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The prospect of enhancing cognition is undoubtedly among the most exciting research
questions currently bridging psychology, neuroscience, and evidence-based medicine.
Yet, convincing claims in this line of work stem from designs that are prone to
several shortcomings, thus threatening the credibility of training-induced cognitive
enhancement. Here, we present seven pervasive statistical flaws in intervention designs:
(i) lack of power; (ii) sampling error; (iii) continuous variable splits; (iv) erroneous
interpretations of correlated gain scores; (v) single transfer assessments; (vi) multiple
comparisons; and (vii) publication bias. Each flaw is illustrated with a Monte Carlo
simulation to present its underlying mechanisms, gauge its magnitude, and discuss
potential remedies. Although not restricted to training studies, these flaws are typically
exacerbated in such designs, due to ubiquitous practices in data collection or data
analysis. The article reviews these practices, so as to avoid common pitfalls when
designing or analyzing an intervention. More generally, it is also intended as a reference
for anyone interested in evaluating claims of cognitive enhancement.

Keywords: brain enhancement, evidence-based interventions, working memory training, intelligence, methods,
data analysis, statistics, experimental design

INTRODUCTION

Can cognition be enhanced via training? Designing effective interventions to enhance cognition
has proven one of the most promising and difficult challenges of modern cognitive science.
Promising, because the potential is enormous, with applications ranging from developmental
disorders to cognitive aging, dementia, and traumatic brain injury rehabilitation. Yet difficult,
because establishing sound evidence for an intervention is particularly challenging in psychology:
the gold standard of double-blind randomized controlled experiments is not always feasible, due
to logistic shortcomings or to common difficulties in disguising the underlying hypothesis of an
experiment. These limitations have important consequences for the strength of evidence in favor
of an intervention. Several of them have been extensively discussed in recent years, resulting in
stronger, more valid, designs.

For example, the importance of using active control groups has been underlined in
many instances (e.g., Boot et al., 2013), helping conscientious researchers move away from
the use of no-contact controls, standard in a not-so-distant past. Equally important is the
emphasis on objective measures of cognitive abilities rather than self-report assessments, or
on the necessity to use multiple measurements of single abilities to provide better estimates
of cognitive constructs and minimize measurement error (Shipstead et al., 2012). Other
limitations pertinent to training designs have been illustrated elsewhere with simulations
(e.g., fallacious assumptions, Moreau and Conway, 2014; biased samples, Moreau, 2014b),
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in an attempt to illustrate visually some of the discrepancies
observed in the literature. Indeed,much knowledge can be gained
by incorporating simulated data to complex research problems
(Rubinstein and Kroese, 2011), either because they are difficult
to visualize or because the representation of their outcomes is
ambiguous. Intervention studies are no exception—they often
include multiple extraneous variables, and thus benefit greatly
from informed estimates about the respective influence of
each predictor variable in a given model. As it stands, the
approach typically favored is that good experimental practices
(e.g., random assignment, representative samples) control for
such problems. In practice, however, numerous designs and
subsequent analyses do not adequately allow such inferences, due
to single or multiple flaws. We explore here some of the most
prevalent of these flaws.

Our objective is three-fold. First, we aim to bring attention
to core methodological and statistical issues when designing
or analyzing training experiments. Using clear illustrations
of how pervasive these problems are, we hope to help
design better, more potent interventions. Second, we stress the
importance of simulations to improve the understanding of
research designs and data analysis methods, and the influence
they have on results at all stages of a multifactorial project.
Finally, we also intend to stimulate broader discussions by
reaching wider audiences, and help individuals or organizations
assess the effectiveness of an intervention to make informed
decisions in light of all the evidence available, not just the
most popular or the most publicized information. We strive,
throughout the article, to make every idea as accessible as
possible and to favor clear visualizations over mathematical
jargon.

A note on the structure of the article. For each flaw we
discuss, we include three steps: (1) a brief introduction to the
problem and a description of its relation to intervention designs;
(2) a Monte Carlo simulation and its visual illustration1; and
(3) advice on how to circumvent the problem or minimize its
impact. Importantly, the article is not intended to be an in-
depth analysis of each flaw discussed; rather, our aim is to
help visual representations of each problem and provide the
tools necessary to assess the consequences of common statistical
procedures. However, because the problems we discuss hereafter
are complex and deserve further attention, we have referred
the interested reader to additional literature throughout the
article.

A slightly more technical question pertains to the use
of Monte Carlo simulations. Broadly speaking, Monte Carlo
methods refer to the use of computational algorithms to
simulate repeated random sampling, in order to obtain
numerical estimates of a process. The idea that we can

1Step (2) was implemented in R (R Core Team, 2014) because of its growing
popularity among researchers and data scientists (Tippmann, 2015), and
because R is free and open-source, thus allowing anyone, anywhere, to
reproduce and build upon our analyses. We used R version 3.1.2 (R Core
Team, 2014) and the following packages: ggplot2 (Wickham, 2009), gridExtra
(Auguie, 2012), MASS (Venables and Ripley, 2002), MBESS (Kelley and Lai,
2012), plyr (Wickham, 2011), psych (Revelle, 2015), pwr (Champely, 2015),
and stats (R Core Team, 2014).

refine knowledge by simulating stochastic processes repeatedly
rather than via more traditional procedures (e.g., direct
integration) might be counterintuitive, yet this method is well
suited to the specific examples we are presenting here for
a few reasons. Repeated stochastic simulations allow creating
mathematical models of ecological processes: the repetition
represents research groups, throughout the world, randomly
sampling from the population and conducting experiments. Such
simulations are also particularly useful in complex problems
where a number of variables are unknown or difficult to
assess, as they can provide an account of the values a
statistic can take when constrained by initial parameters, or
a range of parameters. Finally, Monte Carlo simulations can
be clearly represented visually. This facilitates the graphical
translation of a mathematical simulation, thus allowing a
discussion of each flaw with little statistical or mathematical
background.

LACK OF POWER

We begin our exploration with a pervasive problem in almost
all experimental designs, particularly in training interventions:
low statistical power. In a frequentist framework, two types of
errors can arise at the decision stage in a statistical analysis:
Type I (false positive, probability α) and Type II (false negative,
probability β). The former occurs when the null hypothesis
(H0) is true but rejected, whereas the latter occurs when the
alternative hypothesis (HA) is true but the H0 is retained.
That is, in the context of an intervention, the experimental
treatment was effective but statistical inference led to the
erroneous conclusion that it was not. Accordingly, the power
of a statistical test is the probability of rejecting H0 given
that it is false. The more power, the lower the probability of
Type II errors, such that power is (1−β). Importantly, higher
statistical power translates to a better chance of detecting an
effect if it is exists, but also a better chance that an effect
is genuine if it is significant (Button et al., 2013). Obviously,
it is preferable to minimize β, which is akin to maximizing
power.

