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Recent advances in electroencephalographic (EEG) acquisition allow for recordings
using wet and dry sensors during whole-body motion. The large variety of commercially
available EEG systems contrasts with the lack of established methods for objectively
describing their performance during whole-body motion. Therefore, the aim of this study
was to introduce methods for benchmarking the suitability of new EEG technologies
for that context. Subjects performed an auditory oddball task using three different
EEG systems (Biosemi wet—BSM, Cognionics Wet—Cwet, Conionics Dry—Cdry). Nine
subjects performed the oddball task while seated and walking on a treadmill. We
calculated EEG epoch rejection rate, pre-stimulus noise (PSN), signal-to-noise ratio
(SNR) and EEG amplitude variance across the P300 event window (CVERP) from a
subset of 12 channels common to all systems. We also calculated test-retest reliability
and the subject’s level of comfort while using each system. Our results showed that
using the traditional 75 µV rejection threshold BSM and Cwet epoch rejection rates
are ∼25% and ∼47% in the seated and walking conditions respectively. However, this
threshold rejects ∼63% of epochs for Cdry in the seated condition and excludes 100%
of epochs for the majority of subjects during walking. BSM showed predominantly no
statistical differences between seated and walking condition for all metrics, whereas
Cwet showed increases in PSN and CVERP, as well as reduced SNR in the walking
condition. Data quality from Cdry in seated conditions were predominantly inferior in
comparison to the wet systems. Test-retest reliability was mostly moderate/good for
these variables, especially in seated conditions. In addition, subjects felt less discomfort
and were motivated for longer recording periods while using wet EEG systems in
comparison to the dry system. The proposed method was successful in identifying
differences across systems that are mostly caused by motion-related artifacts and
usability issues. We conclude that the extraction of the selected metrics from an auditory
oddball paradigm may be used as a benchmark method for testing the performance
of different EEG systems in mobile conditions. Moreover dry EEG systems may need
substantial improvements to meet the quality standards of wet electrodes.
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INTRODUCTION

Descriptions of brain activity using non-invasive
electroencephalographic (EEG) have become an important
topic in recent years. Special attention has been devoted to
establish methodologies for successfully recording brain activity
in real-world conditions (Casson et al., 2010; McDowell et al.,
2013; Ries et al., 2014; Mihajlovic et al., 2015; Oliveira et al.,
2016). The popular framework of embodied cognition requires
investigating and modeling natural brain dynamics (Gramann
et al., 2014). Along these lines, investigating sensorimotor
coupling requires allowing a wide range of motor actions
like complex movements, locomotion and navigation (Gwin
et al., 2010; Ehinger et al., 2014). However, due to the high
dynamic range and low signal-to-noise in these types of
situations, acquiring reliable records of brain electrical activity
in these motion conditions requires robust EEG acquisition
systems beyond what has been conventionally used in more
restricted laboratory or medical scenarios. Such achievement
can contribute substantially to advance many research areas,
such as psychology, motor rehabilitation, aging, robotics, and
user-system interaction (Lance et al., 2012; McDowell et al.,
2013; Kranczioch et al., 2014).

In the past few years, new EEG data acquisition approaches
have been developed which leverage wireless data transmission
and wet or dry electrodes as an attempt to increase the
general usability of the systems for non-traditional use (Chi
et al., 2010; Grozea et al., 2011; Zander et al., 2011; Hairston
et al., 2014; Lopez-Gordo et al., 2014). While promising, an
ongoing challenge is how to validate or prove the overall
efficacy of these approaches, since there currently are no
community-accepted or standard metrics for EEG signal
quality as observed within real-world domains. In most cases,
authors use the output from classic tasks such as steady-state
visual evoked potential and oddball paradigms in stationary
conditions as an attempt to benchmark the performance of
these systems (Zander et al., 2011; Chi et al., 2012; Liao
et al., 2012; Ries et al., 2014). All these investigations reported
satisfactory performance of the dry EEG systems/electrodes
in comparison to wet systems/electrodes, generally based on
the performance of classifiers or the overall average waveform
of an event-related potential (ERP). However some authors
raised limitations related to timing (Hairston et al., 2014; Ries
et al., 2014) and susceptibility to movement artifacts (Chi
et al., 2012), which would be particularly problematic in real-
world scenarios involving ambulation. Thus, these efforts do
not properly encapsulate the challenges likely to be encountered
using mobile EEG systems within their target application
domain.

Proper benchmarking also requires the selection of metrics
that can successfully underpin multiple potential limitations
and not simply a comparison of classifier performance. Recent
studies focusing on benchmarking EEG systems have been
based on a wide range of metrics related to EEG spectral
power and amplitude of specific ERP events (Zander et al.,
2011; Chi et al., 2012; Ries et al., 2014; Fiedler et al., 2015).
However when surveying these studies, a variety of specific

metrics are used, highlighting the difficulty of establishing
solid methods and metrics for benchmarking. Moreover, studies
related to whole-body motion have the addition of substantial
movement artifacts (Gwin et al., 2010; Castermans et al., 2014;
Reis et al., 2014; Oliveira et al., 2016). Therefore, effective
benchmarking for EEG systems towards its usage in whole-
body motion conditions is crucial for future advances in mobile
brain measurements. In order for benchmarking metrics to be
practically informative for real-world applications, they must
involve the identification of appropriate metrics for defining
the influence of motion on EEG parameters and the reliability
of these metrics. The assessment of subject’s comfort and
motivation while using EEG systems is another important aspect
of the benchmark.

The primary aim of the study described here was to
introduce experimental protocols that may serve as benchmarks
for assessing the quality of current EEG technologies devoted
to mobile recording. Subjects performed an auditory oddball
task while seated and during treadmill walking. We calculated
basic variables such as absolute power, pre-stimulus noise
(PSN), signal-to-noise ratio (SNR) and variance of ERP epochs
(CVERP), as well as the level of similarity between ERP curves
from seated vs. walking conditions. The secondary aim was
to investigate the test-retest reliability of these variables. The
results of this investigation have fundamental implications on
both the usage and community-wide evaluation of mobile
EEG systems for exploring brain activity from freely moving
humans.

