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Endurance exercise improves cardiovascular and musculoskeletal function and may also
increase the information processing capacities of the brain. Animal and human research
from the past decade demonstrated widespread exercise effects on brain structure
and function at the systems-, cellular-, and molecular level of brain organization.
These neurobiological mechanisms may explain the well-established positive influence
of exercise on performance in various behavioral domains but also its contribution
to improved skill learning and neuroplasticity. With respect to the latter, only few
empirical and theoretical studies are available to date. The aim of this review is (i) to
summarize the existing neurobiological and behavioral evidence arguing for endurance
exercise-induced improvements in motor learning and (ii) to develop hypotheses about
the mechanistic link between exercise and improved learning. We identify major
knowledge gaps that need to be addressed by future research projects to advance
our understanding of how exercise should be organized to optimize motor learning.

Keywords: neuromodulation, endurance exercise, motor learning, brain, neuroplasticity, lactate, motor cortex,
acute

INTRODUCTION

The optimization of motor learning is of particular relevance in many sport-related settings such
as competitive sports, disease prevention, rehabilitation after neurological or orthopedic injury as
well as physical education. A huge body of literature in movement and training science proposes
strategies to optimize motor skill learning with a strong emphasis on practice distribution (for
example massed vs. distributed practice), scheduling (blocked vs. random practice), variation of
motor tasks (constant vs. variable practice) as well as movement feedback or attentional focus
(Magill, 2011; Schmidt and Lee, 2014).

From a more mechanistic perspective, strategies to improve motor learning may benefit
from a deeper understanding of the underlying neurobiological mechanisms of skill acquisition,
stabilization and retention in the brain. Thereby, targeted strategies can be developed to specifically
modulate learning-related mechanisms with the aim to augment motor learning.

For example, transcranial electric or magnetic stimulation can be used to modulate brain
function and behavior through external application of weak electric currents or magnetic fields
throughout the scalp (Nitsche and Paulus, 2000; Reis et al., 2008; Dayan et al., 2013). One
widely used technique is transcranial direct current stimulation (tDCS). TDCS of the primary
motor cortex (M1) has been shown to increase long-term potentiation-like (LTP-like) plasticity
or improve motor memory retention (Reis et al., 2008, 2009). Such external stimulation techniques
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allow for focal modulation of cortical excitability and offer
intriguing possibilities for example in stroke rehabilitation
(Nowak et al., 2009).

Here we propose physical exercise as a more “endogenous”
neuromodulation strategy to improve motor learning and brain
plasticity. Mounting evidence demonstrates that physical exercise
affects brain structure and function from the molecular to the
systems level of brain organization (Voss et al., 2013b). Physical
exercise facilitates long-term potentiation (LTP)-like plasticity
in M1 (Singh et al., 2014b) and increases the level of learning-
related neurotrophins (Rojas Vega et al., 2006). These and other
mechanisms of physical exercise are discussed to potentially
modulate motor learning (Fabel et al., 2009; McHughen et al.,
2010; Cantarero et al., 2013).

Roig et al. (2013) provided a comprehensive summary about
the behavioral effects of exercise on declarative and procedural
memory processing. Here, we will focus on motor learning
and review, in particular, the existing neurobiological evidence
to generate hypotheses about the causal relationship between
exercise and online/offline motor learning. We acknowledge
that physical exercise may modulate motor performance via
processes outside the central nervous system such as increases in
muscle strength and flexibility (Schmidt and Lee, 2014). While
we did not ignore these peripheral sources, we believe that
modulation of brain function and structure through exercise
constitutes largely unexplored mechanisms to optimize motor
learning. Physical exercise is a natural and “endogenous” neuro-
enhancement strategy potentially relevant for disease prevention,
rehabilitation and education. To understand how exercise may
enhance motor learning and neuroplasticity, it is important to
characterize the neural correlates of motor learning.

ONLINE AND OFFLINE MOTOR
LEARNING

Online motor learning is expressed as gain or loss in motor
performance within a motor practice session (motor memory
acquisition) while offline motor learning reflects performance
changes between subsequent practice sessions (Dayan and
Cohen, 2011). Hence, offline learning is thought to depend
also on neuroplasticity within the period after task performance
(Muellbacher et al., 2002). Subjects may reside in the resting-state,
sleep or perform other tasks in this period which may positively
or negatively influence offline learning-related neuroplasticity.
For example, studies have shown abolished offline learning
(motor memory consolidation and retention) through learning
an interfering motor task (negative transfer, Brashers-Krug et al.,
1996) or enhanced offline learning through sleep (positive
transfer, Walker et al., 2003).

Here we propose that physical exercise induces positive
transfer effects on online and offline motor learning through
facilitation of the underlying neural processes of motor memory
acquisition, consolidation and retention. This implies that certain
aspects of exercise-induced brain changes are causally linked to
the performance gains seen during online and offline periods
as well as its neurobiological correlates in the brain. At present,

this causal link has not yet been established and our hypothesis
is based on independent evidence from (i) behavioral studies
showing positive effects of exercise on motor learning as well as
(ii) neurobiological studies on exercise-induced brain changes.
Therefore, we will first review these separate pieces of behavioral
and neurobiological evidence before hypotheses are generated
about the causal link between exercise, motor learning and their
underlying mechanisms.

After reviewing the neurobiological evidence, we will highlight
behavioral studies showing improved motor learning through
physical exercise scheduled before (acute or habitual exercise) or
after (post-practice period) a motor practice session.

NEURAL CORRELATES OF MOTOR
LEARNING

We will now briefly highlight some of the existing evidence on
motor learning-related changes in the brain. With this, we would
like to inform readers about relevant brain changes that are
important for a better understanding of the effects of exercise
on motor learning. For a more detailed review on the neural
correlates of motor learning, the reader is referred to review
articles by Doyon and Benali (2005), Monfils et al. (2005), and
Dayan and Cohen (2011).

In brief, both online- and offline motor learning are associated
with distinct changes in brain activation in typical sensorimotor
networks (e.g., motor cortex, basal ganglia, cerebellum) and
higher-order associative networks (e.g., prefrontal, parietal and
temporal cortices). Online motor learning in the early practice
period engages prefrontal, parietal and partly hippocampal
brain regions in addition to sensorimotor cortical-striato-
cerebellar networks (Karni et al., 1995; Honda et al., 1998;
Floyer-Lea and Matthews, 2005; Albouy et al., 2008) while
the prefrontal contributions decrease in the later practice
period (Poldrack et al., 2005) and the motor memory seems
to be stabilized in sensorimotor cortical and subcortical
(striatum and cerebellum) networks. More extensive periods
of motor practice induce structural changes in cortical gray
matter and underlying white matter tracts (Scholz et al.,
2009).