Because α is set arbitrarily by the experimenter, power could
be increased by directly increasing α. This simple solution,
however, has an important pitfall: since α represents the
probability of Type I errors, any increase will produce more
false positives (rejections of H0 when it should be retained)
in the long run. Therefore, in practice experimenters need
to take into account the tradeoff between Type I and Type
II errors when setting α. Typically, α < β, because missing
an existing effect (β) is thought to be less prejudicial than
falsely rejecting H0 (α); however, specific circumstances where
the emphasis is on discovering new effects (e.g., exploratory
approaches) sometimes justify α increases (for example,
see Schubert and Strobach, 2012).

Discussions regarding experimental power are not new. Issues
related to power have long been discussed in the behavioral
sciences, yet they have drawn heightened attention recently
(e.g., Button et al., 2013; Wagenmakers et al., 2015), for
good reasons: when power is low, relevant effects might go
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FIGURE 1 | Power analysis. (A) Relationship between effect size (Cohen’s d) and sample size with power held constant at .80 (two-sample t-test, two-sided
hypothesis, α = .05). (B) Relationship between power and sample size with effect size held constant d = 0.5 (two-sample t-test, two-sided hypothesis, α = .05).
(C) Empirical power as a function of an alternative mean score (HA), estimated from a Monte Carlo simulation (N = 1000) of two-sample t-tests with 20 subjects per
group. The distribution of scores under null hypothesis (H0) is consistent with IQ test score standards (M = 100, SD = 15), and HA varies from 100 to 120 by
incremental steps of 0.1. The blue line shows the result of the simulation, with estimated smoothed curve (orange line). The red line denotes power = .80.

undetected, and significant results often turn out to be false
positives2. Besides α and β levels, power is also influenced by
sample size and effect size (Figure 1A). The latter depends
on the question of interest and the design, with various
strategies intended to maximize the effect one wishes to observe
(e.g., well-controlled conditions). Noise is often exacerbated in
training interventions, because such designs potentially increase
sources of non-sampling errors, for example via poor retention
rates, failure to randomly assigned participants, use of non-
standardized tasks, use of single measures of abilities, or
failure to blind participants and experimenters. Furthermore, the
influence of multiple variables is typically difficult to estimate
(e.g., extraneous factors), and although random assignment
is usually thought to control for this limitation, it has

2For a given α and effect size, low power results in low Positive Predictive
Value (PPV), that is, a low probability that a significant effect observed in
a sample reflects a true effect in the population. The PPV is closely related
to the False Discovery Rate (FDR) mentioned in the section on multiple
comparisons of this article, such that PPV + FDR = 1.

been demonstrated repeatedly that such assumption is highly
dependent on sample size, with typical designs being rarely
satisfactory in this regard (Cohen, 1992b). As a result, the
preferred solution to increase power is typically to adjust sample
sizes (Figure 1B).

Power analyses are especially relevant in the context of
interventions because sample size is usually limited by the
design and its inherent costs—training protocols require
participants to come back to the laboratory multiple times
for testing and in some cases for the training regimen itself.
Yet despite the importance of precisely determining power
before an experiment, power analyses include several degrees
of freedom that can radically change outcomes and thus
recommended sample sizes (Cohen, 1992b). As informative as
it may be, gauging the influence of each factor is difficult
using power analyses in the traditional sense, that is, varying
factors one at a time. This problem can be circumvented by
Monte Carlo methods, where one can visualize the influence
of each factor in isolation and in conjunction with one
another.
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Suppose, for example, that we wish to evaluate the
effectiveness of an intervention by comparing gain scores in
experimental and control groups. Using a two-sample t-test with
two groups of 20 subjects, and assuming α = .05 and 1−β = .80,
an effect size needs to be of about d = 0.5 or greater to be
detected, on average (Figure 1C). Any weaker effect would
typically go undetected. This concern is particularly important
when considering how conservative our example is: a power of
.80 is fairly rare in typical training experiments, and an effect
size of d = 0.5 is quite substantial—although typically defined
as ‘‘medium’’ in the behavioral sciences (Cohen, 1988), an
increase of half a standard deviation is particularly consequential
in training interventions, given potential applications and the
inherent noise of such studies.

We should emphasize that we are not implying that every
significant finding with low power should be discarded; however,
caution is warranted when underpowered studies coincide with
unlikely hypotheses, as this combination can lead to high
rates of Type I errors (Krzywinski and Altman, 2013; Nuzzo,
2014). Given the typical lack of power in the behavioral
sciences (Cohen, 1992a; Button et al., 2013), the current
emphasis on replication (Pashler andWagenmakers, 2012; Baker,
2015; Open Science Collaboration, 2015) is an encouraging
step, as it should allow extracting more signal from noisy,
underpowered experiments in the long run. Statistical power
directly informs the reader about two elements: if an effect is
there, what is the probability to detect it, and if an effect was
detected, what is the probability that it was genuine? These are
critical questions in the evaluation of scientific evidence, and
especially in the field of cognitive training, setting the stage
for the central role of power in all the problems discussed
henceforth.

SAMPLING ERROR

A pernicious consequence of low statistical power is sampling
error. Because a sample is an approximation of the population,
a point estimate or statistic calculated for a specific sample
may differ from the underlying parameter in the population
(Figures 2A,B). For this reason, most statistical procedures
take into account sampling error, and experimenters try to
minimize its impact, for example by controlling confounding
factors, using valid and reliable measures, and testing powerful
manipulations. Despite these precautions, sampling error can
obscure experimental findings in an appreciable number of
occurrences (Schmidt, 1992). We provide below an example of
its detrimental effect.

Let us consider a typical scenario in intervention designs.
Assume we randomly select a sample of 40 individuals from
an underlying population and assign each participant either
to the experimental or the control group. We now have 20
participants in each group, which we assume are representative
of the whole population. This assumption, however, is rarely
met in typical designs (e.g., Campbell and Stanley, 1966). In
small samples, sampling error can have important consequences,
especially when individual characteristics are not homogeneously
represented in the population. Differences can be based upon

neural plasticity, learning potential, motivational traits, or
any other individual characteristic. When sampling from an
heterogeneous population, groups might not be matched despite
random assignment (e.g., Moreau, 2014b).

In addition, failure to take into account extraneous variables is
not the only problem with sampling. Another common weakness
relates to differences in pretest scores. As set by α, random
sampling will generate significantly different baseline scores on
a given task 5% of the time in the long run, despite drawing
from the same underlying population (see Figure 2C). This is not
trivial, especially considering that less sizeable discrepancies can
significantly influence the outcome of an intervention, as training
or testing effects might exacerbate a difference undetected
initially.

