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Biocybernetic adaptation is a form of physiological computing whereby real-time data
streaming from the brain and body is used by a negative control loop to adapt the
user interface. This article describes the development of an adaptive game system
that is designed to maximize player engagement by utilizing changes in real-time
electroencephalography (EEG) to adjust the level of game demand. The research
consists of four main stages: (1) the development of a conceptual framework upon
which to model the interaction between person and system; (2) the validation of the
psychophysiological inference underpinning the loop; (3) the construction of a working
prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The
first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha
bands to changing levels of game demand. These variables were then reformulated
within the working biocybernetic control loop designed to maximize player engagement.
The second study evaluated the performance of an adaptive game of Tetris with respect
to system behavior and user experience. Important issues for the design and evaluation
of closed-loop interfaces are discussed.

Keywords: psychophysiology, EEG, gaming, physiological computing, adaptive interface, effort, engagement

INTRODUCTION

Biocybernetic control describes how the implicit measurement of physiological signals from the
brain or body can be transformed into a control input for real-time software adaptation. This
category of physiological computing system (Fairclough, 2009) has also been described as a passive
brain-computer interface (Zander and Kothe, 2011) because the user simply responds to events
at the interface without any requirement for volitional control. The purpose of biocybernetic
adaptation is to create a seamless and tacit form of human-computer interaction where software
adaptation is timely and intuitive from the perspective of the user.

The biocybernetic model has been applied to a range of domains, such as: adaptive
automation (Bailey et al., 2006), detection of negative emotions (Kapoor et al., 2007),
adaptive robotics (Liu et al., 2007) and support for social behavior (Chanel and Mühl, 2015).
An early example of a working biocybernetic control loop was developed by NASA in the
1990s where the real-time analysis of electroencephalography (EEG) signals was converted
into an input variable for the control of the level of system automation during simulated
aviation tasks (Pope et al., 1995; Freeman et al., 1999; Prinzel et al., 2000; Scerbo et al.,
2003). This control loop was designed to sustain operator engagement within an optimal
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zone that avoided complacency and inattention by selectively
disabling system automation in order to oblige the operator to
engage with a manual interface. This example of biocybernetic
control set a blueprint for a data processing protocol wherein
electrocortical activity interacts with a computerized system
within a negative feedback loop. This model of closed-loop
control detects deviations from an optimal state of brain activity
and uses these variations to cue changes at the human-computer
interface in order to ‘‘pull’’ the psychological state of the user in a
desired direction.

The design of a biocybernetic closed-loop incorporates
a number of distinct processing stages: (1) data collection
from sensors, (2) filtering of raw data coupled with artifact
correction techniques, (3) data analysis for the extraction of
meaningful metrics that permit a valid inference of the user state,
(4) conversion of the metrics in order to instigate adaptation at
the user interface, i.e., defining criteria/triggers for adaptation or
by categorizing data usingmachine learning algorithms (Baldwin
and Penaranda, 2012; Novak et al., 2012); and (5) adaptation of
the user interface in a manner designed to promote a desirable
user state.

All biocybernetic closed-loop systems are rooted in a psycho-
physiological inference; for example: inferring increased arousal
from increases in skin conductance level, inferring negative affect
from activation of the corrugator supercilli. The validity of this
inference is fundamental to the integrity of a working loop,
but the process of establishing validity is complex (Cacioppo
and Tassinary, 1990). The loop is designed to utilize software
adaptation in order to influence a key psychological concept
or dimension in the user, e.g., engagement, mental workload,
attention. If the fundamental link between input measures,
the psychological concept targeted by those measures and
the adaptive logic of the loop is weak or tenuous, then the
effectiveness of the closed-loop system will be compromised
(Fairclough, 2007, 2009). Because the loop works in real-time,
it is important that measures are: (a) sufficiently sensitive
to changes in the relevant psychological dimension; and
(b) specific to that dimension, i.e., not confounded with other
psychological variables. Consequently it is important to construct
biocybernetic loops on the basis of measures that have either
been scientifically validated according to research literature
or tested and validated in the context of the target task or
application.

