it was not
used as such. There was also no difference between the SiCE
found for 2 vs. 3 pairs (F < 1). Thus, it seems that the modulation
of the SiCE by pair type was more pronounced for the group
in which 1 served as an end value (Figure 2B) because for this
group “non-smallest pairs” included pairs containing 2 and 3
(i.e., pairs that produce smaller SiCEs), whereas in the group in
which 0 served as an end value “non-smallest pairs” also included
pairs containing 1 (i.e., pairs that produce an enlarged SiCE).
To complete the picture, the analysis conducted separately for
the group in which 1 served as the smallest number revealed a
congruency × pair type interaction, F(2,30) = 35.5, MSE = 259,
p < 0.01, η2

p = 0.70, demonstrating that SiCE was larger for 1
pairs (34 ms) than for 2 (2 ms) and 3 pairs (6 ms), F(1,15) = 46.15,
MSE = 392, p < 0.01, η2

p = 0.75. There was no significant

difference between the SiCE found for 2 vs. 3 pairs (p > 0.17),
although the effect was significant for 3 pairs (p < 0.002) but not
for 2 pairs (p = 0.3).

ERP Results
N1 and P2p Components
Figure 3A depicts the averaged waveform at the parieto-occipital
group of electrodes as a function of congruency and distance
across groups (see Supplementary Figure S1 for the individual
waveforms).

The analysis of the posterior N1 (165–200 ms) revealed a
marginal main effect of distance, F(1,26) = 4.08, MSE = 0.11,
p = 0.05, η2

p = 0.14, indicating larger negative amplitudes for far
(−1.87 μV) versus close (−1.74 μV) distances (see Figure 3B).
There was also a marginally significant congruency × smallest
number interaction, F(1,26) = 4.19, MSE = 0.26, p = 0.05,
η2
p = 0.14; however, post hoc contrasts did not reveal significant

effects of congruency for any of the smallest number groups
(ps > 0.14).

The analysis of the P2p (230–280 ms) revealed a main
effect of distance, F(1,26) = 5.88, MSE = 0.14, p < 0.05,
η2
p = 0.18, demonstrating greater parieto-occipital positivity for

far (0.54 μV) versus close (0.37 μV) distances. Furthermore, a
main effect of congruency, F(1,26) = 8.27, MSE = 0.29, p < 0.01,
η2
p = 0.24, exhibited larger positive amplitudes for congruent

(0.60 μV) versus incongruent (0.31 μV) trials. Both main effects
are depicted in Figure 3C. No other effects in the analysis were
significant.

P3 Component
Figure 4A depicts the averaged waveforms for both centro-
parietal and parieto-occipital groups of electrodes as a function
of congruency and pair type (see Supplementary Figures S2 and
S3 for the individual waveforms).

The mean amplitude analysis of the P3 component (300–
370 ms) revealed a main effect of congruency demonstrating
increased amplitudes for congruent (3.17 μV) versus
incongruent (2.61 μV) trials, F(1,26) = 47.45, MSE = 0.74,
p < 0.01, η2

p = 0.65. Congruency was further modulated by
electrodes location, F(1,26) = 16.46, MSE = 0.68, p < 0.01,
η2
p = 0.39, exemplifying a larger congruency effect over centro-

parietal sites [5.10 vs. 4.23 μV for congruent and incongruent
trials, respectively; F(1,26) = 49.12, MSE = 0.87, p < 0.01,
η2
p = 0.65] compared to parieto-occipital sites [1.24 vs. 0.99 μV

for congruent and incongruent trials, respectively; F(1,26) = 6.06,
MSE = 0.54, p < 0.05, η2

p = 0.19]. Importantly, there was also
a significant congruency × pair type × electrodes location
interaction, F(1,26) = 12.06, MSE = 0.39, p < 0.01, η2

p = 0.32,
demonstrating a significant modulation of congruency by pair
type over centro-parietal sites [F(1,26) = 15.94, MSE = 0.41,
p < 0.01, η2

p = 0.38], but not over parieto-occipital sites (F < 1).
Follow-up comparisons conducted for the congruency × pair
type interaction over centro-parietal sites showed that although
the congruency effect was significant for both pair types [pairs
containing the smallest number: F(1,26) = 48.71, MSE = 0.85,
p < 0.01, η2

p = 0.65; pairs containing non-smallest numbers:
F(1,26) = 18.45,MSE = 0.43, p < 0.01, η2

p = 0.42], it was enlarged
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FIGURE 3 | (A) Event-related potential (ERP) traces averaged across the nine parieto-occipital sites used for analysis as a function of congruency and distance. The
N1 peaked at around 175 ms poststimulus, the P2p peaked at around 255 ms poststimulus. These components were larger for far versus close distances. (B) Mean
amplitude values (microvolts) of the N1 (165–200 ms) as a function of distance. (C) Mean amplitude values (microvolts) of the P2p (230–280 ms) as a function of
congruency and distance. Error bars in panels (B) and (C) denote 0.95 confidence intervals.