There are different ways to circumvent this problem, and
one in particular that has been the focus of attention recently
in training interventions is to increase power. As we have
mentioned in the previous section, this can be accomplished
either by using larger samples, or by studying larger effects, or
both (Figure 2D). But these adjustments are not always feasible.
To restrict the influence of sampling error, another potential
remedy is to factor pretest performance on the dependent
variable into group allocation, via restricted randomization.
The idea is to ensure that random assignment has been
effective at shuffling predefined characteristics (e.g., scores,
demographics, physiological correlates) evenly to the different
experimental conditions. If groups are imbalanced, a simple
remedy is to perform new iterations of the random assignment
procedure until conditions are satisfied. This is sometimes
unpractical, however, especially with multiple variables to
shuffle. Alternatively, one can then constrain random assignment
a priori based on pretest scores, via stratified sampling
(e.g., Aoyama, 1962). Non-randommethods of group assignment
are sometimes used in training studies (Spence et al., 2009;
Loosli et al., 2012; Redick et al., 2013). An example of such
methods, blocking, consists of dividing participants based on
pretest scores on a given variable, to create homogenous
groups (Addelman, 1969). In second step, random assignment
is performed with equal draws from each of the groups, so as
to preserve the initial heterogeneity in each experimental group.
Other, more advanced approaches can be used (for a review,
see Green et al., 2014), yet the rationale remains the same,
that is, to reduce the influence of initial discrepancies on the
outcome of an intervention. We should point out that these
procedures bring problems of their own (Ericson, 2012)—with
small samples, no method of assignment is perfect, and one
needs to decide on the most suitable approach based on the
specific design and hypotheses. In an effort to be transparent,
it is therefore important to report how group assignment was
performed, particularly in instances where it departed from
typical (i.e., simple) randomization.

CONTINUOUS VARIABLE SPLITS

Lack of power and its related issue sampling error are
two limitations of experimental designs that often need
substantial investment to be remediated. Conversely, splitting
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FIGURE 2 | Sampling error. (A) Cognitive training experiments often assume a theoretical ideal where the sample (orange curve) is perfectly representative of the
true underlying distribution (green curve). (B) However, another possibility is that the sample is not representative of the population of interest due to sampling error, a
situation that can lead to dubious claims regarding the effectiveness of a treatment. (C) Assuming α = .05 in a frequentist framework, the difference between two
groups drawn from the same underlying distribution will be unequal 5% of the time, but a more subtle departure from the population is also likely to influence training
outcomes meaningfully. The graph shows the cumulative sum of two-sample t-test p-values divided by the number of tests performed, based on a Monte Carlo
simulation (N = 10,000) of 40 individual IQ scores (normally distributed, M = 100, SD = 1) randomly divided in two groups (experimental, control). The red line shows
P = .5. (D) Even when both groups are drawn from a single normal distribution (H0 is true), small sample sizes will spuriously produce substantial differences
(absolute median effect size, blue line), as illustrated here with another Monte Carlo simulation (N = 10,000). As group samples get larger, effect size estimates get
closer to 0. Red lines represent 25th and 75th quartiles, and the orange line is loess smooth on the median.

a continuous variable is a deliberate decision at the analysis
stage. Although popular in intervention studies, it is rarely—if
ever—justified.

Typically, a continuous variable reflecting performance
change throughout training is split into a categorical variable,
often dichotomous. Because the idea is to identify individuals
who do respond to the training regimen, and those who do
not benefit as much, this approach is often called ‘‘responder
analysis’’. Most commonly, the dichotomization is achieved via a
median split, which refers to the procedure of finding the median
score on a continuous variable (e.g., training performance) and
split subjects who are below and above this particular score (e.g.,
low responders vs. high responders).

Median splits are almost always prejudicial (Cohen, 1983),
and their use often reflects a lack of understanding of the
consequences involved (MacCallum et al., 2002). A full account
of the problems associated with this practice is beyond the scope

of this article, but the main harms are loss of power and of
information, reduction of effect sizes, and inconsistencies in
the comparison of results across studies (Allison et al., 1993).
Turning a continuous variable into a dichotomy also implies that
the original continuumwas irrelevant, and that the true nature of
the variable is dichotomous. This is seldom the case.

In intervention designs, a detrimental consequence of turning
continuous variables into categorical ones and separating low
and high performers post hoc is the risk of regression toward
the mean (Galton, 1886). Regression toward the mean is one
of the most well known byproducts of multiple measurements,
yet it is possibly one of the least understood (Nesselroade et al.,
1980). As for all the notions discussed in this article, regression
toward the mean is not exclusive to training experiments;
however, estimating its magnitude is made more difficult by
potential confounds with testing effects in these types of
design.
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In short, regression toward the mean is the tendency for
a given observation that is extreme, or far from the mean,
to be closer to the mean on a second measurement. When
a population is normally distributed, extreme scores are not
as likely as average scores, therefore making the probability
to observe two extreme scores in a row unlikely. Regression
toward the mean is the consequence of imperfect correlations
between scores from one session to the next—singling out
an extreme score on a specific measure therefore increases
the likelihood that it will regress to the mean on another
measurement.

This phenomenon might be puzzling because it seems to
violate the assumption of independent events. Indeed, regression
toward themean can bemistaken as a deterministic linear change
from one measurement to the next, whereas it simply reflects the
idea that in a bivariate distribution with the correlation between
two variables X and Y less that |1|, the corresponding value y in
Y of a given value x of X is expected to be closer to the mean
of Y than x is to the mean of X, provided both are expressed
in standard deviation units (Nesselroade et al., 1980). This is
easier to visualize graphically—the more a score deviates from
the mean on a measurement (Figure 3A), the more it will regress
to the mean on a second measurement, independently from any
training effect (i.e., assuming no improvement from pretest to
posttest). This effect is exacerbated after splitting a continuous
variable (Figure 3B), as absolute gains are influenced by the
deviation of pretest scores from the mean, irrespective of genuine
improvement (Figure 3C).

This is particularly problematic in training interventions
because numerous studies are designed to measure the
effectiveness of a treatment after an initial selection based on
baseline scores. For example, many studies intend to assess the
impact of a cognitive intervention in schools after enrolling the
lowest-scoring participants on a pretest measure (e.g., Graham
et al., 2007; Helland et al., 2011; Stevens et al., 2013). Median-
or mean-split designs should always wary the reader, as it does
not adequately control for regression toward the mean and other
confounds (e.g., sampling bias) – if the groups to be compared
are not equal at baseline, any interpretation of improvement is
precarious. In addition, such comparison is often obscured by
the sole presentation of gains scores, rather than both pretest
and posttest scores. Significant gains in one group vs. the other
might be due to a true effect of the intervention, but can also
arise from unequal baseline scores. The remedy is simple: unless
theoretically motivated a priori, splitting a continuous variable
should be avoided, and unequal performance at baseline should
be reported and taken into account when assessing the evidence
for an intervention.