MATERIALS AND METHODS

Nine healthy volunteers (6 males and 3 females) between the
ages of 21–36 years participated in the study. None had any
history of major lower limb injury or known neurological or
locomotor deficits. All study procedures were approved by the
University of Michigan Internal Review Board and complied with
the standards defined in the Declaration of Helsinki. All subjects
provided informed, written consent before participating.

EEG Systems
All subjects were tested in three different sessions interspaced
from 7–40 days. In each session they wore one of the following
EEG systems in a random order: (1) Biosemi (248-channel,
ActiveTwo, BioSemi, Amsterdam, Netherlands), abbreviated as
BSM; (2) Cognionics (72-channel Mobile, Cognionics Inc, San
Diego, CA, USA), abbreviated as Cwet; and (3) Cognionics
(72-channel Dry, Cognionics Inc, San Diego, CA, USA),
abbreviated as Cdry (Figure 1). The Biosemi system uses active
electrodes, while both of the Cognionics systems use passive
electrodes with active shielding. In each session one of the
systems was mounted on the head of the subject following
the manufacturers’ recommendations. Subjects were seated in
a comfortable, non-reclining chair without any head support
or walked at 1.0 m/s on a treadmill while we recorded scalp
EEG. For the Biosemi system, gel was used to lower the contact
impedance of the electrodes and bring the electrode offset,
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FIGURE 1 | EEG systems used in the study with locations of the 12 analyzed electrodes.

defined as the running average between the CMS electrode and
each of the active electrodes, below 20 mV, as suggested by the
manufacturer. For the Cognionics dry system, we made specific
adjustments, including moving the electrode legs gently through
the hair to touch the scalp and adding small amounts of water
at the skin-electrode interface, to optimize the electrode contact
with the scalp and bring the impedance for each individual
electrode close to 100 k�. However, this threshold could not be
achieved for all electrodes simultaneously in any data collection.
For the wet Cognionics system, we again used gel to lower the
contact impedance. We made sure that the impedance of each
electrode was below 20 k�. Specifically for the Cdry system,
after the cap was appropriately positioned on the subject’s head
according to the International 10–20 system, each row was lightly
tightened so that the electrodes had a firm contact with the
scalp without causing any discomfort. The electrodes were also
maneuvered through the subject’s hair to ensure they had direct
contact with the scalp and were not resting on layers of hair.
Subsequently, rows containing electrodes with high impedance
were once more gently tightened in order to improve contact
between electrodes and the scalp. The total time from cap
application to the start of recording was 70± 19 min for Biosemi,
38 ± 10 min for Cwet and 28 ± 9 min for Cdry. In evaluating
these numbers, please note that the Biosemi system had more
than triple the number of electrodes than the two others. In
order to assess the test-retest reliability, four subjects could be
recruited to perform a second round of tests using the three
EEG systems 30–60 days after finishing the first round of tests.
This second round of tests were interspaced from 7 to 20 days.
These intervals between sessions and for the test-retest intervals
were within an acceptable range according to previous work
investigating ERP reliability (Lew et al., 2007; Brunner et al.,
2013).

Experimental Protocol
In each experimental session, subjects participated in auditory
oddball discrimination and response tasks, once while seated

and once while walking. The proposed walking condition was
meant to simulate a more realistic movement scenario when
compared to the seated recordings. The order of these conditions
was randomized across equipment and subjects. Subjects were
seated in a padded, non-reclining, stationary chair without head
support for the seated portions of the experiment. For the seated
portions with the Biosemi system, the A/D box and electrode
strands were placed behind their head on a small table so that
their weight did not pull backwards on the subject. For the
walking conditions, the A/D box was placed in a small backpack
and the electrode strands were tethered to the backpack so that
the subject had enough slack for a normal range of motion
with their head. They were also tethered in such a way that
they did not pull the subjects head backwards. The total weight
of the backpack they carried was approximately 2.2 kg. There
was no need for backpack setup for recordings using Cwet
and Cdry systems as they were totally wireless. Subjects were
also instructed not to hold onto the treadmill railing unless
they needed to do so for their balance. The temperature of
the room was set to 72◦ (F) throughout the experiment. In
general, subjects were not visibly sweating and did not report
sweating very much when asked. For each condition, participants
listened to words presented using E-prime software (Psychology
Software Tools, Version 2.0, Sharpsburg, PA, USA) from two
speakers placed bilaterally 1.3 m high and 70 cm away from
the subjects. Although hearing loss was not objectively assessed,
all patients had no difficulty in hearing and responding to
the sounds in both conditions. The stimuli were four different
color names (blue, red, yellow and green), and one of these
four words was selected to be a target (for instance, the word
blue) while the other words (red, yellow and green) were non-
target. Target and non-target stimuli appeared with a 0.25 and
0.75 probability respectively. Each word sound was presented
for 400 ms with a 1420–1580 ms inter-stimulus interval. A
fixation point was continuously displayed on a monitor placed
at eye level about 1 m in front of the subjects while they were
instructed to maintain a fixation on the center of the screen as
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TABLE 1 | General specifications for each EEG system.

EEG Sampling Bandwidth Reference # of EEG Wireless Conductive
system rate (Hz) (Hz) channels transmission mechanism

BSM 512 0–100 Averaged Mastoids 256 None Gel
Cwet 500 0–131 Linked Mastoid 64 Bluetooth Gel
Cdry 500 0–131 Linked Mastoid 64 Bluetooth None

the stimuli were presented. Subjects were instructed to respond
as fast and as accurately as possible by pressing a handheld
button every time they heard the target word. If the word was
a non-target, they were told not to press the button and wait
for the next stimulus. Each participant completed four blocks
of 160 trials per condition (seated or walking), and for each
block, a different color name was randomly used as target
stimulus.