This article describes the development of an adaptive
computer game where the software responds in real-time in
order to enhance the experience of the player by making the
game appropriately challenging. Optimizing task difficulty is
one of several methods of adapting gaming experiences using
biocybernetics, others include enhancing emotional engagement
and reducing player frustration (Gilleade et al., 2005). This
closed-loop approach employs the same logic that underpins the
integration of biofeedback mechanics into gaming applications
(Nacke et al., 2011) and the design of adaptive games dedicated to
the creation of a specific emotion (Dekker and Champion, 2007).
One goal for an adaptive game is to deliver a level of difficulty
tailored to the skills of the player via closed-loop control such that
the game is personalized to the skills and abilities of each player.

This article will describe the development of an adaptive game
of Tetris designed to sustain player engagement (see also Chanel
et al., 2011) and also an experimental study intended to validate
the psychophysiological inference underpinning the system that
was conducted prior to the creation of the working prototype.

Game construction began with the formulation of a
conceptual framework upon which to model the responses of the
adaptive game. Our framework was based upon the Motivational
Intensity Model (MIM: Wright, 2008) which describes the
relationship between effort investment and task demand; amodel
that has been corroborated via a number of experimental studies
(e.g., Wright and Kirby, 2001; Richter et al., 2008; Richter
and Gendolla, 2009). One prediction of this model is that
effort rises proportionally with increases in task difficulty until
demand is so great that the human deems task success unlikely
and withdraws effort, the result of which is a shark-fin shaped
effort curve (Figure 1). The MIM was adapted to provide a
conceptual framework for defining a desirable state of player
engagement that could serve as the target for the biocybernetic
loop. The adaptation took account of research upon the gaming
experience to define an ideal ‘‘zone’’ state for the player. For
instance, Csikszentmihalyi (1990) described the ideal or optimal
level of engagement as ‘‘flow’’; a state where engagement with a
task is full to the point that time seems to slip away. According
to Nacke and Lindley (2008) flow is characterized by an absence
of undesirable mental states (i.e., boredom) and entails a positive
emotional experience. Similar states, such as being in the zone or
total immersion have been described by Chen (2004) and Ryan
et al. (2006) respectively. The observation has also been made
that situations of high effort promote skill development and an
opportunity to demonstrate mastery or competence that leads
to a positive gaming experience (Ryan et al., 2006). Thus, the
MIM was adapted to represent four broad categories of player
state; boredom, engagement, zone and overload (Figure 1). The
conceptual distinction between these four categories was used to
define adaptive goals for the biocybernetic loop, namely:

• To avoid boredom by increasing game demand whenever
boredom was detected

• To reduce demand when overload was detected

FIGURE 1 | Motivational Intensity Model (MIM) adapted by the addition
of four categories of user state.
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• To make no adjustment when the player occupied the target
states of engagement and zone

In order for the control loop to work within this
framework (Figure 1) the model must be operationalized
using psychophysiological measures. The MIM has been
extensively corroborated by cardiovascular indices of mental
effort (e.g., Wright and Dill, 1993; Wright and Kirby, 2001;
Richter et al., 2008; Richter and Gendolla, 2009), however
cardiovascular measures have a number of limitations as inputs
to a biocybernetic loop including an inability to diagnose
and monitor individual psychological dimensions of effort,
e.g., reactivity in blood pressure is simultaneously sensitive
to motivation, cognitive effort and physical effort (Cacioppo
et al., 2000). By contrast EEG provides a wide choice of metrics
that permit a multidimensional monitoring of engagement,
including spontaneous oscillations, evoked and event-related
potentials (EPs and ERPs), different frequency bands, scalp
locations and power values. Multivariate combinations of EEG
measures have demonstrated impressive levels of accuracy
at discriminating user workload (e.g., Gevins et al., 1998;
Prinzel et al., 2003; Scerbo et al., 2003; Chanel et al., 2008;
Christensen et al., 2012). Of particular interest are EEG
oscillations in the alpha (7.5–13 Hz) and theta (4–7 Hz)
bands, which are reliable measures of cortical activation
and mental effort (e.g., Gevins et al., 1998; Klimesch, 1999;
Wilson, 2002, 2003). In an earlier study (Fairclough et al.,
2013), measures of power in the alpha and theta bands
were sensitive to manipulations of cognitive demand and
motivational incentives using the N-back working memory
task, however, the capacity of these metrics to index demand
and motivation in the context of a computer game remained
unknown.