for pairs containing the smallest number versus pairs containing
non-smallest numbers across groups (see Figure 4). Two other
effects in the analysis were significant but had no important
theoretical implications: (a) a main effect of electrodes location,
F(1,26) = 28.71, MSE = 48.94, p < 0.01, η2

p = 0.52, showed
increased amplitude values over centro-parietal sites (4.66 μV)
than over parieto-occipital sites (1.11 μV), and (b) an interaction
between the smallest number × pair type × electrodes location,
F(1,26) = 4.6, MSE = 0.78, p < 0.05, η2

p = 0.15, however, follow-
up comparisons revealed that the modulation of the smallest
number by pair type was not significant over centro-parietal sites
(p = 0.08), as well as over parieto-occipital sites (p = 0.18). All
other effects in the analysis were not significant.

P3 onset latency analysis (250–500 ms) revealed a significantly
earlier P3 onset for congruent (275 ms) than for incongruent
trials (286 ms), F(1,26) = 9.62,MSE = 1,383, p < 0.01, η2

p = 0.27,
as well as for far (277 ms) than for close comparisons (283 ms),
F(1,26) = 5.01, MSE = 775, p < 0.05, η2

p = 0.16. A main effect
of electrodes location, F(1,26) = 8.41, MSE = 16,981, p < 0.01,
η2
p = 0.24, demonstrated an earlier P3 onset over parieto-

occipital sites (262 ms) than over centro-parietal sites (298 ms).
Amarginally main effect of pair type, F(1,26) = 4.06,MSE= 3,586,
p= 0.05, η2

p = 0.14, indicated an earlier P3 onset for comparisons

of non-smallest numbers (274 ms) than for comparisons to the
smallest number (286 ms). Distance interacted with electrodes
location, F(1,26) = 5.05, MSE = 1,047, p < 0.05, η2

p = 0.16
(Figure 5A), demonstrating significantly earlier P3 onset for far
versus close comparisons over parieto-occipital sites (256 vs.
269 ms; F(1,26) = 5.43, MSE = 1,677, p < 0.05, η2

p = 0.17), but
not over centro-parietal sites (299 vs. 298ms; F < 1, respectively).
Importantly, congruency interacted with pair type, F(1,26) = 4.39,
MSE = 1,086, p < 0.05, η2

p = 0.14 (Figure 5B), indicating
significantly greater delay in P3 onset for incongruent compared
to congruent trials when comparing to the smallest number [295
vs. 277 ms; F(1,26) = 10.65, MSE = 1,595, p < 0.01, η2

p = 0.29],
but not when comparing non-smallest numbers [277 vs. 272 ms;
F(1,26) = 1.23, MSE = 873, ns,η2

p = 0.05, respectively). All other
effects in the analysis were not significant.

Source Localization of the End Effect
The P3 mean amplitude analysis revealed increased congruency
effect (i.e., congruent minus incongruent) amplitudes for pairs
containing the smallest number than for pairs containing non-
smallest numbers over centro-parietal sites. To explore the
neural generators of the end effect as reflected by this (simple)
interaction, we conducted a source localization analysis using
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FIGURE 4 | (A) Event-related potential traces averaged across the nine centro-parietal sites and the nine parieto-occipital sites used for analysis, as a function of
congruency and pair type. The P3 peaked at around 330 ms poststimulus and was enlarged for congruent versus incongruent trials over centro-parietal sites, but
not over parieto-occipital sites. (B) Mean amplitude values (microvolts) by congruency, pair type and electrodes location from 300 to 370 ms. Error bars denote 0.95
confidence intervals. (C) Topographic distributions (top view, full projection) of congruent minus incongruent trials at 330 ms for pairs containing the smallest number
and for pairs containing non-smallest numbers. Centro-parietal sites are marked with gray squares and parieto-occipital sites are marked with black dots. The
congruency effect (congruent minus incongruent trials) was enlarged for pairs containing the smallest number only over centro-parietal sites.

paired t-tests. The analysis indicated that the maximal difference
between the congruency effect found for pairs containing the
smallest number versus the congruency effect found for non-
smallest pairs was localized to the precuneus (Brodmann area 7;
MNI coordinates: X = 5, Y = −50, Z = 60; see Figure 6).