Recording and Analysis
We recorded EEG for each system on a Windows 7 PC,
separate from the E-prime computer, using the native software
as provided by the system manufacturers (ActiView, Version
6.05, for BioSemi, and Cognonics Data Acquisition, Version
3.6, for Cognionics). Table 1 shows EEG system specifications
(number of channels, sampling rate, signal bandwidth, and
reference used). All EEG data were processed in Matlab
(The Mathworks, Natick, MA, USA) using EEGLAB and
ERPLAB (Delorme and Makeig, 2004; Lopez-Calderon and Luck,
2014). Continuous EEG data from each recorded file were
high-pass filtered (1 Hz) and with additional notch filtering
using Cleanline.1 The use of 1 Hz high-pass filtering might
influence the ERP outcomes (Tanner et al., 2015); however
for our methodological investigation it became necessary to
use this filter for both sitting and walking conditions as
described in previous literature (Gramann et al., 2010; Gwin
et al., 2010; Ehinger et al., 2014). All datasets from the
same condition were concatenated, generating a continuous
dataset. Specific frame sequences containing large artifacts
resulting from lost packets during wireless telemetry and
muscle activity (EMG) were removed from the continuous
EEG data. Channels with large fluctuations were marked
for rejection and interpolated using EEGLAB. For BSM, we
interpolated 1.2 ± 0.4 and 1.4 ± 0.6 channels for seated
and walking condition respectively. For Cwet, we interpolated
1.3 ± 0.5 and 1.8 ± 0.5 channels for seated and walking
condition respectively. For Cdry, we interpolated 2.1 ± 0.7 and
4.1± 1.6 channels for seated and walking condition respectively.
Subsequently, independent component analysis was performed
on these merged datasets for identifying and removing eye
blinks (Ries et al., 2014). In addition, 1–3 components exhibiting
large fluctuations in phase with the subject gait cycle were
also removed from the walking datasets (Onikura et al.,
2015). We identified these components by evaluating the
frequency content, which usually has a peak around 1.2 Hz
corresponding to the walking frequency. Additionally, we

1https://www.nitrc.org/projects/cleanline/

inspected the temporal properties of the IC activation in order
to confirm that there was clear periodic oscillation around
1.2 Hz.

The artifact-free datasets were downsized to 12 channels
(Fpz, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1 and O2) in
order to include samples from each of the primary regions
of the cap (De Vos et al., 2014). Preliminary analyses
showed these to be sufficiently representative of the primary
regions, while also providing common positions across all
three systems. Subsequently, these datasets were epoched from
−0.3 s to 0.8 s window surrounding the onset of target
and non-target stimuli. Non-target stimuli followed by button
presses and target stimuli not followed by button presses
(i.e., false positives and false negatives, respectively) were
rejected. We also rejected epochs based on EEG amplitude
thresholds, which were noted for comparison later in the
‘‘Results’’ Section. We evaluated all datasets from seated and
walking conditions for each EEG system across a range
of amplitude thresholds from 75 to 400 µV. This analysis
generated a range of rejection rates used for defining the
optimal threshold for further analysis (see ‘‘Results’’ Section
for more details). In order to perform fair comparison
between seated and walking EEG datasets, we rejected the
same number of epochs from both conditions for each
system, based on the condition with the most rejected
epochs.

From the remaining datasets containing single trials that
passed the threshold analysis, we calculated the frequency
power (spectopo function from EEGLAB, 256 point FFT, 128
point window) for each epoch from each channel separately.
Subsequently, we averaged the data from all epochs for
each channel and then averaged all channels. This measure,
therefore, contains not only the evoked but also the induced
power. We calculated the average absolute power across
all 12 electrode locations for the, theta (5–8 Hz), alpha
(9–13 Hz), beta (13–30 Hz) and gamma bands (30–80 Hz)
from both seated and walking conditions. Subsequently we
calculated a ratio between EEG absolute power walking/seated
(Ratio W/S). Ratios W/S above 1 would indicate that EEG
power during walking was higher in comparison to seated.
In addition, PSN, defined as the root-mean square of
the period from −300 to 0 ms, was calculated for each
single trial. The single trial target and non-target datasets
were subsequently averaged using ERPLAB and from these
averaged curves we calculated the SNR—defined as the
ratio of the peak amplitude for P300 and the averaged
PSN (De Vos et al., 2014). In addition, we calculated the
coefficient of variation—defined as the ratio of the standard
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deviation to the mean—for trial i (CV(i)) in a window of
300–500 ms:

CV(i) =
√
vart (EEG(i, t))

meant (EEG(i, t))

with i as the index of epochs and t as the interval of 300–500 ms.
This window contains the P300 event for target stimuli (De
Vos et al., 2014). These values were then averaged over epochs
(CVERP):

CVERP =

∑
iCV(i)
ni

with ni as the number of epochs. This computation was
performed for each channel and each subject in both seated and
walking conditions for each system.

In order to quantitatively compare the outcomes of an oddball
test during seated vs. walking, we calculated the scalar product of
target averaged ERPs curves between each subject’s seated and
walking conditions for each system separately. Scalar products
of normalized vectors yield a score ranging between −1 and +1
representing the overall similarity of a signal (d’Avella et al.,
2003) and are equivalent to a correlation coefficient. Thus,
scalar products 0.8 > r ≥ 0.6 would suggest only moderately
similar ERPs recorded for these two conditions, and r ≥ 0.8
would suggest highly similar curves for the two conditions.
Fisher’s transformation was applied on the individual scalar
products values in order to normalize across the distribution
for further averaging and back-transformation to the correlation
domain.

Post-Experiment Survey
Immediately after finishing the first session using each of the
three headsets, we asked subjects to fill a survey containing the
following questions: (1) How well did the cap fit to your head?
(2) Did you feel discomfort during the experiment? (3) Did
you feel discomfort because the electrodes pinched your head?
(4) When did the EEG cap/electrodes start to be uncomfortable?
(5) When, if at all, did you lose motivation to continue the
experiment? and (6) When, if at all, did you have troubles to
stay focused during the experiment? Answers were based on
a 5-point Likert scale. No survey was conducted to the four
subjects when performing a second round of tests with each
system.