The structure of white matter fiber tracts regulate the
timing and speed of action potentials across axons which are
critical for the occurrence of learning-related neuronal plasticity
(“neurons that fire together, wire together”) (McKenzie et al.,
2014). Training-induced plasticity in M1 may occur through
lasting modulations in synaptic transmission (Butefisch et al.,
2000; Rioult-Pedotti et al., 2000; Donchin et al., 2002; Antonov
et al., 2003) including synaptogenesis (Xu et al., 2009) and
the coordinated strengthening (e.g., LTP) and weakening (e.g.,
LTD) of synaptic connections (Mayford et al., 2012; Lee et al.,
2014). In this respect, LTP and long-term depression (LTD)
are considered as the cellular analog of motor learning (Rioult-
Pedotti et al., 2000; McConnell et al., 2009; Cantarero et al., 2013).
LTP and LTD reflect sustained changes in synaptic efficacy in
response to the correlated arrival of action potentials between
neurons (Hebb’s learning rule, “neurons that fire together, wire
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together,” Hebb, 1949). In humans, neurophysiological studies
showed that motor learning (i) requires LTP-like plasticity in M1
(Cantarero et al., 2013), (ii) increases the size of the movement
representation of trained limbs inM1 (Pascual-Leone et al., 2005)
and (iii) enhances motor corticospinal excitability (Muellbacher
et al., 2002), although the relationship between cortico-spinal
excitability and motor learning is complex (Tunovic et al., 2014).

In animals, LTP induction is linked to cellular structural
changes (Toni et al., 1999; Harms et al., 2008). These structural
changes rely on de novo protein synthesis (Lu et al., 2008)
and injecting protein synthesis inhibitors in M1 results in a
loss of previously learned skills as well as an impairment in
new motor skill acquisition (Kleim et al., 2003). Worsened
motor skill learning was correlated with reduced synapse number
and size (Kleim et al., 2003) and learning a new motor skill
rapidly increases the number of new synaptic spines in M1 (Xu
et al., 2009). While the overall spine density returns to initial
values soon, the newly formed spines are preferentially stabilized
through subsequent practice and outlast the end of the training
period (Xu et al., 2009). Further studies reported synaptogenesis
after a few weeks of motor learning (Black et al., 1990; Kleim
et al., 2002b) that was specific to the cortical representation of
the trained limb and accompanied by an increase of motor map
size (Kleim et al., 2002b, 2004). Such changes were not observable
in the untrained limb representation and occur as a consequence
of skilled motor activity instead of repetitive limb use (Kleim
et al., 1996; Plautz et al., 2000; Tyč et al., 2005) or even strength
training (Remple et al., 2001; Jensen et al., 2005). The prevailing
and generally accepted view is that motor learning reorganizes
neuronal and synaptic connections, whereas endurance exercise
mainly influences the supportive vascular components (Churchill
et al., 2002).

At the molecular level, motor learning reduces the
concentration of the inhibitory neurotransmitter γ-aminobutyric
acid (GABA) in M1 (Floyer-Lea et al., 2006; Stagg et al.,
2011). Furthermore, the neurotrophic factor BDNF (brain-
derived neurotrophic factor) is linked to functional plasticity
in the human motor system. Subjects carrying the Val66Met
polymorphism of the BDNF gene, which is known to affect
activity-induced BDNF secretion (Egan et al., 2003), show
reduced corticospinal excitability and reduced motor map
reorganization in response to motor learning (Kleim et al., 2006).
The Val66Met polymorphism also negatively affects online and
offline learning of a complex motor tracking task (McHughen
et al., 2010) but had no effect on learning a serial reaction time
task (Freundlieb et al., 2012; Morin-Moncet et al., 2014). In
Mice with BDNF mutations show diminished responses to
excitability-enhancing brain stimulation of M1 (Fritsch et al.,
2010). Not last, the loss or critically low levels of BDNF are
associated with motor system dysfunction, for example with
severe neurodegenerative diseases (Teixeira et al., 2010; He et al.,
2013).

The central question that runs through this article is how
endurance exercise influences these motor learning-induced
brain changes at the systems-, cellular, and molecular level to
create a productive neural environment for neural plasticity
during online and offline periods of motor learning.

NEURAL CORRELATES OF EXERCISE

Like motor learning, physical exercise elicits neural changes from
the systems- to the molecular level of brain organization. We will
restrict the following review to exercise-induced brain changes
that are potentially important to influence motor learning-
induced neuroplasticity.

Systems-Level
To investigate exercise-effects at the systems-level, research
in humans was performed using, e.g., transcranial magnetic
stimulation (TMS) or magnetic resonance imaging (MRI). For
TMS and functional MRI (fMRI), exercise-induced changes
were found for corticospinal excitability, LTP-like plasticity and
functional connectivity immediately or some minutes after the
exercise interventions while structural MRI studies assessed
lasting changes in gray and white matter after weeks to months of
exercise. Such acute and lasting effects may contribute differently
to improvements in online and offline motor learning.

TMS and fMRI
Transcranial magnetic stimulation is a non-invasive technique
to focally stimulate superficial cortical brain regions across the
scalp. Application of a single, suprathreshold TMS pulse over the
primary motor cortex (M1) activates peripheral target muscles
that can be recorded via electromyography. This response
is referred to as motor evoked potential (MEP). The most
commonly used TMSmeasures that characterize motor learning-
related changes are (i) the size of cortical area from which
an MEP could be evoked (movement representation), (ii) the
lowest stimulus intensity to evoke an MEP (motor threshold)
and (iii) the size of the MEP at a defined stimulation intensity
(1 mV MEP). In general, motor learning increases motor
map size, decreases the motor threshold, and increases MEP
amplitudes (Pascual-Leone et al., 2005; Adkins et al., 2006).
More recently, these indices have also been recorded in response
to endurance exercise. Exhaustive exercise lowers the motor
threshold indicating increased cortico-spinal excitability (Coco
et al., 2010). Also, increased cortical excitability was found
in very active compared to sedentary subjects (Cirillo et al.,
2009). More recent studies, however, were not able to replicate
the exercise-induced increase in cortico-spinal excitability and
instead found evidence that exercise enhanced neuroplasticity
in M1 (please see below McDonnell et al., 2013; Mang et al.,
2014). Paired pulse TMS (ppTMS) allows to specifically examine
local inhibitory and facilitative mechanisms within M1 (intra-
hemispheric excitability) as well as between M1 and distant brain
regions in the ipsi- and contralateral hemisphere (intra- and
interhemispheric excitability). PpTMS pairs two TMS pulses over
M1 with particular inter-stimulus intervals to target inhibitory
(5 ms or less) or facilitatory (10–25 ms) mechanisms. A decrease
in intracortical inhibition, which seems to be dependent on
the level of the inhibiting neurotransmitter GABA, is generally
assumed to reflect a favorable environment for the induction
of neuroplasticity and therefore motor skill learning (Singh and
Staines, 2015). Reductions in local GABA concentrations in M1
are correlated with motor learning in a serial-reaction time task
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(Stagg et al., 2011), a sensorimotor adaptation paradigm (Kim
et al., 2014) as well as a motor tracking task (Floyer-Lea et al.,
2006). Using acute bouts of exercise, Yamaguchi et al. (2012)
reported a decrease in short-interval intracortical inhibition
(SICI) of the leg area (tibialis anterior and soleus muscles) after
just 7 min of low-intensity cycling (Yamaguchi et al., 2012).
Similar effects were observed for the upper extremity (first dorsal
interosseous muscle) after 30 min of low–moderate or moderate–
high intensity cycling (Smith et al., 2014). Likewise, 20 or 30 min
of continuous biking with moderate intensity decreased SICI
measured in the extensor carpi radialis and abductor policis
brevis muscles (Singh et al., 2014a; Snow, 2014). Moreover, a
rodent study showed that exercise upregulates genes associated
with the excitatory glutamatergic system and downregulates
genes related to the inhibitory GABA system in the hippocampus
(Molteni et al., 2002). Taken together, these studies provide
evidence that exercise at low, moderate or even high intensities
rapidly reduces intracortical inhibition and that this effect is
not limited to the exercised limbs. This may be beneficial for
online motor learning. It must be mentioned that an increased
intracortical inhibition in lower extremity M1 representations
(vastus lateralis muscle) was observed during fatiguing cycling
exercise (Sidhu et al., 2013) indicating that exercise at very high
intensities may attenuate learning if motor practice involves
similar effectors.