DISCUSSION

The present study explored the brain correlates and neural
sources associated with processing semantic end values. For
these purposes, we tested whether adult ERPs would implicate
the involvement of the end-anchor identification process (Leth-
Steensen and Marley, 2000; Pinhas and Tzelgov, 2012), which
is an aspect of task-irrelevant numerical processing elicited
during physical size comparisons. As expected, SiCE was
larger for comparisons to the smallest number than for
non-smallest comparisons, replicating our previous behavioral
findings (Pinhas and Tzelgov, 2012). Importantly, a similar
congruency-related modulation was manifested in a centro-
parietal P3 ERP component, demonstrating an enhanced P3
congruity effect (congruent minus incongruent) for pairs
containing the smallest number than for those containing non-
smallest numbers. These differences in the P3 congruity effect
were localized to the precuneus. Furthermore, there was a
greater delay in P3 onset for incongruent versus congruent

trials when comparing to the smallest number, but not when
comparing non-smallest numbers. Thus, both behavioral and
electrophysiological results reveal that participants encoded
whether or not the pair contained a numerical end value.
Consistently with previous studies in the relevant extant
literature, we found parieto-occipital ERP distance effects.
The effect was marginal for the N1 and pronounced for
the P2p.

The Behavioral SiCE as an Indicator for
Semantic Lower End Values
The behavioral data replicated Pinhas and Tzelgov’s (2012)
findings, which showed an enlarged SiCE for pairs containing the
smallest number 0 or 1 versus the SiCE found for pairs containing
non-smallest numbers. Given that 1 is much more frequent than
0 (Dehaene and Mehler, 1992), we believe that the similarities
observed in responses for pairs containing the smallest number
0 or 1 cannot be explained (or predicted) by assuming a similar
level of familiarity for these numbers (e.g., Verguts and Van
Opstal, 2014). Instead, we propose that an enlarged SiCE for pairs
containing the smallest number 0 or 1 is in line with an end-
anchor identification process that leads to the observation of a
behavioral automatic end effect for numbers that are assumed
to be encoded in long-term semantic memory as “the smallest”
based on prior real-life experience (Pinhas and Tzelgov, 2012).
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FIGURE 5 | (A) P3 onset latency (in ms) as a function of distance and
electrodes location. Error bars denote 0.95 confidence intervals. (B) P3 onset
latency (in ms) as a function of congruency and pair type. Error bars denote
0.95 confidence intervals.

Additional support for the idea of a special status for 0 and 1 as
end values comes from our behavioral findings of an enlarged
SiCE for pairs containing 1 even when it was not used as the
smallest number in the set (see also Pinhas and Tzelgov, 2012).
In turn, this finding implies that 1 may be semantically marked as
an end value when processed automatically, even if its current
episodic serial position in the set is not of an end value. We

are not claiming here that the ordinal relations between 0 and
1 are not realized and being acted upon when these number
values are processed intentionally, that is, processed as part of
the task requirements. Furthermore, a closer inspection of our
behavioral data further reveals that physical size comparisons
of 0 with 1 resulted in a significant SiCE2, suggesting that
the ordinal relations between 0 and 1 are also realized when
these number values are processed automatically. Instead, we are
suggesting that since both 0 and 1 (in the absence of 0) are usually
experienced in daily life as being “the smallest” or “the first,” they
are automatically tagged as such, which in turn results in larger
SiCE when they are physically compared with other numbers. In
contrast, other relatively small numbers (e.g., 2, 3) do not produce
the automatic end effect regardless of whether they serve as end
values (Pinhas and Tzelgov, 2012).

Another aspect that should be considered as possibly
contributing to the acquired special status of 0 and 1 is the
widely accepted assumption that numerical discrimination in
human and non-human animals is based on the ratio between
the presented numerosities, in accordance with Weber’s law (e.g.,
Feigenson et al., 2004; Cantlon and Brannon, 2006; Halberda
et al., 2012). However, discriminating 0 from other numbers
based on a ratio seems implausible given that dividing by 0 is
mathematically undefined (at least in elementary arithmetic) and
thus does not make sense. Furthermore, while discriminating
1 based on ratio is mathematically possible, it is unique in
the sense that dividing by 1 always equals the dividend (i.e.,
the number that is being divided by 1). Accordingly, these
notable characteristics for discriminating 0 and 1 from other
numbers may itself contribute to uniquely categorizing these
numbers as lower end values. It should, however, be pointed
out that an earlier alternative model by Dehaene (1989; see
also Jamieson and Petrusic, 1975; Holyoak, 1978) suggested that
numerical discrimination is not based on the ratio between
the two to-be-compared numbers. Instead, it is assumed that
comparison is based on the ratio of the distance between

2F(1,15) = 6.31,MSE = 172.08, p = 0.02, η2
p = 0.30.