STUDY ONE: VALIDATION OF INPUT
MEASURES

Introduction
An experimental study was conducted to evaluate the sensitivity
and reliability of the EEG alpha and theta bands to variations in
game demand and motivation during the play upon the popular
game Tetris. The study aimed to establish: (a) the most suitable
EEG measures to use as inputs to a real-time biocybernetic loop;
and (b) an appropriate framework for the operationalization of
the MIM with respect to measures of spontaneous EEG. The
study employed a within subjects design and involved game
based manipulations of motivation and demand: three levels
of game demand were tested (low, high, excessive) along with
two incentive conditions whereby a game-based incentive was
present in one condition and absent in the other. It was expected
that changes in oscillatory EEG activity in the alpha and theta
bands would capture: (1) situations of low effort (i.e., due to
boredom or overload); (2) instances of effort increasing in line
with demand (when players were engaged with the game) and
most significantly; and (3) when players were in the ‘‘zone’’
(when maximal effort was apparent; Figure 1). It was also
anticipated that the addition of an incentive would increase

effort investment provided that game success was likely (Wright,
2008).

Method
Participants
Twenty participants (11 females) took part in the experiment.
Participants were aged between 19 and 36 years, and had a mean
age of 23.2 years (SD = 4.02). All participants were volunteers
who gave their written informed consent prior to data collection
in accordance with the Declaration of Helsinki.

Game Demand
Cognitive demand was manipulated using an adapted version of
the Tetris game. The game requires participants to rotate and
move falling pieces in order to build rows of blocks at the bottom
of a game board. Falling pieces were one of seven possible colored
shapes; each comprised of four squares arranged in different
configurations. Pieces were selected to fall in random order.
In order to allow gameplay for a fixed duration of 180 s the
conventional Tetris game-board was adapted to prevent game-
death (when pieces stack to the top of the board to signal
game-over). The adaptation consisted of shifting the game-board
upwards so that the highest stacked piece was maintained at the
center of the game board, and was unable to rise above this level
(Figure 2).

The speed and quantity of the falling pieces were
systematically manipulated to create three levels of game
demand (low, high or excessive). In the low demand condition,
an average of 22.1 pieces fell with a drop speed of 2.5 board
squares s−1 An average of 66.2 pieces fell with a drop speed of 6.7
board squares s−1 in the high demand condition. In the excessive
demand condition, an average of 217 pieces fell at a drop speed
of 20 board squares s−1. These parameters were determined on
the basis of a small pilot study (N = 7).

Incentives
Games were presented in one of two incentive conditions
(incentive + performance feedback vs. no incentive + no
performance feedback). Each participant completed both
incentive conditions (i.e., within-subjects). In the incentive +
feedback condition, game coins could be earned for completing
rows of Tetris pieces. Coins were accrued in proportion to the
number of rows cleared relative to the maximum possible row
clearance, such that a maximum of 70 coins could be earned
(representing 100% possible clearance). Between zero and seven
coins were accumulated every 10 s depending on the proportion
of maximum cleared rows achieved at the time of accrual, i.e.,
at the end of each game, best performance = 70 coins and
worst performance = 0 coins (Figure 2). Sounds were presented
with each award of coins: ‘‘kerching’’ with an award (if current
total was less than 35 coins) or ‘‘coin jackpot’’ (if total was over
35 coins). In the no-incentive (+ no feedback) condition, the
display related to the coin incentive was absent and no sound
effects related to the award of coins were played. For both
incentive conditions sound effects occurred when rotating the
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FIGURE 2 | Game-board during incentive + feedback condition: coins are displayed pictorially in a 7 × 10 matrix on the left of the screen and turn
from dark blue to gold to indicate coin achievement. A separate row of coins above indicates the number of coins awaiting award at the next 10 s time-point
(one coin in this example). The coin score (bottom) and remaining game time are presented in numerals on the left of the screen.

pieces (small ‘‘pop’’) and shifting the pieces left or right (small
‘‘snap’’).

Experimental Design
The experiment consisted of six 180 s games (2 incentive
blocks × 3 levels of demand per incentive block). Incentive
blocks were delivered in a counterbalanced order and each level
of demand presented in random order within each incentive
block. Post hoc T-tests questionnaires were completed after each
game. Throughout each game EEGwas measured along with task
performance; the total duration of the experimental session was
approximately 40 min. Participants practiced by playing each
of the six game versions once prior to the experiment and the
fitting of EEG equipment. The procedure for the experiment
and data collection protocol was approved by the Liverpool
John Moores University (LJMU) University Research Ethics
Committee and the experiment was conducted in accordance
with the recommendations of the LJMU University Research
Ethics Committee.