Finally, more recent studies examined the effect of endurance
exercise on TMS protocols aiming to experimentally induce
changes in synaptic efficacy using paired-associative stimulation
(PAS; LTP- or LTD-like plasticity). Basically, this technique
induces cortical LTP-like plasticity by first stimulating a
peripheral nerve electrically, followed by a TMS pulse of the
corresponding M1 area several milliseconds later. This enables
researchers to study synaptic plasticity in vivo and to reduce the
influence of numerous boundary conditions normally affecting
behavior and associated brain changes (e.g., inter-individual
differences in motor learning). Cirillo et al. (2009) tested the
effect of regular physical activity on PAS-evoked neuroplasticity.
Participants were divided into two groups dependent on self-
reported physical activity level. The sedentary group performed
physical activity less than 20 min per day on no more than
3 days per week, whereas the active group performed moderate-
to-vigorous aerobic activity more than 150 min per day on at
least 5 days per week. Active subjects showed increased LTP-like
plasticity, as measured by the MEP amplitude of the abductor
pollicis brevis (APB) muscle (hand muscle). Notably, similar
effects were also registered in other experiments focusing on the
effects of a single bout of exercise. For example, enhanced LTP-
like plasticity in the APB muscle was observed after 20 min of
moderate-intensity cycling (Singh et al., 2014b). This beneficial
effect applies for higher exercise intensities as well, since PAS-
effects were also noted after 20 min of high-intensity interval
cycling (Mang et al., 2014). However, LTP-like plasticity was not
enhanced in the soleus muscle (lower extremity) of endurance
athletes but pronounced in skill athletes (Kumpulainen et al.,
2015). The reason for the diminished plasticity in lower limbs
and the enhanced plasticity in upper limbs in endurance athletes
remain speculative.

Beyond M1, acute exercise has been shown to change large-
scale brain network connectivity in the resting-state. Rajab et al.
(2014) compared 20 min of moderate-intensity exercise (70% of
age-predicted HRmax) with a resting control group (n = 15).
Functional connectivity was tested before and immediately
after the exercise bout and increased connectivity was found
in sensorimotor and thalamic-caudate networks (Rajab et al.,
2014).

To sum up, acute exercise induces facilitative effects on early
neuroplasticity (within the first hour after exercise). However,
the dose-response relationship between exercise parameters,
especially exercise intensity, and TMS indices is not clear to date
(Singh and Staines, 2015) and long-term intervention studies
on corticospinal excitability or PAS-induced plasticity are still
missing.

Structural MRI
An excellent method to observe brain morphology changes in
humans is MRI. MRI can be used to non-invasively assess the
shape and size of brain regions and to compare these measures
between participants and across time within single individuals.
Morphological measures such as gray matter volume/density or
cortical thickness are derived from segmentation of individual
brain images into distinct tissue classes (e.g., gray matter, white
matter and cerebrospinal fluid). In recent years, a considerable
amount of studies demonstrated structural changes in, e.g.,
gray matter density after complex motor learning (Draganski
et al., 2004; Taubert et al., 2010). The cellular correlates of gray
matter changes observed with MRI are still unknown and recent
studies combining MRI with histological assessment in animals
provide new insights into how MRI changes are correlated with
alterations at the cellular level (Lerch et al., 2011; Hamaide et al.,
2015).

First, cross-sectional studies in humans have found
associations between brain structure and motor behavior.
Schlaffke et al. (2014) directly compared grey matter density
(GMD) between long-distance endurance athletes, martial artists
and a non-sport control group not reporting participation in
any regular physical activities. The idea of comparing endurance
vs. martial artists is based on their differing metabolic profile
(mainly aerobic vs. mainly anaerobic). In comparison to controls,
statistical analysis of GMD across the whole brain showed higher
GMD in the supplementary motor area/dorsal premotor cortex
(BA 6) in both athlete groups. Endurance athletes additionally
revealed higher GMD in medial temporal lobe. The authors
conclude that structural differences in these regions in the
athlete groups may be related to motor control and motor skill
acquisition (Dayan and Cohen, 2011; Tomassini et al., 2011).

Longitudinal studies with repeated MRI measurements before
and after training provide further insight into potential causes
of brain differences since the aforementioned variations in gray
matter may be attributed to physical activities or alternative
factors such as genetic predispositions. In a longitudinal study
with elderly humans, aerobic exercise for 1 year reversed the
age-related decline in gray matter and increased hippocampal
volume of approximately 2% (Erickson et al., 2011). Besides
the hippocampus, the prefrontal cortex is also vulnerable
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for exercise-induced gray matter changes in elderly humans
(Colcombe et al., 2006). Both the hippocampus and the prefrontal
cortex are relevant for learning, memory and cognitive control
and the fMRI literature on motor learning suggests that both
brain regions are involved in the early period of motor skill
learning (please see Neural Correlates of Motor Learning).
Also, motor learning induces structural GMD changes in the
hippocampus and prefrontal cortex (Boyke et al., 2008; Taubert
et al., 2010; Sehm et al., 2014). Therefore, long-term exercise
may exert beneficial effects on motor learning by priming
brain regions implicated in motor skill acquisition such as the
hippocampus and/or prefrontal cortex.