Despite the questionable relevance of this practice, countless
studies have used median splits on training performance scores
in the cognitive training literature (Jaeggi et al., 2011; Rudebeck
et al., 2012; Kundu et al., 2013; Redick et al., 2013; Thompson
et al., 2013; Novick et al., 2014), following the rationale that
transfer effects are moderated by individual differences in gains
on the training task (Tidwell et al., 2014). Accordingly, individual
differences in response to training and cognitive malleability
leads researchers to expect a correlation between training gains

FIGURE 3 | Continuous variable splits and regression toward the
mean. Many interventions isolate a low-performing group at pretest and
compare the effect of training on this group with a group that includes the
remaining participants. This approach is fundamentally flawed, as it capitalizes
on regression toward the mean rather than on true training effects. Here, we
present a Monte Carlo simulation of 10,000 individual scores drawn from a
normally-distributed population (M = 100, SD = 15), before and after a
cognitive training intervention (for simplicity purposes, we assume no
test-retest effect). (A) As can be expected in such a situation, there is a
positive relationship between the absolute distance of pretest scores from the
mean and the absolute gains from pretest to posttest: the farther a score
deviates from the mean (in either direction), the more likely it is to show
important changes between the two measurement points. (B) This is
particularly problematic when one splits a continuous variable (e.g., pretest
score) into a categorical variable. In this case, and without assuming any real
effect of the intervention, a low-performing group (all scores inferior or equal to
the first quartile) will typically show impressive changes between the two
measurement points, compared with a control group (remaining scores).
(C) This difference is a direct consequence of absolute gains from pretest to
posttest being a function of the deviation of pretest scores from the mean,
following a curvilinear relationship (U-shaped, orange line).

and gains on the transfer tasks, a finding that has been commonly
reported in the literature (Chein andMorrison, 2010; Jaeggi et al.,
2011; Schweizer et al., 2013; Zinke et al., 2014). We explore this
idea further in the next section.

INTERPRETATION OF CORRELATIONS IN
GAINS

The goal in most training interventions is to show that training
leads to transfer, that is, gains in tasks that were not part of the
training. Decades of research have shown that training on a task
results in enhanced performance on this particular task, paving
the way for entire programs of research focusing on deliberate
practice (e.g., Ericsson et al., 1993). In the field of cognitive
training, however, the newsworthy research question is whether
or not training is followed by enhanced performance on a
different task (i.e., transfer). Following this rationale, researchers
often look for positive correlations between gains in the training
task and in the transfer task, and interpret such effects as evidence
supporting the effectiveness of an intervention (Jaeggi et al., 2011;
Rudebeck et al., 2012; Kundu et al., 2013; Redick et al., 2013;
Thompson et al., 2013; Novick et al., 2014; Zinke et al., 2014).
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FIGURE 4 | Correlated gain scores. Correlated gain scores between a training variable and a transfer variable can occur regardless of transfer. (A) Here, a Monte
Carlo simulation (N = 1000) shows normally-distributed individual scores (M = 100, SD = 15) on a training task and a transfer task at two consecutive testing
sessions (pretest in orange, posttest in blue). The only constraint on the model is the correlation between the two tasks at pretest (here, r = .92), but not at posttest.
(B) In this situation, gain scores—defined as the difference between posttest and pretest scores—will be correlated (here, r = .10), regardless of transfer. This pattern
can arise irrespective of training effectiveness, due to the initial correlation between training and transfer scores.

Although apparently sound, this line of reasoning is flawed.
Correlated gain scores are neither an indication nor a necessity
for transfer—transfer can be obtained without any correlation in
gain scores, and correlated gain scores do not guarantee transfer
(Zelinski et al., 2014).

For the purpose of simplicity, suppose we design a training
intervention in which we set out to measure only two dependent
variables: the ability directly trained (e.g., working memory
capacity, WMC) and the ability we wish to demonstrate transfer
to (e.g., intelligence, g). If requirements (a, b, c) are met such
that: (a) performance on WMC and g is correlated at pretest,
as is often the case due to the positive manifold (Spearman,
1904), (b) this correlation is no longer significant at posttest,
and (c) scores at pretest do not correlate well with scores at
posttest, both plausible given that one ability is being artificially
inflated through training (Moreau and Conway, 2014); then
gains in the trained ability and in the transfer ability will be

correlated. This correlation will be a consequence of pretest
correlations, and cannot be regarded as reflecting evidence for
transfer. More strikingly perhaps, performance gains in initially
correlated tasks are expected to be correlated even without
transfer (Figures 4A,B). Correlations are unaffected by a linear
transformation of the variables they relate to—they are therefore
not influenced by variable means. As a result, correlated gain
scores is a phenomenon completely independent from transfer.
A positive correlation is the consequence of a greater covariance
of gain scores within-session than between sessions, but it
provides no insight into the behavior of the means we wish to
measure—scores could increase, decrease, or remain unchanged,
and this information would not be reflected in the correlation of
gain scores (Tidwell et al., 2014). Conversely, transfer can happen
without correlated gains, although this situation is perhaps less
common in training studies, as it often implies that the training
task and the transfer task were not initially correlated.
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To make things worse, analyses of correlation in gains
are often combined with median splits to look for different
patterns in a group of responders (i.e., individuals who improved
on the training task) and in a group of non-responders
(i.e., individuals who did not improve on the training task).
The underlying rationale is that if training is effective, only
those who improved in the training task should show transfer.
This approach, however, combines the flaw we presented
herein with the ones discussed in the previous section,
therefore increasing the chances to reach erroneous conclusions.
Limitations of this approach have been examined before and
illustrated via simulations (Tidwell et al., 2014) and structural
equation modeling (SEM; Zelinski et al., 2014). To summarize,
these articles point out that correlated gain scores do not
answer the question they are typically purported to answer,
that is, whether improvement was moderated by training
conditions.

The remedy to this intuitive but erroneous interpretation of
correlated gains lies in alternative statistical techniques. Transfer
can be established when the experimental group shows larger
gains than controls, demonstrated by a significant interaction
on a repeated measures ANOVA (with treatment group as the
between-subject factor and session as the within-group factor)
or its Bayesian analog. Because this analysis does not correct for
group differences at pretest, one should always report post hoc
comparisons to follow up on significant interactions and provide
summary statistics including pretest and posttest scores, not just
of gain scores, as is often the case. Due to this limitation, another
common approach is to use an ANCOVA, with posttest scores as
a dependent variable and pretest scores as a covariate. Although
often used interchangeably, the two types of analysis actually
answer slightly different research questions. When one wishes
to assess the difference in gains between treatment groups, the
former approach is most appropriate3. Unlike correlated gain
scores, this method allows answering the question at hand—does
the experimental treatment produce larger cognitive gains than
the control?