Subjective Questionnaires
Subjective workload was assessed using the NASA Task Load
Index (TLX; Hart and Staveland, 1988) which consists of six
scales (subjective effort, mental demand, temporal demand,
physical demand, perception of performance and frustration).
Subjective levels of motivation were assessed using the Dundee
State Stress Questionnaire (DSSQ) v1.2 motivation scale, which
includes eight items relating to motivation, task enjoyment,
desire for success, task value, mental effort, agreeableness on
completion, concern over poor performance and eagerness to
do well (Matthews et al., 1999). Participants completed one
version of each questionnaire immediately after each of the six
experimental conditions.

EEG Recording and Analysis
EEG was recorded monopolarly from 64 Ag–AgCl pin-type
active electrodes mounted in a BioSemi stretch-lycra head cap.
Electrodes were positioned using the international 10–20 system
and recorded activity from the following sites: frontal pole (FPz,
FP1 and FP2), anterior-frontal (AFz, AF3, AF4, AF7 and AF8),
frontal (Fz, F1, F2, F3, F4, F5, F6, F7 and F8), fronto-central
(FCz, FC1, FC2, FC3, FC4, FC5 and FC6), central (Cz, C1, C2,
C3, C4, C5 and C6), temporal (FT7, FT8, T7, T8, TP7 and
TP8), parieto-central (CPz, CP1, CP2, CP3, CP4, CP5 and CP6),
parietal (Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10), occipito-
parietal (POz, PO3, PO4, PO7 and PO8) and occipital/inion (Oz,
O1, O2 and Iz). Two reference electrodes, the ‘‘common mode
sense’’ (CMS) and ‘‘driven right leg’’ (DRL) were used; these
function via a feedback loop to drive the participant’s voltage
(acquired via CMS) as close as possible to zero. AC differential
amplifiers performed continuous digitization at 16,384 Hz which
was then down-sampled online to 256 Hz. No filters were
applied online to allow visual inspection of noise. Offline filtering
was performed using a notch filter of 50 Hz and high and
low pass filters of 0.05 and 40 Hz respectively. The data were
visually inspected for artifacts from external electromagnetic
sources. Automatic correction of blink artifacts and horizontal
and vertical saccades was performed using detection through
predefined topographies. Muscle activity over 100 µV was
also excluded. Fast fourier transforms (FFTs) were computed
over 50% overlapped windows of 2 s (512 points). The total
power in µV2 was obtained for lower alpha frequency band
(7.5–10 Hz), upper alpha frequency band (10.5–13 Hz) and theta
frequency band (4–7 Hz; Klimesch, 1999). For the analysis of
spectral power in the alpha bands data from the electrodes most
spatially representative of the regions of interest were used i.e.,
frontal (F3, F4); temporal (T7, T8); central (C3, C4); parietal
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(P3, P4); occipital (O1, O2). This selection permitted analysis
of distributed signals whilst minimizing type one error. The
theta band used in this study consisted of a 1 Hz window
taken around the frequency of peak modulation within the
4–7 Hz theta range for each participant. This was in order
to individualize measurements and maximize their validity. As
the majority of participants tend not to produce a clear peak
frequency within the theta band, and because there tends to
be a large inter-individual variability in the magnitude of the
theta response to demand, individualization of the measure was
deemed necessary (Gevins et al., 1998). The method involved
(for each participant) plotting the spectral power values that
lay within the 4–7 Hz theta band for each demand condition
on a graph where frequency was represented on the x-axis and
spectral power on the y-axis. The graph for each participant
was then visually inspected to discern the theta frequency
possessing the greatest demand related modulation of power.
Many participants did not display a unique frequency with
the greatest power modulation, but instead a small window of
similar frequencies that displayed greater modulation than the
other theta frequencies; for this reason a 1 Hz window was
selected for each participant. Power spectra values for both
alpha and theta bands were log transformed (using the natural
log) to normalize distribution. A single 180 s continuously
recorded data segment was analyzed for each experimental
condition.

Statistical Analysis
A priori hypotheses concerning effects for demand were
tested using repeated measures analyses of variance (ANOVA).
Multivariate analyses are reported using the Pillai’s Trace statistic
and where multivariate tests failed to reach significance, due
to a small sample size (N = 20) significant univariate analyses
are reported. Greenhouse-Geisser corrections were applied for
violations of sphericity as indicated by Mauchly’s test. Alpha
levels for a priori tests were set at 0.05. Significant omnibus effects
have been followed up with post hoc tests where the alpha levels
were corrected to minimize Type one errors using the Bonferroni
adjustment.