With respect to motor learning, however, the aforementioned
MRI studies have tested exercise effects using relatively long
observation periods (6–12 months). Interestingly, two MRI
studies with rodents (Sumiyoshi et al., 2014; Cahill et al., 2015)
recently demonstrated that exercise over 1–4 weeks affects brain
regions well known to be involved in motor function and
learning (please see Neural Correlates of Motor Learning). In
one of these studies, Cahill et al. (2015) exposed male mice
to 4 weeks of voluntary exercise and compared alterations in
brain structure to inactive controls using high resolution MRI.
The authors registered exercise-induced gray matter changes in
several brain structures, amongst them hippocampus, dentate
gyrus, stratum granulosum of the dentate gyrus, cingulate cortex,
olivary complex, inferior cerebellar peduncle and regions of the
cerebellum. Furthermore, Sumiyoshi et al. (2014) examined gray
matter changes in response to a period as short as 1 week of
voluntary wheel-running. Analyses revealed gray matter changes
in widely distributed regions of the cerebral cortex, including
motor, somatosensory, association and visual areas but not the
hippocampus or prefrontal cortex. Structural changes were kept
up for a period of at least 1 week and correlated positive with
the total running distance. Collectively, these results indicate
that exercise-induced structural gray matter plasticity may shift
from sensorimotor to prefrontal and limbic regions during the
time course of physical exercise. Interestingly, such a shift from
sensorimotor to prefrontal and limbic structural plasticity has
already been observed during the course of practice of a complex
whole-body balance task (Taubert et al., 2010, 2012; Sehm et al.,
2014).

Below the cortical sheath, white matter tracts interconnect
distant cortical regions to allow information processing within
large-scale networks (Fields, 2008). In addition to changes in
gray matter, aerobic fitness in cross-sectional studies as well
as endurance exercise interventions have shown to affect white
matter tract structure as well (Voss et al., 2013a; Chaddock-
Heyman et al., 2014; Herting et al., 2014). A longitudinal
study involving 33 patients with schizophrenia and 48 healthy
controls (age 18–48 years, 60 males/21 females) randomly
assigned the subjects to either a physical exercise or control
condition (Svatkova et al., 2015). The intervention lasted
6 months and contained 1 h training sessions conducted
twice weekly. The proportion of aerobic (for instance cycling,
rowing, treadmill running) to anaerobic exercises (weight-
based strengthening exercises) was 2:1. Using diffusion-tensor
imaging (DTI), a method that assesses the diffusion properties of

water molecules to infer microstructural white matter changes,
Svatkova et al. (2015) found that 6 months of exercise training
alters white matter microstructure specifically in fiber tracts
implicated in motor functioning such as the corpus callosum,
corticospinal tract and superior longitudinal fascicle. This effect
was comparable for patients and healthy subjects.

Taken together, the aforementioned studies demonstrate
that endurance exercise leads to structural adaptations in
motor-related brain regions and associated fiber connections.
Nonetheless, longitudinal MRI studies examining the relation
between exercise-induced brain changes and subsequent motor
learning-induced brain changes were not conducted yet.
Furthermore, conclusions about the practical significance of
macroscopic brain changes are hindered since the MRI-
observable changes could be driven by very different cellular
changes (Zatorre et al., 2012). To gain more insight about that,
the next section will focus on neurobiological adaptations on a
more fine-grained level of observation.

Cellular Level
As already mentioned, motor learning is associated with changes
in synaptic efficacy (LTP/LTD) (Sanes and Donoghue, 2000;
Lee et al., 2014) which depends on structural changes at the
synaptic level (Toni et al., 1999) and is linked to changes in
the size of movement representations in M1. In contrast to
motor learning, Kleim et al. (2002a) showed that endurance
exercise (wheel running) did not alter forelimb movement
representations which is in line with earlier findings that fail
to show synaptic structural changes (e.g., synaptogenesis) in
response to endurance exercise (Black et al., 1990) but instead a
greater density of blood vessels in layer V of the forelimb motor
cortex (Kleim et al., 2002a). Also, exercise-induced blood vessel
density increases were reported in other rodent studies using
histological methods (Black et al., 1990; Isaacs et al., 1992) as
well as MRI (Swain et al., 2003). Thus, endurance exercise does
likely not lead to neuronal adaptations (except of neurogenesis
in the hippocampus) but exercise-induced vascular changes
might contribute to subsequent learning-related neuroplasticity
(Adkins et al., 2006) since memory formation and consolidation
are energy-demanding processes (Tononi and Cirelli, 2014).
Thus, an improved supply of oxygen and other fuels to motor
regions might be of relevance.

Molecular Level
BNDF and Lactate
On a molecular level, a concerted action of key neurochemicals
is required for the occurrence of motor learning- and exercise-
related physiological and structural changes (Korte et al., 1995;
Boulanger and Poo, 1999; Monfils et al., 2005; He et al., 2013).
Acute endurance exercise has been shown to enhance the levels of
many memory-related trophic factors like BDNF, VEGF, and IGF
or neuromodulatory transmitters like dopamine, epinephrine or
norepinephrine in peripheral blood circulation (Rojas Vega et al.,
2006; Rojas Vega et al., 2012a; Phillips et al., 2014).

Among the abovementioned neuromodulators and
neurotrophic factors, BDNF is likely the best investigated
and maybe the most important one. Using BDNF-mutant mice,
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Korte et al. (1995) first demonstrated that BDNF contributes
to LTP expression. In the same year, it was reported that rats
exposed to 7 days of voluntary wheel running exercise showed
increased BDNF gene expression in the hippocampus and certain
layers of the caudal neocortex (Neeper et al., 1995), providing
first evidence that growth factors may be responsible for the
beneficial effects of exercise on cognition and the brain. These
observations led to a series of studies examining the effects of
exercise on growth factor signaling, brain structure and function
(Voss et al., 2013b).

BDNF is involved in all steps of memory formation from
neuronal excitation to the induction and maintenance of early
and late forms of LTP (Korte et al., 1995; Vaynman et al.,
2003; Bekinschtein et al., 2008; Gómez-Pinilla and Feng, 2012).
Importantly, this not only applies for the hippocampus but also
for the motor system (He et al., 2013). BDNF and its receptor
TrKB are important molecular intersections of exercise and
motor learning (Klintsova et al., 2004).

Because the exogenous administration of BDNF is
problematic in humans (for discussion see Fumagalli et al., 2006),
natural ways to elevate BDNF levels and other neurochemicals
are a promising way to counteract motor dysfunction and
to enhance motor learning in healthy people. In this respect,
intrahippocampal injection of BDNF enhances cognitive learning
in mice (Alonso et al., 2002) and acute exercise-induced increases
in peripheral BDNF levels correlate with behavioral parameters
of motor skill learning (Skriver et al., 2014) although the exact
relationship between central and peripheral BDNF is unclear
(Di Lazzaro et al., 2007). Knowing that values of BDNF as
well as other trophic factors and neuromodulatory transmitters
typically increase through endurance exercise (Knaepen et al.,
2010; Skriver et al., 2014) indicates that exercise may represent
a promising and natural enhancement strategy for key factors
involved in motor learning. It is unclear how long BDNF levels
remain elevated after the exercise session. In general, exercise-
induced increases in peripheral BDNF return to baseline levels
within several minutes after cessation of exercise (Rojas Vega
et al., 2006). However, animal research provides evidence for
elevated cortical BDNF levels 5 h after completion of exercise,
with the 5 h values exceeding those obtained immediately after
exercise (Takimoto and Hamada, 2014). In contrast to this,
many human studies examining BDNF levels in the resting
state after a long-term exercise intervention report just small
increases of circulating BDNF levels (Rojas Vega et al., 2012a;
Szuhany et al., 2015), whereas higher exercise intensities might
elicit a more pronounced BDNF increase (Baker et al., 2010).
Furthermore, regular exercise may also enhance the BDNF
response to an acute bout of exercise (Szuhany et al., 2015).
Noticeably, a cross-sectional study examining the link between
habitual physical activity and resting BDNF levels report even
a negative correlation (Currie et al., 2009). This discrepancy
might be explained by an increased BDNF clearance and uptake
in other tissues like the brain (Knaepen et al., 2010; Rojas Vega
et al., 2012a) as well as the different ways of how peripheral
blood was analyzed for BDNF. Peripheral BDNF values are
significantly influenced by analysis kits and BDNF determination
in blood plasma, serum or whole-blood (Knaepen et al., 2010;

Klein et al., 2011). While exercise immediately increases BDNF
levels in the brain and periphery, their dwell time remains
speculative.