A different, perhaps more general problem concerns the
validity of improvements typically observed in training studies.
How should we interpret gains on a specific task or on a cognitive
construct? Most experimental tasks used by psychologists
to assess cognitive abilities were designed and intended for
comparison between individuals or groups, rather than as a
means to quantify individual or group improvements. This
point may seem trivial, but it hardly is—the underlying
mechanisms tapped by training might be task-specific, rather
than domain-general. In other words, one might improve via
specific strategies that help perform well on a task or set
of tasks, without any guarantee of meaningful transfer. In
some cases, even diminishment can be viewed as a form of
enhancement (Earp et al., 2014). It can therefore be difficult
to interpret improvement following a training intervention, as

3More advanced statistical techniques (e.g., latent change score models)
can help to refine claims of transfer in situations where multiple outcome
variables are present (e.g. McArdle and Prindle, 2008; McArdle, 2009; Noack
et al., 2014).

it may reflect different underlying patterns. Hayes et al. (2015,
p. 1) emphasize this point in a discussion of training-induced
gains in fluid intelligence: ‘‘The interpretation of these results is
questionable because score gains can be dominated by factors
that play marginal roles in the scores themselves, and because
intelligence gain is not the only possible explanation for the
observed control-adjusted far transfer across tasks’’. Indeed, a
possibility that often cannot be discarded is that improvement
is driven by strategy refinement rather than general gains.
Moreover, it has also been pointed out that gains in a test of
intelligence designed to measure between-subject differences do
not necessarily imply intelligence gains evaluated within subjects
(te Nijenhuis et al., 2007).

Reaching a precise understanding about the nature and
meaning of cognitive improvement is a difficult endeavor, but
in a field with far-reaching implications for society such as
cognitive training, it is worth reflecting upon what training
is thought and intended to achieve. Although informed by
prior research (e.g., Ellis, 1965; Stankov and Chen, 1988a,b),
practicing specific cognitive tasks to elicit transfer is a novel
paradigm in its current form, and numerous questions remain
regarding the definition and measure of cognitive enhancement
(e.g., te Nijenhuis et al., 2007; Moreau, 2014a). Until theoretical
models are refined to account for novel evidence, we cannot
assume that long-standing knowledge based on more than
a century of research in psychometrics applies inevitably
to training designs deliberately intended to promote general
cognitive improvement.

SINGLE TRANSFER ASSESSMENTS

Beyond matters of analysis and interpretation, the choice of
specific tasks used to demonstrate transfer is also critical. Any
measurement, no matter how accurate, contains error. More
than anywhere else perhaps, this is true in the behavioral
sciences—human beings differ from one another on multiple
factors that contribute to task performance in any ability.
One of the keys to reduce error is to increase the number
of measurements. This idea might not be straightforward at
first—if measurements are imperfect, why would multiplying
them, and therefore the error associated with them, give a better
estimate of the ability one wants to probe? The reason multiple
measurements are superior to single measurements is because
inferring scores from combined sources allows extracting out
some, if not most, of the error.

This notion is ubiquitous. Teachers rarely give final grades
based on one assessment, but rather average intermediate grades
to get better, fairer estimates. Politicians do not rely on single
polls to decide on a course of action in a campaign—they
combine several of them to increase precision. Whenever
precision matters most, we also increase the number of
measurements before combining them. In tennis, men play to
the best of three sets in most competitions, but to the best of five
sets in the most prestigious tournaments, the Grand Slams. The
idea is to minimize the noise, or random sources of error, and
maximize the signal, or the influence of a true ability, tennis skills
in this example.
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FIGURE 5 | Composite scores. Monte Carlo simulation (N = 10,000) of three imperfect measurements of a hypothetical construct (construct is normally distributed
with M = 100 and SD = 15; random error is normally distributed with M = 0 and SD = 7.5). (A–C) Scatterplots depicting the relationship between the construct and
each of its imperfect measurements (r = .89, in all cases). (D) A better estimate of the construct is given by a unit-weighted composite score (r = .96), or by (E) a
regression-weighted composite score (r = .96) based on factor loadings of each measurement in a factor analysis. (F) In this example, the difference between
unit-weighted scores and regression-weighted is negligible because the correlations of each measurement with the true ability are roughly equal. Thus, observations
above the red line (regression-weighted score is the best estimate) and below the red line (unit-weighted score is the best estimate) approximately average to 0.

This is not the unreasoned caprice of picky scientists—by
increasing the number of measurements, we do get better
estimates of latent constructs. Nobody says it more eloquently
than Randy Engle in Smarter, a recent bestseller by Hurley
(2014): ‘‘Much of the things that psychology talks about, you
can’t observe. [. . .] They’re constructs. We have to come up with
various ways of measuring them, or defining them, but we can’t
specifically observe them. Let’s say I’m interested in love. How
can I observe love? I can’t. I see a boy and a girl rolling around in
the grass outside. Is that love? Is it lust? Is it rape? I can’t tell. But I
define love by various specific behaviors. Nobody thinks any one
of those in isolation is love, so we have to use a number of them
together. Love is not eye contact over dinner. It’s not holding
hands. Those are just manifestations of love. And intelligence is
the same.’’

Because constructs are not directly observable (i.e., latent),
we rely on combinations of multiple measurements to provide
accurate estimates of cognitive abilities. Measurements can be
combined into composite scores, that is, scores that minimize
measurement error to better reflect the underlying construct
of interest. Because they typically improve both reliability and
validity inmeasurements (Carmines and Zeller, 1979), composite
scores are key in cognitive training designs (e.g., Shipstead et al.,
2012). Relying on multiple converging assessments also allows
adequate scopes of measurement, which ensure that constructs
reflect an underlying ability rather than task-specific components
(Noack et al., 2014). Such precaution in turn allows stronger and

more accurate claims of transfer after an intervention. Again,
thinking about this idea with an example is helpful. Suppose we
simulate an experiment in which we set to measure intelligence
(g) in a sample of participants. Defining a construct g and
three imperfect measures of g reflecting the true ability plus
normally distributed random noise, we obtain single measures
that correlate with g such that r = .89 (Figures 5A–C). Let
us assume three different assessments of g rather than three
consecutive testing sessions of the same assessment, so that we
do not need to take testing effects into account.

Different solutions exist to minimize measurement error,
besides ensuring experimental conditions were adequate to
guarantee valid measurements. One possibility is to use the
median score. Although not ideal, this is an improvement over
single testing. Another solution is to average all scores and
create a unit-weighted composite score (i.e., mean, Figure 5D),
which often is a better estimate than the median, unless one
or several of the measurements were unusually prone to error.
When individual scores are strongly correlated (i.e., collinear),
a unit-weighted composite score is often close to the best
possible estimate. When individual scores are not or weakly
correlated, a regression-weighted composite score is usually
a better estimate as it allows minimizing error (Figure 5E).
Weights for the latter are factor loadings extracted from a
factor analysis that includes each measurement, thus minimizing
non-systematic error. The power of composite scores is more
evident graphically—Figures 5D,E show how composite scores
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are better estimates of a construct than either measure alone
(including the median, see in comparison with Figures 5A–C).
Different methods to generate composite scores can themselves
be subsequently compared (see Figure 5F). To confidently claim
transfer after an intervention, one therefore needs to demonstrate
that gains are not exclusive to single tasks, but rather reflect
general improvement on latent constructs.