FIGURE 6 | Source localization of the P3 component over centro-parietal sites discriminating the congruency effect for smallest versus non-smallest
comparisons. The panel represents the congruency effect (congruent minus incongruent) for pairs containing the smallest number minus the congruency effect
(congruent minus incongruent) for non-smallest pairs. The dashed circle marks the precuneus region where the brain activity related to the described effect was
found to be maximal.
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each number and a reference point located at the end of the
number sequence (i.e., the smallest/largest number in the set).
If performance is indeed determined by the ratio between
these two distances (Dehaene, 1989), then the problems or
unique characteristics associated with discrimination based on
ratios involving 0 and 1 discussed earlier do not seem to
apply.

The Congruency-related P3
As expected, the event-related neural activity revealed a
spatially extended centro-parieto-occipital P3 that differentiated
congruent from incongruent trials, with the latter having
decreased amplitudes and delayed onset latency compared to
the former (e.g., Schwarz and Heinze, 1998; Cohen Kadosh
et al., 2007; Szűcs and Soltész, 2007; Szűcs et al., 2007, 2009;
Parnes et al., 2012). Importantly, over centro-parietal sites, the
P3 congruency effect (congruent minus incongruent) was further
modulated by pair type, such that pairs that contained the
smallest number elicited increased congruency effect amplitude
differences than pairs that contained non-smallest numbers. The
same modulation of congruency by pair type was apparent
in the P3 onset latency analysis across both centro-parietal
and parieto-occipital electrodes, revealing a greater delay in
P3 onset for incongruent vs. congruent trials in comparisons
to the smallest number versus comparisons of non-smallest
numbers.

The P3 component is thought to indicate stimulus evaluation
and classification processes. Previous research has shown that
P3 amplitude depends on target probability and that P3 latency
indexes stimulus evaluation time relatively independent of
response selection and/or execution processes (e.g., Kutas et al.,
1977; McCarthy and Donchin, 1981; Kok, 2001; Polich, 2007,
2012). Accordingly, the presentation of incongruent pairs with
the smallest number 0 or 1 (i.e., trials in which 0 or 1 are
presented in a larger font size) might have elicited a greater
subjective “feeling” of oddness or surprise relative to incongruent
trials with non-smallest numbers, whereas the presentation of
congruent trials with the smallest number 0 or 1 (i.e., trials in
which 0 or 1 are presented in a smaller font size) might have
elicited a greater subjective “feeling” of sensibleness relative to
congruent trials with non-smallest numbers. Consequently, these
subjective evaluations might have elicited a larger P3 congruity
effect (congruent minus incongruent) for comparisons to the
smallest number than for non-smallest numbers. Consistent with
this suggested interpretation, it should take longer to evaluate
“odd targets” than “sensible targets,” resulting in the observed
P3 onset latency effects. Thus, both P3 amplitude and latency
seem to mark the electrophysiological correlate for encoding the
serial position of the smallest end value in the set, resulting in
slower classification of numbers that are semantically tagged as
“smallest” as being physically larger. It is also worth noticing
that the congruency × pair type × smallest number interaction
observed in RTs was not apparent in the P3 onset latency analysis.
Instead, the latter revealed a similar modulation of congruency
by pair type for both smallest number groups. This could
suggest that the obtained RT differences relate to differences
in response selection and/or execution processes, instead of a

stimulus evaluation effect (McCarthy andDonchin, 1981). Future
research is needed to determine this possibility.