Besides the changes in neurochemicals, exercise influences the
energy supply of the brain. For example, recent investigations
highlighted that lactate, elevated in response to exercise-induced
anaerobiosis in the muscle cells (Robergs et al., 2004), is
increasingly used as energy source for the brain and becomes the
preferred fuel if arterial lactate values exceed the lactate values
in the brain (Dalsgaard et al., 2004; Kemppainen et al., 2005;
Boumezbeur et al., 2010). This fact is of particular importance
since high lactate levels increased motor cortex excitability (Coco
et al., 2010). Moreover, the availability of lactate plays a crucial
role in long-term memory formation because the blockade of
the expression of monocarbocylate-transporters (MCT), which
catalyze the diffusion of lactate, reduces the transfer of lactate to
astrocytes and neurons in vitro and impairs long-term memory
in rats (Suzuki et al., 2011). Given this, the finding that an acute
bout of exercise near or above the lactate threshold results in an
elevated expression of MCT’s is potentially relevant (Takimoto
and Hamada, 2014). However, it remains to be determined how
regular exercise affects brain energetics and whether this might
relate to motor function and memory. Maybe most important,
lactate is directly involved in growth-factor signaling in response
to exercise.

BEHAVIORAL EVIDENCE

This section reviews studies involving chronic or long-term
endurance exercise and studies involving acute exercise to
enhance motor learning. In contrast to cognition and declarative
memory, only few studies have been published examining
endurance exercise-induced improvements in motor learning.
Acute protocols comprise endurance exercise activities on a single
day that are intense enough to evoke a systemic physiological
response. Typically, acute exercise takes place immediately before
(think of classical warm-up) or immediately after a motor skill
practice session. Long-term exercise includes studies examining
the effects of endurance exercise over longer time periods (days,
weeks, months) before motor skill learning. While both types
of interventions have certain neurobiological mechanisms in
common, they represent disparate strategies to affect memory. In
general, long-term exercise aspires to enhance the responsiveness
of the brain to new environmental stimuli through enhancement
of learning-induced neuroplasticity. While this is also true for
acute exercise prior to motor skill practice, this type of exercise
additionally targets an optimal preparation for high performance
in the upcoming training session, for example by increasing
arousal. On the contrary, exercising after a practice session
selectively impacts motor memory consolidation (Snigdha et al.,
2014). This is especially relevant from a research-methodological
perspective, since the effects of acute exercise likely outlast the
practice session, thus not just affecting acquisition, but also
consolidation (Roig et al., 2013). Therefore, the effects of acute
exercise depend on its temporal positioning in relation to motor
skill practice (Roig et al., 2012). Note that it is not possible in all
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cases to draw conclusions on motor learning defined as relatively
permanent changes in motor behavior, since many studies lack
delayed retention tests (Kantak andWinstein, 2012; Schmidt and
Lee, 2014).

Acute Exercise Before Learning
Generally, warm-up aims to prepare the central nervous,
neuromuscular, cardiovascular and respiratory systems for
the upcoming training session and therefore ensures high
performance and reduction of injury risk (Shellock and Prentice,
1985). If training sessions target motor learning, the conditions
for memory encoding should be optimized as well. From a
psychological perspective, this may be induced by an optimal
level of arousal that is in turn dependent on the nature of the task
to be practiced (Schmidt and Lee, 2014). Likely, increased arousal
is enabled by an exercise-induced elevation of catecholamines
like dopamine, epinephrine or norepinephrine (Winter et al.,
2007; Skriver et al., 2014). Additionally, as stated in the previous
section, an upregulation of neurotrophic factors like BDNF may
benefit subsequent learning-induced synaptic plasticity (Winter
et al., 2007; Mang et al., 2014; Skriver et al., 2014). Furthermore,
endurance exercise has shown to alter cerebral blood flow
(Ogoh and Ainslie, 2009; Dietrich and Audiffren, 2011), reduce
intracortical inhibition in exercised (Yamaguchi et al., 2012) as
well as non-exercised limbs (Singh et al., 2014a; Smith et al.,
2014) and to improve the conditions for the induction of synaptic
plasticity (McDonnell et al., 2013; Mang et al., 2014; Singh
et al., 2014b). What is the behavioral evidence with reference
to the effects of acute endurance exercise prior to motor skill
performance and learning?

One study specifically examined the role of acute exercise on
motor skill acquisition and long-term motor memory (Roig et al.,
2012). In an experimental design with 48 healthy young male
subjects split into three groups, interval cycling was conducted
either before (PRE) or after learning (POST) a visuomotor
tracking task, whereas controls (CON) rested. The dependent
variable was the absolute retention performance of a visuomotor
tracking task (RMSE) after 1 h, 24 h, and 7 days. While no
between-group differences regarding the rate of motor skill
acquisition were registered, it was found that both exercise groups
showed better retention compared with controls 24 h and 7 days
after practice. The same working group published an association
study correlating the peripheral blood plasma levels of several
biomarkers with skill acquisition and retention of the tracking
task (Skriver et al., 2014). Blood samples were drawn immediately
after exercise (PRE condition as introduced above) or rest
(CON). Interestingly, lactate (r = 0.877) and norepinephrine
(r = 0.636) were associated with an improved rate of skill
acquisition during practice. For skill retention 7 days after
acquisition, correlations were found for norepinephrine levels in
PRE (r = −0.584), with noticeable trends toward significance
for earlier retention time points (1, 24 h). Likewise, plasma
BDNF levels were associated with improved skill retention 1 h
(r = −0.672) and 7 days (r = −0.608) after practice. An
intriguing finding of Skriver’s study is the significant correlation
of lactate with better skill retention at all measurement points
(1 h: r = −0.658, 24 h: r = −0.715, 7 days: r = −0.672).