Statistical Analysis
Initially, we performed analysis on EEG epochs based on
cumulative distribution function of the single epoch amplitudes,
in order to define the amplitude range in which the majority
of epochs were found. Subsequently, we applied epoch rejection
tool available on ERPLAB based on the range between
the minimum and maximum amplitude (200 ms window,
100 ms overlap) in the seated and walking EEG datasets using
thresholds varying from 75 to 400 µV. This analysis helped in
defining a single threshold for rejecting epochs throughout the
subsequent results. After defining the appropriate threshold, we
used a 2-way analyses of variance (ANOVA; systems × EEG

frequency band) to assess the effects of the EEG systems and
EEG frequency band on the Ratio W/S. We also assessed the
effects of EEG systems (three systems), condition (seated ×
walking) and EEG channel (i.e., the 12 electrode locations) on
the SNR and CVERP. Due to the exceedingly high rejection
rate for the Cdry-walking condition a complete 3-way ANOVA
covering all combinations was problematic. Therefore we used
two types of 2-way ANOVAS: (1) 2-way ANOVA (3 EEG
systems × 12 electrode locations) for the seated condition; and
(2) 2-way ANOVA (2 conditions × 12 electrode locations)
for Biosemi and Cwet separately. The data from Cdry walking
was removed because there was not substantial data available
from eight out of nine subjects after thresholding. In case of
significant main effects of EEG system and/or EEG channel
we performed post hoc pairwise t-tests with LSD multiple
comparison correction.

Log transformation was applied to the variables exhibiting
non-normal/skewed distribution. The alpha level of significance
was set at p< 0.05, and Cohen’s d effect size was calculated for all
variables (0.2 < d < 0.5 = small effect, 0.5 < d < 0.8 = medium
effect, d > 0.8 = large effect). Test-retest reliability was
calculated by intraclass correlation coefficient (ICC) method
using a two-way mixed effect model set for absolute agreement,
as in Brunner et al. (2013) for EEG absolute power in
different bands, PSN, SNR, CVERP and scalar products between
seated and walking ERP curves. We used 1-way ANOVA
in order to assess the differences among systems for each
of the questions in the post-experiment survey, followed
by post hoc pairwise t-tests with LSD multiple comparison
corrections.

RESULTS

Rejection Rate
The average rate at which data must be rejected due to high-
amplitude swings, noise, or other artifacts has an impact on the
overall usability of the recording. The majority of the ERP epochs
showed peak-to-peak amplitudes ranging from 25 to 75 µV
for all three EEG systems in seated conditions, as well as for
BSM and Cwet in walking conditions (Figure 2A). In the case
of Cdry during walking, the majority of the epochs showed
peak-to-peak amplitudes ranging from 75 to 125 µV, and
∼32% of all epochs showed peak-to-peak amplitudes above
125 µV. Varying the amplitude of cutoff thresholds showed
that a traditional threshold at 75 µV may remove ∼30% of
the seated epochs for BSM and Cwet (Figure 2B), and this
same threshold may remove ∼68% of the seated epochs for
Cdry. There were a higher number of removed epochs for
the walking condition regardless the selected threshold. The
75 µV threshold removed 40–50% of the walking epochs for
BSM and Cwet, whereas all epochs were marked for removal
for Cdry in eight out of nine subjects, and the remaining
subject had 94% of all epochs removed. Meanwhile, thresholds
above 100 µV selected only a marginal number of walking ERP
epochs for rejection for both BSM and Cwet (<4% in average).
On the other hand, thresholds at 175 µV and below marked
more than 80% of all walking ERP epochs for rejection for
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FIGURE 2 | Fraction of event-related potential (ERP) epochs (%) distributed by signal peak-to-peak amplitude. In (A), mean distribution of epochs for
Biosemi (BSM, top row), Cognionics wet (Cwet, middle row) and Cognionics dry (Cdry, bottom row) in steps of 25 µV (0–25, 26–50, 51–75, . . ., 376–400) in seated
(left column) and walking conditions (central column). In (B), mean (SD) percentage of rejected ERP epochs for a variety of rejection thresholds in seated (gray bars)
and walking condition (black bars).

Cdry. These differences highlight the challenge associated with
recording enough ERP epochs within lower amplitude ranges
using Cdry.

Pre-Stimulus Noise in Different Thresholds
In order to describe the effects of condition (seated vs. walking)
and different thresholds on a parameter related to EEG data
quality, we calculated single epoch PSN by using two thresholds
(75 µV and 200 µV; Figure 3). We did not include data
from Cdry during walking for the 75 µV threshold as there
was no data available from eight out of nine subjects. There
were no interaction effects between electrode locations and any
other effect (systems or conditions), therefore we averaged the
12 electrode location values for each subjects for further display
in Figure 3. The separate ANOVAs for each system revealed a
main effect of threshold on PSN results. This specific analysis
did not aim at comparing performance across systems, but rather
targeted the performance of a given system in two conditions
(seated vs. walking) and two thresholds (75 vs. 200 µV) in
order to define whether the threshold is a critical factor in
determining the quality of the acquired EEG epochs. There was
a significantly lower PSN for the 75 µV threshold in comparison
to 200 µV for BSM (F(1,96) = 5.62, p< 0.05), Cwet (F(1,96) = 6.01,
p < 0.05) and Cdry (F(1,96) = 34.3, p < 0.001). In addition,
there was a main effect of condition for Cwet (F(1,96) = 12.2,
p < 0.001, effect size = 0.7), in which lower PSN was found
for the seated condition in comparison to walking. These results

suggested that there were no main effects of condition for the
PSN recorded from BSM for both thresholds of 75 µV and
200 µV. Therefore this system performs equally in seated and
motion conditions. Cdry showed substantial influence of motion,
which made inviable the use of data from 75 µV threshold
in walking conditions, and PSN from 200 µV threshold was
substantially higher in comparison to those from wet systems.
Based on these results, we fixed our threshold at 75 µV for
the additional analysis presented in the following results, and
there were no results from Cdry in the walking condition,
since this threshold removed all epochs for eight out of nine
subjects.