Directly in line with this idea, more advanced statistical
techniques such as latent curve models (LCM) and latent
change score models (LCSM), typically implemented in a SEM
framework, can allow finer assessment of training outcomes
(for example, see Ghisletta and McArdle, 2012, for practical
implementation). Because of its explicit focus on change across
different time points, LCSM is particularly well suited to the
analysis of longitudinal data (e.g., Lövdén et al., 2005) and of
training studies (e.g., McArdle, 2009), where the emphasis is
on cognitive improvement. Other possibilities exist, such as
multilevel (Rovine and Molenaar, 2000), random effects (Laird
and Ware, 1982) or mixed models (Dean and Nielsen, 2007),
all with a common goal: minimizing noise in repeated-measures
data, so as to separate out measurement error from predictors or
structural components, thus yielding more precise estimates of
change.

MULTIPLE COMPARISONS

If including too few dependent variables is problematic, toomany
can also be prejudicial. At the core of this apparent conundrum
lies the multiple comparisons problem, another subtle but
pernicious limitation in experimental designs. Following up on
one of our previous examples, suppose we are comparing a novel
cognitive remediation program targeting learning disorders with
traditional feedback learning. Before and after the intervention,
participants in the two groups can be compared on measures
of reading fluency, reading comprehension, WMC, arithmetic
fluency, arithmetic comprehension, processing speed, and a wide
array of other cognitive constructs. They can be compared
across motivational factors, or in terms of attrition rate. And
questionnaires might provide data on extraversion, happiness,
quality of life, and so on. For each dependent variable, one could
test for differences between the group receiving the traditional
intervention and the group enrolled in the new program, with the
rationale that differences between groups reflect an inequality of
the treatments.

With the multiplication of pairwise comparisons, however,
experimenters run the risk of finding differences by chance alone,
rather than because of the intervention itself.4 As we mentioned
earlier, mistaking a random fluctuation for a true effect is a false
positive, or Type I error. But what exactly is the probability to
wrongly conclude that an effect is genuine when it is just random
noise? It is easier to solve this problem graphically (Figure 6A).
When comparing two groups on 10 transfer tasks, the probability

4Multiple comparisons introduce additional problems in training designs,
such as practice effects from one task to another within a given construct
(i.e., hierarchical learning, Bavelier et al., 2012), or cognitive depletion effects
(Green et al., 2014).

to make a wrong judgment because of random fluctuation is
about 40%. With 15 tasks, the probability rise to 54%, and with
20 tasks, it reaches 64% (all assuming a α = .05 threshold to
declare a finding significant).

This problem is well known, and procedures have been
developed to account for it. One evident answer is to reduce
Type I errors by using a more stringent threshold. With α = .01,
the percentage of significant differences rising spuriously in
our previous scenario drops to 10% (10 tasks), 14% (15 tasks),
and 18% (20 tasks). Lowering the significance threshold is
exactly what the Bonferroni correction does (Figure 6B).
Specifically, it requires dividing the significance level required
to claim that a difference is significant by the number of
comparisons being performed. Therefore, for the example above
with 10 transfer tasks, α = .005, with 15 tasks, α = .003, and
with 20 tasks, α = .0025. The problem with this approach
is that it is often too conservative—it corrects more strictly
than necessary. Considering the lack of power inherent to
numerous interventions, true effects will often be missed when
the Bonferroni procedure is applied; the procedure lowers false
discoveries, but by the same token lowers true discoveries
as well. This is especially problematic when comparisons are
highly dependent (Vul et al., 2009; Fiedler, 2011). For example,
in typical fMRI experiments involving the comparisons of
thousands of voxels with one another, Bonferroni corrections
would systematically prevent yielding any significant correlation.
By controlling α levels across all voxels, the method guarantees
an error probability of .05 on each single comparison, a
level too stringent for discoveries. Although the multiple
comparisons problem has been extensively discussed, we should
point out that not everyone agrees on its pernicious effects
(Gelman et al., 2012).

Provided there is a problem, a potential solution is replication.
Obviously, this is not always feasible, can turn out to be
expensive, and is not entirely foolproof. Other techniques have
been developed to answer this challenge, with good results.
For example, the recent rise of Monte Carlo methods or their
non-parametric equivalent such as bootstrap and jackknife
offers interesting alternatives. In intervention that include brain
imaging data, these techniques can be used to calculate cluster-
size thresholds, a procedure that relies on the assumption that
contiguous signal changes are more likely to reflect true neural
activity (Forman et al., 1995), thus allowing more meaningful
control over discovery rates.

In line with this idea, one approach that has gained popularity
over the years is based on the false discovery rate (FDR). FDR
correction is intended to control false discoveries by adjusting
α only in the tests that result in a discovery (true or false), thus
allowing a reduction of Type I errors while leaving more power
to detect truly significant differences. The resulting q-values are
corrected for multiple comparisons, but are less stringent than
traditional corrections on p-values because they only take into
account positive effects. To illustrate this idea, suppose 10%
of all cognitive interventions are effective. That is, of all the
designs tested by researchers with the intent to improve some
aspect of cognition, one in 10 is a successful attempt. This is a
deliberately low estimate, consistent with the conflicting evidence
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FIGURE 6 | Multiple comparisons problem. (A) True probability of a Type I error as a function of the number of pairwise comparisons (holding α = .05 constant for
any given comparison). (B) A possible solution to the multiple comparisons problem is the Bonferroni correction, a rather conservative procedure—the false
discovery rate (FDR) decreases, but so does the true discovery rate, increasing the chance to miss a true difference (β). (C) Assuming 10% of training interventions
are truly effective (N = 10, 000), with power = .80 and α = .05, 450 interventions will yield false positives, while 800 will result in true positives. The FDR in this
situation is 36% (more than a third of the positive results are not real), despite high power and standard α criteria. Therefore, this estimate is conservative—assuming
10% of the interventions are effective and 1−β = .80 is rather optimistic. (D) As the prevalence of an effect increases (e.g., higher percentage of effective
interventions overall), the FDR decreases. This effect is illustrated here with a Monte Carlo simulation of the FDR as a function of prevalence, given 1−β free to vary
such that .50 ≤ 1−β ≤ 1 (the orange line shows FDR when 1−β = .80).

surrounding cognitive training (e.g., Melby-Lervåg and Hulme,
2013). Note that we rarely know beforehand the ratio of effective
interventions, but let us assume here that we do. Imagine now
that we wish to know which interventions will turn out to show
a positive effect, and which will not, and that α = .05 and
power is .80 (both considered standard in psychology). Out of
10,000 interventions, how often will we wrongly conclude that
an intervention is effective?

To determine this probability, we first need to determine
how many interventions overall will yield a positive result (i.e.,
the experimental group will be significantly different from the
control group at posttest). In our hypothetical scenario, we
would detect, with a power of .80, 800 true positives. These
are interventions that were effective (N = 1000) and would be
correctly detected as such (true positives). However, because our
power is only .80, we will miss 200 interventions (false negatives).
In addition, out of the 9000 interventions that we know are
ineffective, 5% (α) will yield false positives. In our example, these

amount to 450. The true negatives would be the remaining 8550
(Figure 6C).