We will discuss the potential role of lactate in motor learning
more detailed in the next section (see Hypothetical Mechanisms
for Exercise-Induced Improvements in Motor Learning). In
controls (CON), none of the examined biomarkers correlated
with neither skill acquisition nor retention with the exception
of norepinephrine, which showed, somewhat surprisingly, the
opposite pattern as observed in PRE, since higher blood plasma
values at each measurement point indicated higher error values
at skill retention (1 h: r = 0.530, 24 h: r = 0.535, 7 days:
r = 0.529). Significant associations with skill acquisition and
retention were not found for dopamine, IGF-1 and VEGF in
neither group.

Inspired by Roig’s study, Mang et al. (2014) examined the
effects of an acute bout of high-intensity exercise on PAS-induced
LTP-like plasticity and on learning of an implicit visuomotor
tracking task. A motor tracking task had to be acquired under
different conditions and memorized approximately 24 h later.
Subjects received either exercise or a resting control period
before acquisition of a learning sequence. Serum BDNF blood
samples were collected immediately before and after exercise.
While the spatial task component of the tracking task was not
affected by exercise, the temporal components improved from
early to late practice and this improvement was preserved 24 h
after practice in the exercise condition. Given the exercise-
induced improvement especially of the timing-related task
component, the authors hypothesized that exercise specifically
affected cerebellar function (Mang et al., 2014). Despite the
marked 3.4-fold increase in serum BDNF following exercise,
significant correlations between normalized BDNF change and
any behavioral data were not found. Note that a positive effect
of an acute bout of exercise on skill acquisition was also
observed by Statton et al. (2015). Using 30 min of moderate-
intensity exercise prior to motor practice of a sequential motor
task, Statton et al. (2015) observed improvements in skill
acquisition but not skill retention which is in contrast to the
above mentioned results of Roig et al. (2012) and may be
induced by the different exercise intensities (high- vs. moderate-
intensity).

As an intermediate result, the reported studies conducted
in laboratory settings observed beneficial effects of an acute
bout of high-intensity exercise prior to skill acquisition on
motor learning as objectified with delayed retention tests (Roig
et al., 2012; Mang et al., 2014) and enhanced performance
improvements during initial practice (Statton et al., 2015).
However, despite of the similar structure and intensity of exercise,
a significant association of the behavioral data with BDNF was
not consistently reported (Mang et al., 2014; Skriver et al., 2014).

Given the facts that the mastering of comparably simple skills
like tracking does not require high amounts of practice and that
it is a part-body movement questions the ecological validity of
such findings, especially with respect to whole-body movements
(Wulf and Shea, 2002). To gain insight into more complex motor
learning processes, a recent meta-analysis focused exclusively on
the performance of whole-body, psychomotor tasks following
any type of moderate and strenuous acute conditioning exercise
(endurance, resistance, balance) (McMorris et al., 2015). The
results obtained from 28 studies involving 570 participants
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revealed a slightly positive effect size for moderate (g = 0.15),
and a considerably negative effect size for high-intensity exercise
(g = −0.86). These results are contrary to the view that moderate,
and even more high-intensive, warm-up improves performance.

The reasons why especially resistance and high-intensity
endurance exercise might have detrimental effects on
performance are not examined systematically to date.
Theoretically, this effect could be based on reduced cortical
excitability (Takahashi et al., 2011) or increased intracortical
inhibition (Sidhu et al., 2013). Notably, studies registering a
positive effect of high-intensity exercise on motor learning
used lower limb exercise to promote skills performed with the
upper extremity (Roig et al., 2012; Mang et al., 2014). This
suggests that a local peripheral and/or central fatigue mechanism
may affect exclusively the pre-strained muscle groups, but not
the non-exercised limbs (note that this might just apply for
endurance and not for resistance exercise, c.f. Takahashi et al.,
2011). In line with this, increased PAS-induced synaptic plasticity
after 20 min high-intensity interval cycling was observed in
the non-exercised abductor pollicis brevis muscle (Mang et al.,
2014). Also remarkably, studies using low to moderate intensity
endurance exercise showed facilitative effects on complex motor
skill performance like shot putting (Anshel and Novak, 1989)
or soccer dribbling (McMorris et al., 1994). This suggests that
the facilitative effect of exercise prior to motor skill practice
is effector-dependent and not limited to simple skills like
tracking.

To sum up, evidence indicates that acute exercise improves
motor skill learning but further research is required to
disentangle the effector-specificity of this improvement. Based on
the existing evidence, a negative effect onmotor skill performance
and learning might be expected if warm-up exercise is potentially
fatiguing and involves at the same time the main effectors that
are important for the execution of the skill to be practiced in
succession.

Acute Exercise After Learning
Immediately after motor practice, the motor memory trace
is thought to be in a fragile state and practice-induced skill
improvements need to be transformed into a persistent state
(McGaugh, 2000; Robertson et al., 2004). This applies for both
declarative and procedural memories (Mayford et al., 2012)
and for the latter, incremental learning can be viewed as an
ongoing cycle of consolidating fragile memory traces (Trempe
and Proteau, 2012). This is relevant for the entire motor learning
period because already stabilized memories may become partly
labile through reactivation in a subsequent practice session,
and thus need to be re-stabilized again (Alberini, 2005; Dudai,
2012).

While one promising possibility to facilitate consolidation
is sleep, another lately discussed option might be a bout of
endurance exercise immediately after practizing a motor skill.
The theoretical basis of this strategy is that the neurobiological
machinery of memory formation remains active after the
termination of motor practice. In the first hours after practicing
a motor skill, molecular blockade (Kleim et al., 2003) or
downregulation of corticospinal excitability (Muellbacher et al.,

2002) of M1 or learning a motor interference task (Brashers-
Krug et al., 1996) can disrupt motor memory consolidation to a
significant degree (reviewed in Robertson et al., 2004; Krakauer
and Shadmehr, 2006). With the passage of time after initial
practice cessation, the susceptibility to interferences gradually
descends (Krakauer and Shadmehr, 2006).

From a neurobiological point of view, the persistence of
LTP and its resistance against interfering stimuli could be
the crucial mechanism allowing for proper skill consolidation
(Cantarero et al., 2013). Intact BDNF release and function of
its receptor TrkB are important for the persistence of LTP
(Bekinschtein et al., 2008). Therefore, the exercise-induced
elevation of neurotrophins like BDNF and catecholamines like
norepinephrine (Segal et al., 2012; Skriver et al., 2014) might
contribute to enhance offline learning and/or to minimize the
effects of interfering stimuli in the consolidation time window.

As mentioned in the previous section, Roig et al. (2012)
showed that acute high-intensity exercise immediately after skill
acquisition facilitates long-term motor memory. When directly
comparing the two intervention groups (exercised before [PRE]
or after skill acquisition [POST]) it was shown that the group that
exercised after practice outperformed the group that exercised
before practice in the retention test 7 days after skill acquisition.
Hence, this study provided first evidence that a single bout
of exercise after practicing a motor skill can enhance off-line
learning.