Moreover, our data suggest that the maximal difference
between the centro-parietal P3 congruity effect found in pairs
containing the smallest number versus non-smallest pairs is
localized to the precuneus. In other words, the results of
the source localization analysis raise the hypothesis that the
precuneus may be the brain region in which the presence of
end stimuli has the stronger effect on the automatic processing
of number values. Functional neuroimaging studies suggest
that this medial area of the superior parietal cortex plays a
central role in a wide variety of tasks such as shifting attention
in visuo-spatial imagery, episodic memory retrieval, and self-
processing operations (for a review see Cavanna and Trimble,
2006). Thus, it is clear that the precuneus is not specific to number
processing. Nevertheless, numerous studies have reported that
the precuneus is also active in number-related tasks including
numerical and physical comparison (e.g., Pesenti et al., 2000;
Pinel et al., 2001; Ansari et al., 2005, 2006; Kaufmann et al.,
2005), approximation (Dehaene et al., 1999), calculation (e.g.,
Delazer et al., 2005; Ischebeck et al., 2006; Fehr et al., 2007;
Arsalidou and Taylor, 2011), and counting (Piazza et al., 2002).
Although there has not been much consideration in the literature
regarding the role that the precuneus may play in number
processing, it has been suggested that this region contributes to
a covert attentional process that operates when selecting quantity
locations on the mental number line (Dehaene et al., 2003).
This region also reflects visual imagery processes involved in
the retrieval and the execution of complex calculations (Delazer
et al., 2005). Furthermore, a recent study by Krause et al. (2014)
compared participants’ spatial and non-spatial responses in a
parity judgment task. The authors found that inter-individual
variability in the linkage between numbers and spatial responses
(as instantiated by the SNARC effect; cf. Dehaene et al., 1993)
correlated with variations in gray matter volume around the
right precuneus, thus reflecting the involvement of this area
in the spatial representation of numbers. Consistent with these
suggestions, a plausible interpretation of our findings is that the
process of encoding the serial position of a number as an end
versus a non-end value possibly involves the precuneus because
it relies on a covert shifting of attention in visuo-spatial imagery.
This covert encoding process probably involves shifting one’s
attention to the relevant quantity locations along the spatially
oriented mental number line. As such, this process is presumably
affected by the specific number range presented in the experiment
and may be more efficient in locating the end values of the given
number range because they are more salient and/or serve as
anchors. However, given the difficulties in determining source
configuration from scalp topography and assessing the accuracy
of a given solution these suggestions should be taken with caution
(e.g., Luck, 2014). More research is needed to validate these
speculated hypotheses and to better understand the functional
role of the precuneus in number processing.

The Distance Effect in RTs and ERPs
In line with past studies, our data also indicated the involvement
of an analog comparison process that contrasts task-irrelevant
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number values along an ordered continuum ofmagnitudes (Leth-
Steensen and Marley, 2000; Pinhas and Tzelgov, 2012), which
was manifested in both behavioral and neural distance effects.
Behaviorally, the SiCE increased with the increase in the intrapair
distance, replicating previous results (e.g., Henik and Tzelgov,
1982; Tzelgov et al., 1992; Pansky and Algom, 1999; Schwarz
and Ischebeck, 2003; Cohen Kadosh et al., 2007; Parnes et al.,
2012; Pinhas and Tzelgov, 2012). Yet, unlike Pinhas and Tzelgov’s
(2012) findings, we found that the modulation of SiCE by distance
was independent of pair type and smallest number condition.
Thus, here we did not find an attenuated effect of distance for
the SiCE obtained in pairs containing the smallest number 0
or 1. It seems, however, that this inconsistency can be easily
reconciled when considering that Leth-Steensen and Marley’s
(2000) race model predicts distance effects for end-value pairs
in cases where the analog comparison process finishes before the
end-value identification process. Alternatively, the fact that there
was no attenuated effect of distance for the SiCE involving end
value pairs might be what is expected to occur when number
values are being compared automatically because in such cases
the actual responses are determined by physical size (and not by
numerical magnitude) information. Hence, once initiated, both
numerical processes (i.e., the end-anchor identification process
and the analog comparison process) will continue running
simultaneously in the background (and contribute implicitly to
the response process) until the physical comparison response is
made. In contrast, when explicitly comparing number values,
the numerical comparison is stopped whenever the result of
either the end-anchor identification process or the analog
comparison process allows for a response. This in turn may lead
to attenuated distance effects for end value pairs if the end-anchor
identification process runs faster (Leth-Steensen and Marley,
2000).