The FDR is the amount of false positives divided by all
the positive results, that is, 36% in this example. More than
1/3 of the positive studies will not reflect a true underlying
effect. The positive predictive value (PPV), the probability
that a significant effect is genuine, is approximately two
thirds in this scenario (64%). This is worth pausing for a
moment: more than a third of our positive results, reaching
significance with standard frequentist methods, would be
misleading. Furthermore, the FDR increases if either power
or the percentage of effective training interventions in the
population of studies decreases (Figure 6D). Because FDR only
corrects for positive p-value, the procedure is less conservative
than the Bonferroni correction. Many alternatives exist (e.g.,
Dunnett’s test, Fisher’s LSD, Newman-Keuls test, Scheffé’s
method, Tukey’s HSD)—ultimately, the preferred method
depends on the problem at hand. Is the emphasis on finding

Frontiers in Human Neuroscience | www.frontiersin.org 11 April 2016 | Volume 10 | Article 153

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Moreau et al. Statistical Flaws in Cognitive Interventions

new effects, or on the reliability of any discovered effect?
Scientific rationale is rarely dichotomized, but thinking about
a research question in these terms can help to decide on
adequate statistical procedures. In the context of this discussion,
one of the best remedies remains to design an intervention
with a clear hypothesis about the variables of interest, rather
than multiply outcome measures and increase the rate of false
positives. Ideally, experiments should explicitly state whereas
they are exploratory or confirmatory (Kimmelman et al., 2014),
and should always disclose all tasks used in pretest and posttest
sessions (Simmons et al., 2011). These measures are part of
a broader ongoing effort intended to reduce false positives in
psychological research, via more transparency and systematic
disclosure of all manipulations, measurements and analyses
in experiments, to control for researcher degrees of freedom
(Simmons et al., 2011).

PUBLICATION BIAS

Our final stop in this statistical journey is to discuss publication
bias, a consequence of research findings being more likely to
get published based on the direction of the effects reported or
on statistical significance. At the core of the problem lies the
overuse of frequentist methods, and particularly H0 Significance
Testing (NHST), in medicine and the behavioral sciences, with
an emphasis on the likelihood of the collected data or more
extreme data if the H0 is true—in probabilistic notation, P(d|H0)
– rather than the probability of interest, P(H0|d), that is, the
probability that the H0 is true given the data collected. In
intervention studies, one typically wishes to know the probability
that an intervention is effective given the evidence, rather than
the less informative likelihood of the evidence if the intervention
were ineffective (for an in-depth analysis, see Kirk, 1996).
The incongruity between these two approaches has motivated
changes in the way findings are reported in leading journals
(e.g., Cumming, 2014) punctuated recently by a complete ban
of NHST in Basic and Applied Social Psychology (Trafimow and
Marks, 2015), and is central in the growing popularity of Bayesian
inference in the behavioral sciences (e.g., Andrews and Baguley,
2013).

Because of the underlying logic of NHST, only rejecting the
H0 is truly informative—retaining H0 does not provide evidence
to prove that it is true5. Perhaps the H0 is untrue, but it is equally
plausible that the strength of evidence is insufficient to reject
H0 (i.e., lack of power). What this means in practice is that null
findings (findings that do not allow us to confidently reject H0)
are difficult to interpret, because they can be due to the absence
of an effect or to weak experimental designs. Publication of
null findings is therefore rare, a phenomenon that contribute to
bias the landscape of scientific evidence—only positive findings
get published, leading to the false belief that interventions are

5David Bakan distinguished between sharp and loose null hypotheses, the
former referring to the difference between population means being strictly
zero, whereas the latter assumes this difference to be around the null. Much
of the disagreement with NHST arises from the problem presented by sharp
null hypotheses, which, given sufficient sample sizes, are never true (Bakan,
1966).

effective, whereas a more comprehensive assessment might lead
to more nuanced conclusions (e.g., Dickersin, 1990).

Single studies are never definitive; rather, researchers rely
on meta-analyses pooling together all available studies meeting
a set of criteria and of interest to a specific question to
get a better estimate of the accumulated evidence. If only
studies corroborating the evidence for a particular treatment
get published, the resulting literature becomes biased. This is
particularly problematic in the field of cognitive training, due to
the relative novelty of this line of investigation, which increases
the volatility of one’s belief, and because of its potential to
inform practices and policies (Bossaer et al., 2013; Anguera and
Gazzaley, 2015; Porsdam Mann and Sahakian, 2015). Consider
for example that different research groups across the world
have come to dramatically opposite conclusions about the
effectiveness of cognitive training, based on slight differences in
meta-analysis inclusion criteria and models (Melby-Lervåg and
Hulme, 2013; Karbach andVerhaeghen, 2014; Lampit et al., 2014;
Au et al., 2015). The point here is that even a few missing studies
in meta-analyses can have important consequences, especially
when the accumulated evidence is relatively scarce as is the case
in the young field of cognitive training. Again, let us illustrate
this idea with an example. Suppose we simulate a pool of study
results, each with a given sample size and an observed effect
size for the difference between experimental and control gains
after a cognitive intervention. The model draws pairs of numbers
randomly from a vector of sample size (ranging from N = 5 to
N = 100) and a vector of effect sizes (ranging from d = 0 to d = 2).
We then generate stochastically all kinds of associations, for
example large sample sizes with small effect sizes and vice-versa
(Figure 7A). In science, however, the landscape of published
findings is typically different—studies get published when they
pass a test of statistical significance, with a threshold given by
the p-value. To demonstrate that a difference is significant in
this framework, one needs large sample sizes, large effects, or a
fairly sizable combination of both.When represented graphically,
this produces a funnel plot typically used in meta-analyses
(Figure 7B); departures from this symmetrical representation
often indicate some bias in the literature.

Two directions seem particularly promising to circumvent
publication bias. First, researchers often try to make an estimate
of the size of publication bias when summarizing the evidence
for a particular intervention. This process can be facilitated by
examining a representation of all the published studies, with a
measure of precision plotted as a function of the intervention
effect. In the absence of publication bias, it is expected that
studies with larger samples, and therefore better precision, will
fall around the average effect size observed, whereas studies with
smaller sample size, lacking precision, will be more dispersed.
This results in a funnel shape within which most observations
fall. Deviations from this shape can raise concerns regarding the
objectivity of the published evidence, although it should be noted
that other explanations might be equally valid (Lau et al., 2006).
These methods can be improved upon, and recent articles have
addressed some of the typical concerns of solely relying on funnel
plots to estimate publication bias. Interesting alternatives have
emerged, such as p-curves (see Figures 7C,D; Simonsohn et al.,
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FIGURE 7 | Publication bias. (A) Population of study outcomes, with effect sizes and associated sample sizes. There is no correlation between the two variables,
as shown by the slope of the fit line (orange line). (B) It is often assumed that in the absence of publication bias, the population of studies should roughly resemble
the shape of a funnel, with small sample studies showing important variation and large sample studies clustered around the true effect size (in the example, d = 1).
(C) Alternatives have been proposed (see main text), such as the p-curve. Here, a Monte Carlo simulation of two-sample t-tests with 1000 draws (N = 20 per
groups, d = 0.5, M = 100, SD = 20) shows a shape resembling a power-law distribution, with no particular change around the p = .05 threshold (red line). The blue
bars represent the rough density histogram, while the black bars are more precise estimates. (D) When the pool of published studies is biased, a sudden peak can
sometimes be observed just below the p = .05 threshold (red line). Arguably, this irregularity in the distribution of p-values has no particular justification, if not for bias.