But does post-learning exercise also protect against task
interference within the consolidation window? Rhee et al.
(2015) asked undergraduate subjects to learn a motor sequence
task. Three experimental groups practiced according to the
classical memory stabilization paradigm: acquisition of the target
sequence followed by practicing an alternative (interfering)
sequence 2 h later and a retention test (consisting of three
trials) of the target sequence 24 h after the first practice
session. While one of these groups rested between acquisition
of the target and alternative sequences (ALT), the experimental
groups conducted an acute bout of exercise either immediately
after the target sequence (IMM) or immediately before the
alternative sequence (END). The authors found that exercise
contributed to the emergence of an off-line performance gain
in the retention test session despite of task interference. But
this was only true for the first retention test trial in the END
condition.

Long-Term Exercise
Regular exercise training conducted over months or even years
leads to numerous epigenetic adaptations in different organ
systems and tissues including skeletal and cardiac muscle cells
and the brain (Hawley et al., 2014; Heinonen et al., 2014).
Recently, the use of long-term endurance exercise to prime
the molecular machinery for subsequent learning is increasingly
recognized by scientists from basic research (Berchtold et al.,
2005, 2010; Korol et al., 2013). In line with this, long-
term exercise before learning is assumed to be a promising
intervention strategy especially for motor rehabilitation (Mang
et al., 2013; Petzinger et al., 2013; Stoykov and Madhavan, 2015)
suggesting a general positive transfer effect of endurance exercise
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on motor skill learning (Kleim and Jones, 2008) that has already
been proved empirically (Quaney et al., 2009; Wang et al., 2015).
However, there is a general lack of studies examining the effects
of long-term exercise on motor learning and performance so that
this area of research must be considered as largely underexplored
to date (Stoykov and Madhavan, 2015).

A pilot study assessing the role of long-term physical activity
on motor skill learning was conducted with 10 elderly subjects
(age range 72–91 years) divided into two groups (Bakken
et al., 2001). The exercise group passed through a physical
activity program including calisthenics, stationary cycling and
walking over 8 weeks (three training sessions/week), whereas
controls rested. A finger-movement tracking task was tested
before and after the 8 weeks. The exercise group showed a
significant positive development in the accuracy index of a
finger-movement tracking task from pre- to post-intervention
compared with controls, whose performance worsened over
time. However, the small sample size and the between-group
differences especially regarding resting heart rate and blood
pressure makes a generalization of the results difficult even for
this age group.

In a more recent animal study, Buitrago et al. (2004)
introduced the rotarod motor learning paradigm (balancing on
an accelerated stick) and provided five rats daily access to a
closed running wheel for a period of 7 days. The rats were
kept in the wheel until they ran a predetermined distance of
100 m per day (except for day 1). Wheel-running was followed
by 8 days of rotarod training. In the control condition, five rats
exclusively practiced the rotarod task. Interestingly, the exercise
group showed higher initial levels of rotarod performance and
this advantage remained stable until the end of the rotarod
training period. The authors interpreted this finding as a
positive transfer effect of wheel-running movements to the
rotarod task by means of an improved motor control through
placement of steps to maintain balance and speed. However,
one might counter the assumption that wheel running led
to a specific transfer effect (for example, on balance ability)
since running is considered to be a simple, well-practiced,
automated and therefore hardly challenging movement skill for
mice (Black et al., 1990). In line with this assumption, prior
studies failed to observe synaptogenesis in response to wheel
running (Black et al., 1990). The occurrence of a general positive
transfer effect evoked by long-term exercise (Adkins et al.,
2006; Kleim and Jones, 2008) should at least be considered
as an alternative hypothesis to the assumption of a specific
transfer of wheel running on locomotion-related abilities like
balance.

The (sparse) existing evidence suggests that even comparably
short periods of exercise are sufficient to prime the underlying
neurobiological substrates for motor learning. Whether regular
exercise over several months or years reveals additional benefits
for motor learning is purely speculative to date. While a
minimum amount of exercise is required to prime the molecular
machinery for learning (Berchtold et al., 2005), the sustainability
of exercise-induced adaptations is likely higher in the case of
long-term compared with short-term exercise periods (Hötting
and Röder, 2013).

HYPOTHETICAL MECHANISMS FOR
EXERCISE-INDUCED IMPROVEMENTS
IN MOTOR LEARNING

Our working hypothesis is that endurance exercise improves
motor learning through facilitation of motor learning-related
neuroplasticity (Figure 1). However, the causal link between
exercise- and motor learning-related neuroplasticity has not yet
been established (see Introduction). We previously reviewed
behavioral and neurobiological evidence obtained in separate
studies and we will now continue with the development of
hypotheses concerning their mechanistic link.

At the molecular level, skeletal muscles can act as endocrine
organs capable of secreting molecules relevant for neuroplasticity
(Phillips et al., 2014; Lucas et al., 2015). Understanding the
link between exercise-induced changes in peripheral biomarkers
and the brain is of critical importance. Here, solid correlations
between brain tissue and peripheral BDNF levels were found
(Karege et al., 2002; Klein et al., 2011). A possible way by which
exercise increases BDNF under physiological conditions could be
the transport of peripheral-derived BDNF to the brain via the
blood-brain-barrier (Pan et al., 1998; Di Lazzaro et al., 2007).
However, Matthews et al. (2009) showed that BDNF mRNA
and protein are increased in skeletal muscles after exercise, but
the increased BDNF seems not be released into circulation.
Analyses of blood samples from the radial artery and the internal
jugular vein under resting and exercise conditions indicate
that the brain itself may account for 70–80% of the BDNF
levels circulating in peripheral blood vessels (Rasmussen et al.,
2009). Therefore, changes in peripheral BDNF levels seem to
be mainly caused by alterations in brain BDNF release into
circulation.

A biomarker of potential interest for motor learning-induced
neuroplasticity is lactate. Lactate is released from skeletal muscles
during exercise and lactate in brain tissue modulates several brain
functions (for overview see Barros, 2013) such as the survival
of neurons (Fünfschilling et al., 2012; Lee et al., 2012) and
axonal myelination (Rinholm et al., 2011). As we have outlined
in the previous section, peripheral-derived lactate contributes
significantly to brainmetabolism under the conditions of physical
exercise (van Hall et al., 2009; Boumezbeur et al., 2010). Also,
lactate is assumed to play a major role in the exercise-induced
elevation of neural growth factors. The link between lactate and
growth factors is supported by studies that mimicked endurance
exercise by sodium lactate injections. For example, Coco et al.
(2013) treated cultures of astrocytes and SH-SY5Y (a cell line
used as a model for neurons) in vitro for a period of 4 or
24 h with sodium lactate concentrations ranging from 5 to 25
mmol∗l−1. The results show that BDNF mRNA in the treated
cultures is markedly increased in comparison to control cultures.
When lactate was applied for 4 h, the BDNF mRNA increase was
positively related to the concentration of sodium lactate in both
cultures. This applied also for astrocytes after the 24 h treatment
but not for the SH-SY5Y cells, where BDNF mRNA levels after
24 h returned to baseline. However, the exact mechanisms by
which lactate increases BDNF mRNA remain to be clarified
(Bergersen, 2015). In another in vivo study, Lezi et al. (2013)
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FIGURE 1 | Schematic overview of candidate neurobiological correlates and contributing factors (exercise parameters and the timing of exercise
sessions with respect to motor practice) of exercise-induced improvements in motor learning. NGF, nerve-growth factors; LTP, long-term potentiation;
BDNF, brain-derived neurotrophic factor; VEGF, vascular-endothelial growth factor.