Spectral Analysis
In order to ascertain differences in sensitivity to spectral power in
seated and walking conditions, we calculated the Ratio W/S. Cdry
has been excluded from this analysis due to the lack of data from
walking condition. A 2-way ANOVA (2 EEG systems vs. 5 EEG
frequency bands) was used and a main effect of EEG system was
found (F(1,64) = 6.73, p < 0.05). The Ratio W/S for BSM was
significantly lower in comparison to Cwet across all frequency
bands (Figure 4). In addition, there was a main effect of EEG
frequency band on the Ratio W/S (F(3,64) = 4.64, p < 0.01). The
ratio W/S from the delta band was significantly higher than theta
and alpha bands (p < 0.01, effect sizes between 0.5 and 0.7), and
the ratio from gamma band was significantly higher than alpha
band (p< 0.01, effect size = 0.75) and beta band (p< 0.01, effect
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FIGURE 3 | Boxplots of pre-stimulus noise (PSN) for Biosemi (BSM), Cognionics wet (Cwet) and Cognionics dry (Cdry) for seated and walking
conditions at the thresholds of 75 µV (blue boxes) and 200 µV (green boxes). No data from Cdry was included since the 75 µV amplitude threshold removed
the majority of epochs from walking condition. In each plot the central red mark is the median, the edges of the box the 25th and 75th percentiles. The whiskers
cover approx. 99% of the data. ∗denotes significant difference in relation to 200 µV (p < 0.05); †denotes significant difference in relation to walking; +denotes PSN
values outside the box limits.

FIGURE 4 | Mean (SD) ratio of absolute power walking/seated
(Ratio W/S) for Biosemi (BSM) and Cognionics wet (Cwet) in the
Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz) and Gamma (30–80 Hz)
frequency bands. No data from Cdry was included since the 75 µV
amplitude threshold removed all epochs from walking condition; ∗denotes
significant difference in relation to Cwet (p < 0.05); †denotes significant
difference in relation to the indicated frequency bands (p < 0.05).

size = 0.82). The result from the ratio W/S show that BSM can
provide ratios closer to 1, indicating better quality of results from
walking recordings in comparison to Cwet. Moreover, we found

consistent differences across EEG frequency bands between BSM
and Cwet.

Signal-to-Noise Ratio
The SNR is a variable widely used to describe the quality of
EEG epochs with respect to the background noise inherent to
EEG acquisition. We calculated SNR for each of the 12 channels
for all EEG systems in the seated condition and from BSM and
Cwet during walking. We investigated the effects of electrode
location and condition for BSM and Cwet separately, using
2-way ANOVAs. In addition, we investigated the effects of
electrode location and EEG system for the seated and walking
conditions separately. For the seated condition we computed
differences between BSM vs. Cwet vs. Cdry, whereas for walking
we just computed differences between BSM vs. Cwet. There
was no interaction between electrode location and condition, as
well as no interaction between electrode location and systems
(p > 0.05). There was interaction between EEG systems and
condition for the SNR (F(1,192) = 8.70, p < 0.01), showing that
Cwet in walking had significantly lower values in comparison
to BSM in the seated condition (Figure 5A). In addition, there
was a significant main effect of EEG system (F(2,192) = 11.94,
p < 0.001). Post hoc t-tests with LSD multiple comparison
correction revealed that Cwet had the highest SNR in the seated
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FIGURE 5 | Boxplots representing signal-to-noise ratio (SNR; A, upper
panel) and EEG variance (CVERP) across 300–500 ms after stimulus
presentation (B, lower panel) in seated (sit) and walking conditions
(wlk) for the three EEG systems used (Biosemi: BSM, Cognionics wet
(Cwet) and Cognionics dry (Cdry)). For each panel, data from all 12
electrode locations were included in the boxplots. No data from Cdry was
included since the 75 µV amplitude threshold removed most of the epochs for
this system and condition. In each plot the central red mark is the median, the
edges of the box the 25th and 75th percentiles. The whiskers cover approx.
99% of the data. ∗denotes significant difference in relation to walking condition
for the same system. †denotes significant difference in relation to seated
condition from all EEG systems; +denotes SNR values outside the box limits.

condition, followed by BSM. We also found a significant main
effect of condition (F(1,96) = 21.98, p < 0.001), in which the SNR
in the seated condition was significantly higher than walking
for Cwet. The results from SNR indicated that all EEG systems
have similar performances in the seated condition. However
recording EEG data during walking reduces the quality of the
signals for Cwet, whereas BSM can actually show increased
SNR.

EEG Amplitude Variance
The variable CVERP was calculated in order to quantify
the variability inherent to a window containing the P300
peak for individual epochs. Higher variances mean potential
changes in the amplitude pattern that can influence the
ERP results. For the purpose of this analysis we assume
that CVERP might be higher during walking due to motion
artifacts. Yet, high-quality systems must allow recordings

with minimal differences between seated and walking conditions.
The statistical design was the same as applied for SNR. The
results revealed interaction between EEG system and condition
(F(1,192) = 55.78, p < 0.001), showing that Cdry in seated
condition had significantly higher CVERP in comparison to other
EEG systems in the same condition (Figure 5B, data from
all channels combined in the boxplots). In addition, we also
found a significant main effect of condition (F(1,96) = 42.21,
p< 0.001), in which CVERP in seated condition was significantly
higher than walking for BSM. No significant main effect of
electrode location was found (p > 0.05). Our results from
CVERP demonstrated that, similarly to the SNR, BSM can
maintain the same level of quality on the data recorded
during walking, whereas Cwet showed increases in variance in
walking conditions. Moreover, Cdry delivered data from seated
condition that was more variable than all datasets from wet
systems.