Results
Performance
A 2 × 3 (incentive × demand) repeated measures ANOVA was
performed on game performance scores (i.e., the percentage of
successful line completions), which revealed an omnibus effect
for demand (F(2,18) = 504.8, p < 0.01, η2 = 0.98). There
were no main or interaction effects for the incentive. Post hoc
tests revealed that performance was significantly reduced at
excessive compared to high demand (p < 0.01) and low demand
(p < 0.01). Performance scores were also significantly lower at
high compared to low demand (p < 0.01), descriptive statistics
are presented in Table 1.

Subjective Self-Report Data
A 2 × 3 (incentive × demand) MANOVA on scores for the
six scales of the NASA TLX revealed significant main effects for

TABLE 1 | Mean scores and standard deviation (in brackets) for Tetris
performance (the percentage of rows completed; N = 20).

Demand Low High Excessive

Incentive Inc. No inc. Inc. No inc. Inc. No inc.

Performance 70.67 63.44 58.59 49.63 2.98 2.41
(12.67) (13.43) (26.9) (28.55) (3.26) (2.35)

demand (F(12,220) = 22.64, p < 0.01, η2 = 0.55) and incentive
(F(6,109) = 2.85, p < 0.05, η2 = 0.14). Ratings of mental,
physical and temporal demand increased significantly with each
increment in demand (all p < 0.05). Effort ratings increased
from low to high demand (p < 0.01) and showed a marginally
significant increase at excessive vs. high demand (p = 0.05).
Perceptions of performance quality were reduced at excessive
vs. high and low demand (both p < 0.01) while frustration was
elevated at excessive vs. high and low demand (both p < 0.01).
Ratings of mental demand, physical demand and effort all
increased with incentive (p< 0.05). However there was no effect
for incentive upon the ratings of temporal demand, frustration
and perception of performance quality; descriptive statistics are
provided in Table 2.

Scores on items from the DSSQ Motivation subscale had
a high internal consistency (Cronbach’s alpha = 0.88) so
were collapsed into one index of subjective motivation. A
demand (3)× incentive (2) repeated measures ANOVA revealed
significant main effects for demand (F(2,18) = 29.42, p < 0.01,
η2 = 0.77) and incentive (F(1,19) = 15.16, p < 0.05, η2 = 0.44).
Post hoc T-tests indicated enhanced motivation at high demand
(high vs. low: p < 0.01; high vs. excessive: p = 0.01). Motivation
was also elevated when the incentive was present for all demand
conditions (p= 0.01; Table 2).

EEG Theta Power
A 2 × 3 repeated measures MANOVA was conducted on theta
power data from five frontal (F, FC) and AF sites (AFz, Fz,
FCz, F1, F2). This analysis produced a main effect for demand
(F(2,18) = 21.89, p < 0.01, η2 = 0.71) and site (F(4,16) = 38.73,
p < 0.01, η2 = 0.91). A quadratic trend for demand was
significant (F(1,19) = 19.71, p < 0.01, η2 = 0.51) indicating
maximum power at high demand. There was no effect of
incentive on frontal theta power.

To locate the effects for demand paired sample T-tests were
conducted on data that had been collapsed across the levels of site
and incentive. Theta power was significantly elevated at high vs.
low and excessive demand (p< 0.01). There was also amarginally
significant increase of theta power during excessive compared to
low demand (p= 0.05).

EEG Alpha Power (7.5–13 Hz)
To discern effects of the manipulations upon spectral power
in the alpha band, repeated measures (2 × 3 × 5 × 2)
ANOVAs with factors of incentive (incentive, no
incentive) × demand (low, high, excessive) × site (frontal
(F3, F4), parietal (P3, P4), occipital (O1, O2), central
(C3, C4), temporal (T7, T8)) × hemisphere (left, right)
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TABLE 2 | Mean and standard deviation (brackets) scores for the six NASA TLX Scales (mental demand, physical demand, temporal demand, frustration,
effort and perception of performance) and the DSSQ motivation scale.

Demand Low High Excessive

Incentive Inc. No inc. Inc. No inc. Inc. No inc.