reproduced certain endurance exercise-related effects by infusing
sodium lactate in resting mice. One of the main findings of
this study is a lactate-induced elevation of VEGF levels, another
neuroplasticity-related growth factor in the brain. Importantly,
Schiffer et al. (2011) recently showed that the peripheral infusion
of sodium lactate enhanced levels of serum BDNF in humans in
the resting-state. Since sodium lactate has a basic pH-value, it is
likely that increasing lactate concentrations instead of acidosis are
causally linked with the observed changes in BDNF. In line with
this, pH buffering via bicarbonate infusion during high-intensity
cycling does not abolish the BDNF response, providing additional
evidence that the exercise-induced elevation in BDNF-levels is
indeed due to increased lactatemia (Rojas Vega et al., 2012b).
Furthermore, it was found that lactate stimulates the expression
of genes required for long-term memory in vitro and in vivo
(Yang et al., 2014). To sum up, at the molecular level, studies
indicate a positive relationship between lactate levels and the
concentration of neurotrophic factors, especially BDNF (Ferris
et al., 2007), with strong evidence that this relationship may be
causal in nature (Schiffer et al., 2011; Coco et al., 2013; Lezi et al.,
2013). Despite of the absence of a correlation between exercise-
induced elevations of lactate and BDNF levels after cessation of
exercise, Skriver et al. (2014) showed that both biomarkers per se
were highly associated with successful motor skill learning.

How can exercise regimens be improved to optimize
neuroplasticity? The aforementioned studies indicate the
importance of high exercise intensities for a high BDNF response
(Knaepen et al., 2010; Huang et al., 2014), whichmay be mediated

by an exercise-induced increase of lactate levels. Beyond that,
high exercise intensities are proposed to increase cardiovascular
health (Lucas et al., 2015) and showed beneficial effects on
various cognitive functions (Angevaren et al., 2007; Ferris et al.,
2007; Winter et al., 2007) and motor learning (Roig et al., 2012;
Mang et al., 2014).

Exercise interventions that elevate peripheral BDNF levels
include ramp or graded exercise tests to exhaustion (Rojas
Vega et al., 2006, 2012a), continuous exercise of moderate
to high intensities (Gold et al., 2003; Ferris et al., 2007;
Schmidt-Kassow et al., 2012; Schmolesky et al., 2013) and high-
intensity interval (HIIT) as well as sprint interval training
(Winter et al., 2007; Mang et al., 2014; Skriver et al., 2014).
In contrast to ramp exercise and continuous exercise, interval
training consists of repeated bouts of exercise interspersed with
recovery periods that comprise light exercise or rest (Billat, 2001)
and is considered as an effective training method to improve
endurance ability (Milanović, 2015). Moreover, as shown in
animal research, 6 weeks of endurance training (six times weekly)
with either HIIT (95–100% VO2max) or continuous exercise
(80% VO2max) elevated BDNF and GDNF (glial cell line-derived
neurotrophic factor) in rat brain tissue in comparison to a
resting control group (Afzalpour et al., 2015). Moreover, the
HIIT condition led to significantly higher BDNF and GDNF
levels compared with the continuous condition (Afzalpour et al.,
2015). The reason for the superiority of HIIT might be that
HIIT training can be performed at velocities above the individual
anaerobic threshold (IAT) (Billat, 2001), therefore allowing to
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subsequently accumulate considerable levels of lactate (Buchheit
and Laursen, 2013). On the contrary, continuous endurance
exercise over longer durations have to be performed at intensities
low enough not to induce lactate accumulation above the IAT to
avoid fatigue (Rojas Vega et al., 2012b).

However, an important and unresolved issue to date is
whether an exercise intervention should affect either the peak
BDNF level at a fixed time point, for example after the cessation
of exercise, or the total volume of circulating BDNF over time
(Schmolesky et al., 2013). To make matters worse, the kinetics
of exercise-induced BDNF changes during training are largely
unknown to date, but existing data suggest that BDNF values
reach their maximum level after approximately 10–20 min
of moderate intensive continuous exercise and show a slight
decrease thereafter (Schmidt-Kassow et al., 2012). Nonetheless,
long-term exercise interventions aiming at priming the molecular
machinery of motor skill acquisition and stabilization might be
most effective when conducted with high intensities.

Of note, the exercise-effects on motor learning may also be
dependent on the nature of the motor task (Wulf and Shea, 2002)
because the brain networks involved in early and late practice
depend on task complexity. Knowledge of the brain regions
being involved in different stages of skill learning is critical to
optimize exercise schedules that influence motor skill acquisition,
consolidation and retention. Therefore, future studies are
required that combine exercise and (subsequent) motor learning
with observation of underlying brain changes. Disentangling
the brain regions that correlate with the exercise-induced
improvement in motor learning is critical to subsequently prove
causality with, for example, focal brain stimulation (e.g., TMS).

Notwithstanding, recommendations regarding optimal
exercise regimens are even more difficult to provide if motor skill
learning should be affected by an acute bout of exercise. Even
though some studies present evidence for a beneficial effect of
HIIT on motor skill learning (Roig et al., 2012; Mang et al., 2014),
this benefit might not apply for complex motor skill learning
(McMorris et al., 2015). In the case of acute exercise prior to
motor skill practice, reduced motor performance might be due
to temporary peripheral and/or central fatigue effects (Taylor,
2012), especially relevant if the pre-strained effectors are at the

same time critically involved in the performance of the motor
skill. Besides increasing intracortical inhibition of pre-strained
muscles (Sidhu et al., 2013), high exercise intensities are also
known to enhance cortisol levels (Rojas Vega et al., 2006). Since
low-to-moderate exercise intensities mainly revealed facilitating
effects on various neuroplasticity indices and behavior, these
intensities can be recommended for applied settings at the
moment. However, high-intensity exercise might be useful if
part-body movements of the upper limb should be facilitated
by lower limb exercise (Roig et al., 2012; Mang et al., 2014) and
maybe vice versa.

On the contrary, temporary fatigue effects theoretically should
not be of disadvantage if exercise is conducted after practicing
motor skills (Roig et al., 2012). However, further research is
needed because the neuronal mechanisms that mediate motor
memory consolidation in the time window after practice are not
knownwell by now (Berghuis et al., 2015), let alone their potential
interaction with a post-practice bout of exercise.

To conclude, considerable knowledge gaps remain regarding
the optimal type, intensity, duration and, if applicable, frequency
of exercise to promote motor learning related neuroplasticity
(van Praag et al., 2014). However, especially the results obtained
from basic research lay the foundation for more applied studies
to be conducted in the future. In our view, properly scheduled
endurance exercise protocols potentially reflect a promising
intervention strategy to affect motor learning.
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