Similarities Seated vs. Walking
Scalar products provide an objective measurement for the overall
similarity of signals without regard to potential differences
in scaling, and a means to assess any distortion observed
between seated and walking ERP curves. The comparison
between parameters such as P300 peak extracted from seated
and walking conditions show similar results using traditional
ERP methods (Gramann et al., 2010; Debener et al., 2012).
However, it is possible that ERP epochs may be affected by
motion artifacts during recordings while walking. The scalar
products were included in this analysis in order to provide
quantitative comparison of the entire ERP waveforms between
conditions. Illustrations of target ERP curves from the sitting
and walking conditions for both wet EEG systems are shown
in Figure 6 for the target and non-target stimuli from the Cz
electrode. In general, BSM and Cwet presented predominantly
similar patterns in the two conditions (5 out of 9 subjects
with r > 0.75). Regarding all analyzed channels, the grand
average across all channels (including target and non-target
stimuli) for BSM was r = 0.75 ± 0.18. There were 186 scalar
products (>80% of the total from 9 subjects × 12 electrode
locations × target/non-target stimuli) showing moderate or
high similarity (r > 0.6). However, channels located posteriorly
in the head (O1, O2) show reduced similarity (Figure 7A).
For Cwet, the grand average was r = 0.62 ± 0.25 and also
follows the same trend of reduced similarities for channels
located posteriorly in the head (Figure 7B). There were 134
scalar products (>60% of total) showing moderate or high
similarity. The results from scalar products confirmed the
superior performance of BSM and lower variability of observed
event related potentials in comparison to Cwet. Moreover,
both systems demonstrated limitations in delivering similar
ERP curves from EEG electrodes located posteriorly in the
head.

Test-Retest Reliability
In order to assess overall consistency of the different metrics
above across the recorded signal, test-retest reliability was
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FIGURE 6 | Averaged target and non-target curves from auditory ERP during seated (black traces) and walking (red traces) for each subject plotted
in different rows (SUB-1 to SUB-9), and different EEG systems in the columns. For each pair of curves, r is the scalar product of the comparison between
these curves. No data from Cdry was included since the 75 µV amplitude threshold removed all epochs from walking condition.

calculated by ICC. That is, we compared the characteristic
derived parameters PSN and CVERP in different conditions
between the first test and the re-test. This does not imply a
direct comparison of an ERP waveform. We have found different
results depending on the EEG system. BSM showed good median
reliability (ICC > 0.70) for all variables across all 12 electrode
locations. For PSN and CVERP the ICC was slightly higher for
walking in comparison to the seated condition, whereas the ICC
was higher for SNR in the seated condition (Figure 8). The
ICC for BSM presented lower variability in comparison to the

two other systems Therefore, data collected using this system
can be considered better reproducible in seated and walking
conditions.

The results for Cwet were less consistent. The PSN showed
good reliability for both seated and walking conditions,
however for both SNR and CVERP the ICC was reduced.
The ICC for SNR was moderate for the seated condition,
but for walking it was poor (ICC < 0.4). The same
was found for CVERP. Moreover, the ICC for walking
showed large variability for SNR and CVERP. Thus, the
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FIGURE 7 | Boxplots of the scalar products of the comparison seated vs. walking for both target and non-target conditions combined for each of the
12 electrode locations. EEG data was recorded from Biosemi (BSM, A) and Cognionics wet (Cwet, B). No data from Cdry was included since the 75 µV amplitude
threshold removed all epochs from walking condition. In each plot the central red mark is the median, the edges of the box the 25th and 75th percentiles. The
whiskers cover approx. 99% of the data. +denotes samples outside the boxplot limits.

FIGURE 8 | Boxplots representing Intra class correlation coefficient (ICC) of 12 electrode locations for PSN, SNR and EEG variance (CVERP) in
seated (sit) and walking (wlk) conditions. Data was recorded from Biosemi (left panel), Cognionics wet (central panel) and Cognionics dry (right panel). No data
from Cdry walking was included as the 75 µV amplitude threshold removed all epochs for this system and condition. For each panel, data from all 12 electrode
locations were included in the boxplots. In each plot the central red mark is the median, the edges of the box the 25th and 75th percentiles. The whiskers cover
approx. 99% of the data. +denotes ICC values outside the box limits.

use of Cwet can provide reproducible results depending
on the variable, and also if data is recorded in stationary
conditions.

Cdry showed moderate to good median reliability in all
three variables in the seated condition, although the variability
was high for PSN and CVERP. The SNR was the most
stable variable while showing low variability. We could not
evaluate the performance of this system during walking as

the data could not be used for the calculation of such
variables.

The ICC calculated from the EEG absolute power was
predominantly moderate/good for all EEG systems in seated and
walking conditions (Table 2). Exception was found only for the
theta band for Cdry seated condition (ICC < 0.5). These results
suggest that the absolute power is also a reproducible variable
from EEG recordings in seated and walking conditions.
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TABLE 2 | Intra class correlation coefficient (ICC) of EEG absolute power
in seated (sit) and walking (wlk) conditions for each EEG frequency band.

Intra-class correlation coefficient (ICC) – Absolute power

Theta Alpha Beta Gamma

Seated
BSM 0.63 0.99 0.99 0.49
Cwet 0.76 0.84 0.93 0.68
Cdry 0.47 0.84 0.86 0.82
Walking
BSM 0.96 0.98 0.98 0.98
Cwet 0.93 0.99 0.99 0.95

Data was recorded from three EEG systems (Biosemi: BSM, Cognionics wet

(Cwet) and Cognionics dry (Cdry)). No data from Cdry was included in the walking

condition since the 75 µV amplitude threshold removed all epochs for this system

and condition.

Post-Experiment Survey
After completing the experiment, most of the subjects reported
that the three different EEG systems fit their heads well/very
well for the wet systems and well/OK for the dry system
(Figure 9, question 1), with no significant differences across
systems. For questions 2 and 3, subjects reported significantly
higher discomfort using Cdry (F(2,24) = 11.62, p < 0.001), and
this discomfort was caused by the electrodes pinching their
heads during the experiment (F(2,24) = 26.81, p < 0.001) in
comparison to the other two wet systems. Moreover, in question
4, subjects reported that they started feeling discomfort using
Cdry approximately 30–60 min through the experiment, which
was a significantly shorter time in comparison to the other
two EEG systems (F(2,24) = 5.63, p < 0.05). No significant

differences were found in relation to the time subjects started
to lose motivation (question 5), but there was a trend to
extended motivation while using BSM. In addition, no significant
differences across EEG systems were found in relation to the time
subjects started to lose focus (question 6).