At the ERP level, a parieto-occipital P2p (230–280 ms)
distance effect was reflected in an increased amplitude for
far as compared to close numbers. The distance effect was
marginally significant earlier in the waveform for the N1 (165–
200 ms), whereas later in the waveform it was evident by
an earlier P3 onset latency for far versus close numbers. We
found no amplitude differences as a function of distance for
the P3. Parietal ERP distance effects were previously reported
in a variety of numerical tasks (e.g., numerical comparisons,
physical comparisons) at both early and late time windows
and across different number notations (e.g., Dehaene, 1996;
Temple and Posner, 1998; Libertus et al., 2007; Szűcs and
Soltész, 2007; Szűcs et al., 2007; Hyde and Spelke, 2009, 2012).
Furthermore, the distribution of the observed distance effects
is consistent with the neuroimaging and neuropsychological
literature implicating the IPS in number processing (e.g.,
Pinel et al., 2001; Dehaene et al., 2003, 2004; Feigenson
et al., 2004; Ansari et al., 2005; Kaufmann et al., 2005;
Cohen Kadosh et al., 2007). Our findings of posterior ERP
distance effects in a task in which participants were explicitly
requested to ignore number values replicate past research
and are consistent with the notion that the same mechanism
of number processing is accessed for both intentional and
automatic number comparison tasks. Nevertheless, Szűcs et al.

(2007) found differences in the strength of early parietal
distance effects observed for the same participants when
they performed numerical versus physical size comparisons.
Specifically, weaker distance effects were reported early in
the waveform in the physical size comparison task (i.e.,
when number values were task-irrelevant) compared to the
numerical comparison task (i.e., when number values were
task-relevant). This pattern is consistent with the present
findings of rather small early ERP distance effects both in
terms of effect size measures and amplitude differences. This
is presumably related to the automatic processing of number
values.

ERP Evidence for Two Processes
Underlying Automatic Number
Comparisons
More generally, our results provide novel neural evidence and
replicate previous behavioral findings supporting a distinct
process that identifies whether the pair includes an end value
when numerical information is task-irrelevant (Leth-Steensen
and Marley, 2000; Pinhas and Tzelgov, 2012). In addition, the
data replicate previous studies that have repeatedly found that
the numerical difference between number values is processed
both at the behavioral and neural levels, even when numbers are
processed automatically, thus supporting an analog comparison
process. The fact that each of these processes was expressed in
different ERP component(s) with different topographies supports
the notion that they are indeed distinct. Furthermore, additional
evidence in our study supporting the existence of two distinct
processes is that the analog comparison process and the end-
anchor identification process also differed in terms of their
timing. The distance effect appeared earlier in the waveform (as
soon as 165 ms after stimulus onset), whereas the congruency
by pair type interaction appeared only at about 300 ms after
stimulus onset, suggesting that the analog comparison process
begins earlier than the end-anchor identification process. Yet,
there was also a partial temporal overlap between these two
effects as each of themmodulated P3 onset latency. This temporal
overlap is consistent with the idea that once the end-anchor
identification process starts, it runs in parallel to the analog
comparison process. In turn, this agrees with (or at least does
not contradict) the hypothesis of a race model suggested by
Leth-Steensen and Marley (2000). Furthermore, the results of
our source localization analysis raise the question of whether
the end-anchor identification process activates a different brain
region (i.e., the precuneus) than the IPS, which is the area that
has been typically associated with the analog comparison process
(Pinel et al., 2001; Dehaene et al., 2003; Feigenson et al., 2004;
Ansari et al., 2005; Kaufmann et al., 2005; Hyde and Spelke,
2012).

CONCLUSION

In sum, our data suggests that the analog comparison process
may be related to bottom-up or stimulus driven automatic
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processing of number values. The early onset of the ERP distance
effects coincides with number models that assume that the
representation of numbers as quantities (or the mental number
line) is immediately accessed whenever numerical information
is perceived (e.g., Dehaene et al., 2003; Feigenson et al., 2004).
This immediate access allows the understanding of where a
given quantity falls with respect to other quantities as reflected
in the analog comparison process. In contrast, the end-anchor
identification process may be related to the top-down visuo-
spatial framing or constructing of the specific number range
that is being dealt with during the task (see also Pinhas et al.,
2013). This process was manifested as a modulation of the P3
congruency effect, thus it may be related to higher-order stimuli
categorization and evaluation processes thought to be reflected
in the P3 (e.g., Kutas et al., 1977; McCarthy and Donchin, 1981;
Kok, 2001; Polich, 2007, 2012). Future work is needed to better
understand how the end-anchor identification process develops
in relation to the analog comparison process (Goldman et al.,
2013) as well as characterizing the processing of less salient or
prototypical end values by examining upper end values. We
conclude that two processes are involved in the processing of
numbers: an analog comparison process and an end-anchor
identification process. Since both processes were indicated under

conditions of automatic processing they both seem to encode the
fundamental aspects of symbolic numerical information, namely,
quantity information, as well as information about the range of
these quantities.
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