2014a,b) or more direct measures of the plausibility of a set of
findings (Francis, 2012). These methods are not infallible (for
example, see Bishop and Thompson, 2016), but they represent
steps in the right direction.

Second, ongoing initiatives are intended to facilitate the
publication of all findings, irrespective of the outcome, on
online repositories. Digital storage has become cheap, allowing
platforms to archive data for limited cost. Such repositories
already exist in other fields (e.g., arXiv), but have not been
developed fully in medicine and in the behavioral sciences.
Additional incentives to pre-register studies are another step
in that direction—for example, allowing researchers to get
preliminary publication approval based on study design and
intended analyses, rather than on the direction of the findings.
Publishing all results would eradicate publication bias (van Assen
et al., 2014), and therefore initiatives such as pre-registration
should be the favored approach in the future (Goldacre, 2015).

CONCLUSION

Based on Monte Carlo simulations, we have demonstrated that
several statistical flaws undermine typical findings in cognitive
training interventions. This critique echoes others, which have

pointed out the limitations of current research practices (e.g.,
Ioannidis, 2005), although arguably the flaws we discussed in this
article are often a consequence of limited resources—including
methodological and statistical guidelines—rather than the
result of errors or practices deliberately intended to mislead.
These flaws are pervasive, but we believe that clear visual
representations can help raise awareness of their pernicious
effects among researchers and interested readers of scientific
findings. As we mentioned, statistical flaws are not the only kinds
of problems in cognitive training interventions. However, the
relative opacity of statistics favors situations where one applies
methods and techniques popular in a field of study, irrespective
of pernicious effects. We hope that our present contribution
provides a valuable resource to make training interventions more
accessible.

Importantly, not all interventions suffer from these flaws.
A number of training experiments are excellent, with strong
designs and adequate data analyses. Arguably, these studies
have emerged in response to prior methodological concerns and
through facilitated communication across scientific fields, such
as between evidence-based medicine and psychology, stressing
further the importance of discussing good research practices.
One example that illustrates the benefits of this dialog is the use
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of active control groups, which is becoming the norm rather
than the exception in the field of cognitive training. When
feasible, other important components are being integrated within
research procedures, such as random allocation to conditions,
standardized data collection and double-blind designs. Following
current trends in the cognitive training literature, interventions
should be evaluated according to their methodological and
statistical strengths—more value, or weight, should be given
to flawless studies or interventions with fewer methodological
problems, whereas less importance should be conferred to studies
that suffer several of the flaws we mentioned (Moher et al., 1998).

Related to this idea, most simulations in this article stress
the limit of frequentist inference in its NHST implementation.
This idea is not new (e.g., Bakan, 1966), yet discussions
of alternatives are recurring and many fields of study are
moving away from solely relying on the rejection of null
hypotheses that often make little practical sense (Herzog
and Ostwald, 2013; but see also Leek and Peng, 2015).
In our view, arguing for or against the effectiveness of
cognitive training is ill-conceived in a NHST framework,
because the overwhelming evidence gathered throughout the last
century is in favor of a null-effect. Thus, even well-controlled
experiments that fail to reject the H0 cannot be considered
as convincing evidence against the effectiveness of cognitive
training, despite the prevalence of this line of reasoning in this
literature.

As a result, we believe cognitive interventions are particularly
suited to alternatives such as Neyman-Pearson Hypothesis
Testing (NPHT) and Bayesian inference. These approaches are
not free of caveats, yet they provide interesting alternatives to
the prevalent framework. Because NPHT allows non-significant
results to be interpreted as evidence for the null-hypothesis
(Neyman and Pearson, 1933), the underlying rationale of
NPHT favors scientific advances, especially in the context
of accumulating evidence against the effectiveness of an
intervention. Bayesian inference (Bakan, 1953; Savage, 1954;
Jeffreys, 1961; Edwards et al., 1963) also seems particularly
appropriate in evaluating training findings, given the relatively
limited evidence for novel training paradigms and the variety of
extraneous factors involved. Initially, limited data is outweighed
by prior beliefs, but more substantial evidence eventually
overwhelms the prior and lead to changes in belief (i.e., updated
posteriors). Generally, understanding human cognition follows
this principle, with each observation refining the ongoing model.
In his time, Piaget speaking of children as ‘‘little scientists’’
was hinting on this particular point—we construct, update and
refine our model of the world at all times, taking into account
the available data and confronting them with prior experience.
A full discussion of Bayesian inference applications in the
behavioral sciences is outside the scope of this article, but many
excellent contributions have been published in recent years,
either related to the general advantages of adopting Bayesian
statistics (Andrews and Baguley, 2013) or introducing Bayesian
equivalents to common frequentist procedures (Wagenmakers,
2007; Rouder et al., 2009; Morey and Rouder, 2011; Wetzels
and Wagenmakers, 2012; Wetzels et al., 2012). It follows
that evidence should not be dichotomized—some interventions

work for some individuals, and what needs to be identified
is what particular interventions yield the more sizeable or
reliable effects, what individuals benefit from these and why,
rather than the elusive question of absolute effectiveness
(Moreau and Waldie, 2016).

In closing, we remain optimistic about current directions in
evidence-based cognitive interventions—experimental standards
have been improved (Shipstead et al., 2012; Boot et al., 2013), in
direct response to blooming claims reporting post-intervention
cognitive enhancement (Karbach and Verhaeghen, 2014; Au
et al., 2015) and their criticisms (Shipstead et al., 2012; Melby-
Lervåg and Hulme, 2013). Such inherent skepticism is healthy,
yet hurdles should not discourage efforts to discover effective
treatments. The benefits of effective interventions to society
are enormous, and further research is to be supported and
encouraged. In line with this idea, the novelty of cognitive
training calls for exploratory designs to discover effective
interventions. The present article represents a modest attempt
to document and clarify experimental pitfalls so as to encourage
significant advances, at a time of intense debates sparking
around replication in the behavioral sciences (Pashler and
Wagenmakers, 2012; Simons, 2014; Baker, 2015; Open Science
Collaboration, 2015; Simonsohn, 2015; Gilbert et al., 2016). By
presenting common pitfalls and by reflecting on ways to evaluate
typical designs in cognitive training, we hope to provide an
accessible reference for researchers conducting experiments in
this field, but also a useful resource for neophytes interested
in understanding the content and ramifications of cognitive
intervention studies. If scientists want training interventions
to impact decisions outside research and academia, empirical
findings need to be presented in a clear and unbiased manner,
especially when the question of interest is complex and the
evidence equivocal.
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