DISCUSSION

Scalp EEG is currently the main tool for studying brain
activity in real-world conditions. There is an increasing number
of EEG systems suitable for recordings during whole-body
motion, but there is an overall lack of community agreed-
upon benchmarks for defining the performance and usability
of such EEG systems. In this study, we proposed a standard
auditory oddball task and basic metrics that were effective
in underpinning differences in the performance and usability
of three EEG systems. We first found that EEG epochs
from the dry EEG system had substantially higher peak-
to-peak amplitudes for both seated and walking conditions.
Furthermore, data from the walking condition was mostly
unusable due to high rejection rate when using a typical
maximum threshold value. Secondly, calculations of PSN, SNR,
CVERP and scalar products revealed differences across systems
and/or across conditions (seated vs. walking). These variables
showed predominantly moderate/good reliability, especially for
the seated condition. Finally, subjects felt less discomfort and
were motivated for longer periods while using wet EEG systems
in comparison to the dry system. These results combined suggest
that the proposed methodology and subsequent analysis were
successful in identifying differences across systems that are
mostly caused by motion-related artifacts and usability issues.

FIGURE 9 | Mean (SD) scale from the post-experiment survey. For each question the scale varies as stated in the subpanels. ∗denotes significant difference in
relation to BSM and Cwet (p < 0.05).
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FIGURE 10 | Description of the methods of calculation for PSN, SNR, EEG variance (CVERP) and absolute power in the five EEG frequency bands. The
fields outcomes describe the absolute average percentage of change across all subjects between seated and walking conditions in a color scale for Biosemi (BSM),
Cognionics wet (Cwet) and Cognionics dry (Cdry). No data from Cdry walking was included as the 75 µV amplitude threshold removed all epochs for this system
and condition, therefore the comparisons for Cdry were marked as undefined.

A short description of the computation of proposed variables
and a brief summary of the results from the comparison
between seated and walking for each EEG system is shown in
Figure 10.

Previous investigations have applied a threshold of 75 µV
for cognitive tasks (De Vos et al., 2014; Ries et al., 2014).
However, we found that different EEG systems may have
widely different numbers of rejected epochs at such specific
amplitude thresholds. Although BSM and Cwet had acceptable
numbers of rejected epochs (about 15–40% rejection rate), the
higher rejection rate for Cdry indicates an inherent source of
noise, especially during walking. The use of the usual threshold
determined that it was not possible to keep data from Cdry
during walking throughout the entire investigation. There was
an unexpectedly high rejection rate for both wet systems in
the seated condition (∼30%), which may be related to the
use of 12 electrodes from different head locations containing
artifacts not removed by the ICA cleaning. For both wet systems,
there was an expected increase in the rejection rate in walking
conditions, and both systems showed similar performance. Thus,
we suggest that the use of standard amplitude thresholds for
defining the rejection rate was successful in discriminating the
performance of EEG systems. We speculate that the differences

between seated and walking conditions for Cdry can be explained
by the higher susceptibility for changes in contact impedance
of the dry electrodes from head motion caused by walking
dynamics. Furthermore, a noted difficulty in establishing optimal
levels of impedance across all rows of electrodes during subject
preparation before the experiment can also be directly related
to these high rejection rates. We based our ERP results on the
averaging of a similar number of epochs across systems and
conditions, and in some subjects we rejected ∼50% of all trials’
target epochs due to the high rejection rate for Cdry. Previous
studies have recommended the average of at least 70 trials for
optimal results concerning P300 (Kiesel et al., 2008). Our results
follow this recommendation, as the rejection of 50% of target
epochs would still result in averaging 80 epochs.

We calculated PSN as a benchmark metric since it can
quantify the signal quality (De Vos et al., 2014). Ideally this
amplitude fluctuation should be robust across seated and walking
conditions, since the motion-related artifacts and the stimulus
presentation were not coupled. Although three EEG systems
showed similar PSN in the seated condition, only BSM did
not show altered values while comparing seated vs. walking.
A recent investigation did not find differences in PSN recorded in
seated and walking conditions using an adapted Emotiv headset
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(De Vos et al., 2014). However, there were differences in the
methods used in this investigation and our results. De Vos et al.
(2014) reported the PSN only for channel Pz, as representative
of all other selected channels, whereas we used all 12 electrode
locations in order to assure a robust representation of the EEG
data across the scalp. Nonetheless, the use of PSN was effective in
discriminating the performance of EEG systems when comparing
seated vs. walking conditions.

The ratio W/S showed that different EEG frequency bands
can have distinct influences of motion-related artifacts for both
wet systems. In addition, the greater ratio W/S for Cwet suggests
that power spectrum for this system is more influenced in
walking conditions, when compared to BSM. The ratio W/S
has the advantage of excluding normalization issues, since
the ratio is calculated within the seated and walking EEG
power for the same system. Previous investigations showed
predominantly similar power spectrum for EEG recordings
from wet and dry EEG electrodes in static (Zander et al.,
2011; Chi et al., 2012) and dynamic conditions (Lin et al.,
2014). However, these studies were conducted using different
types of electrodes in simultaneous recordings. Our results for
benchmarking focused on comparing entire systems, which can
explain potential differences to previous research. As suggested
in the ‘‘Results’’ Section, the ratio W/S from specific EEG epochs
should ideally be as close to 1 as possible, if there are no major
changes in continuous electrocortical activity between seated and
walking conditions. Previous studies have shown reduction in
alpha and beta power during motor activity (Tzagarakis et al.,
2015), which can explain the ratios W/S below 1 for Biosemi
for these two frequency bands. However, ratios from Cwet
were consistently above 1, suggesting that higher power during
walking recordings in the alpha and beta bands may be due to
movement artifacts. Although the difference in the ratio W/S
is not substantial across systems, this metric was effective in
determining changes in the EEG frequency content related to
motion.

The SNR was greater for BSM in comparison to all other
EEG systems, and the CVERP for BSM was lower in comparison
to all other EEG systems. The SNR is a traditional metric for
quantifying the quality of the target ERP event in relation to the
baseline noise. EEG is well-known for not presenting optimal
SNR (Reis et al., 2014), and ERP events such as the P300
might be highly influenced by changes in EEG amplitude. It is
noteworthy to mention that a few subjects have not presented
clear P300 events (see subjects 4 and 5 in Figure 6) as previously
reported elsewhere (Picton, 1992; Polikar et al., 2007). These
subjects did not present clear P300 events regardless of the EEG
system or condition, highlighting the importance of standardized
benchmarking procedures for comparing the performance of
EEG technologies. The use of SNR as a benchmark metric
showed that motion did not negatively influence the SNR for
BSM, whereas it was reduced for Cwet. The reduction in SNR
for Cwet during walking can be explained by the greater PSN
found in this condition. On the other hand, SNR can be also
influenced by the amplitude of the P300 event. We calculated
CVERP in order to quantify the influence of motion on the
selected ERP epochs, even though all epochs passed the EEG

amplitude rejection method. CVERP showed the increase in trial-
by-trial variance in walking conditions for both wet systems,
especially for Cwet. Our results suggest that the use of SNR alone
as a metric for benchmarking may generate questionable results,
but the combination of SNR and CVERP can establish a robust
method for evaluating the variability across individual epochs for
different EEG systems. This suggestion can be supported by the
results from Cdry while seated, as we found a high SNR, but there
was also a high CVERP in the P300 window. The Cdry system
showed to be very sensitive to motion, and minimal head motion
can add artifacts to the acquired EEG data. Moreover, there might
be other sources of artifacts related to dry electrodes not studied
in our work. There is an inherent higher variability in the epochs
for Cdry, as measured by the CVERP. Therefore it is not possible
to assure that higher SNR is directly related to higher overall
signal quality.

Previous studies comparing event-locked EEG data from
stationary and dynamic conditions have used metrics such as
peak P300 and PSN (Gramann et al., 2010; Debener et al., 2012)
calculated from averaged ERP epochs. Our study introduced
a comparison of the ERP curves from seated and walking
conditions by means of scalar products. This methodology is
equivalent to computing the correlation over time and allows for
a direct mathematical comparison of the averaged epochs from
both conditions, complementing the results already explored
in the literature. Previous studies applied correlation analysis
to investigate how similar power spectral curves from wet
and dry electrodes were shaped, showing that both types of
electrodes have similar spectral distribution (Zander et al., 2011;
De Sanctis et al., 2014). Ideally, target and non-target curves
from sitting and walking should be as similar as possible in
a controlled laboratory-based setup, since no distraction other
than the treadmill movement and its inherent noise are added
while walking. This hypothesis is confirmed by the fact that more
than 80% of all comparisons for BSM showed scalar products
above 0.6 and out of these 40% being highly similar. Similar
analyses for Cwet, showed poorer performance when compared
to BSM, suggesting changes in the ERP curve shapes related to
whole-body motion. Furthermore, channels located in the frontal
and central areas of the head presented higher similarity to the
target curves in comparison to those located in the posterior
area (Figures 7A,B). These results suggest that the evaluation of
the entire ERP curve can be used for establishing overall signal
quality between different recording conditions.

In addition to identifying appropriate metrics for
benchmarking EEG systems, we tested the potential reliability of
such metrics. Overall, a general statement of which are the best
metrics in terms of reliability is difficult to achieve, as different
systems demonstrated different performances in each variable.
Nonetheless, BSM continued to show moderate/good ICCs for
all variables in both seated and walking conditions, whereas
Cwet showed reduction in the reliability for SNR and CVERP,
especially in walking conditions. Previous investigations have
described good test-retest reliability of evoked EEG responses
from transcranial magnetic stimulation (Lioumis et al., 2009),
and auditory responses using ICC (Brunner et al., 2013) and
Pearson correlation (McFadden et al., 2014). All these previous
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investigations were conducted in seated conditions, and to our
knowledge, the present investigation is the first to report test-
retest reliability for EEG experiments in dynamic conditions.
Although there was a limited sample size for test-retest reliability,
our robust results suggest that wet systems deliver reliable results
between sessions in seated conditions, but reliability is reduced
in walking conditions.

Our results from the post-experiment survey showed that
subjects felt discomfort while using Cdry, and this discomfort
was caused by the electrode pressing against the scalp and
pinching their heads. In fact, five subjects reported headaches
after the experimental session, which can be related to the
pressure of the dry electrodes onto the head. EEG experiments
have shown that headache and discomfort can cause a reduction
in cognitive performance (Evers et al., 1997; Lorenz and
Bromm, 1997). These results are essential for EEG system
developers because discomfort can limit cognitive performance
and change the expected electrocortical signals in real-world
conditions. The comfort rating of the Cdry in our experiment
does not corroborate previous investigations that reported good
comfort rates for dry EEG technologies (Hairston, 2012; Chen
et al., 2014; Fiedler et al., 2015). However, these investigations
were assessing comfort using different scales, from different
number of electrodes and EEG sensors. The cap placement
and preparation for the wet systems demanded more time in
comparison to the dry system. Nonetheless, subjects did not
report problems regarding the long procedure. Further studies
and standardization of methods for accessing comfort are needed
in order to establish optimal methodologies for benchmarking
the usability of EEG systems. Additionally, our study has a
limitation concerning number of subjects, especially for the
test-retest reliability. We found robust ICC especially for the
wet systems, which suggests that the proposed metrics are

reliable. However future studies aiming at developing these
benchmarking testing protocols should consider using larger
subject populations to gather more robust information about the
different methodologies.

In summary, we propose the auditory oddball paradigm in
combination with the calculations of epoch rejection rate, PSN,
SNR, CVERP and scalar products can be used as a benchmark
method for testing the performance of different EEG systems.
Furthermore, we observed that a walking vs. seated paradigm
elicits strong differences in these metrics. The use of wet
systems has demonstrated the potential of acquiring EEG data
with comparable quality in seated and walking conditions. The
investigated metrics were successful in underpinning which
systems were suitable to deliver comparable EEG data in whole-
body motion, and the robustness of such results were attested
by the assessment of test-retest reliability. Finally, EEG systems
based on dry electrodes may need substantial improvement to
meet the quality standards of wet electrodes. At the same time,
improvements on the electrode construction and materials is
needed, since comfort and performance may be compromised.
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