Mental demand 3.77 (2.29) 3.00 (2.17) 6.50 (1.87) 5.32 (2.03) 7.73 (1.95) 7.00 (2.77)
Physical demand 3.00 (2.25) 2.09 (1.51) 5.50 (2.8) 4.05 (2.58) 6.73 (2.79) 7.00 (2.77)
Temporal demand 2.00 (0.87) 1.95 (1.48) 6.09 (1.45) 6.00 (1.8) 9.27 (1.13) 8.72 (1.92)
Frustration 4.18 (2.58) 3.95 (2.42) 4.18 (2.33) 4.36 (2.53) 8.18 (2.02) 7.64 (2.4)
Effort 4.41 (2.4) 2.95 (1.93) 7.23 (1.78) 5.68 (2.24) 8.41 (1.53) 6.77 (2.61)
Perception of performance 7.27 (2.54) 7.55 (2.05) 7.14 (2.41) 5.73 (2.64) 1.50 (0.99) 2.23 (1.78)
Motivation 6.14 (0.91) 4.86 (1.88) 7.60 (1.04) 6.20 (1.38) 5.73 (1.68) 5.40 (1.31)

Inc., incentive; No inc., no incentive; N = 20.

were performed separately on lower and upper alpha band
power.

The omnibus analyses for lower alpha band power
(7.5–10 Hz) produced main effects for site (F(4,16) = 41.05,
p < 0.01, η2 = 0.91) and hemisphere (F(1,19) = 4.92, p < 0.04,
η2 = 0.21). Trend analysis showed a linear trend for hemisphere
with reduced lower band power in right hemisphere (statistic
as for effect). Interactions were also present in the analysis of
lower alpha power for incentive × hemisphere (F(1,19) = 5.73,
p< 0.03, η2 = 0.23) and demand× site (F(4,82) = 4.01, p< 0.01,
η2 = 0.17). Post hoc tests indicated the incentive × hemisphere
interaction was related to greater reduction of alpha power in
right hemisphere during the incentive condition (p = 0.02).
The demand × site interaction was linked to a reduction of
lower alpha power at occipital sites during high compared to
excessive demand (p = 0.03); lower alpha was also suppressed
at high compared to low demand at temporal sites (p < 0.01).
Summary statistics for the post hoc tests are presented in
Table 3.

The omnibus ANOVA for upper alpha band (10.5–13 Hz)
produced main effects for incentive (F(1,19) = 6.41, p < 0.03,
η2 = 0.25), demand (F(2,18) = 6.62, p < 0.01, η2 = 0.42) and
site (F(4,16) = 25.22, p < 0.01, η2 = 0.86). There were significant
linear trends indicating that upper alpha power decreased as
demand increased (F(1,19) = 13.63, p< 0.01, η2 = 0.42) and when
the incentive was offered (statistic as for effect). Interactions
were also present for incentive × hemisphere (F(1,19) = 6.81,
p < 0.02, η2 = 026) and demand × site (F(4,81) = 8.69, p < 0.01,
η2 = 0.31).

Post hoc T-tests revealed a reduction of upper alpha power
when game coins were present (p = 0.02). Upper alpha was
also suppressed at excessive compared to high and low demand
(p < 0.01) and at high compared to low demand (p = 0.02)

TABLE 3 | Differences in power between levels of Tetris demand by region
for lower alpha band (N = 20).

Lower alpha band power

Site t p η2

Occipital excess > high 2.29 0.03 0.22
Temporal high > low 2.92 0.01 0.31

indicating a concomitant drop in upper alpha power as game
demand increased.

Analysis of the demand × site interaction revealed a stepwise
reduction of upper alpha power as demand increased at parietal,
frontal and central sites. However, this demand effect was not
apparent at occipital and temporal sites. Post hoc tests indicated
that the hemisphere× incentive interaction was related primarily
to a reduction in power during the incentive condition compared
to the no-incentive condition in the right hemisphere (p< 0.01).
The t-values and effect sizes for these post hoc tests are displayed
in Table 4.

Discussion
This study was performed to assess the suitability of oscillatory
EEG metrics for the real time monitoring of effort and cognitive
demand during Tetris play. The results indicated frontal theta
was robustly sensitive to objective game demand but that
alpha activity only responded to demand at specific sites.
For both frontal theta power and subjective motivation there
were significant quadratic trends with maxima at high demand
indicating that this level stimulated the highest subjective
motivation and effort investment, as predicted by the MIM
(Figures 1, 3). Upper alpha band (10.5–13 Hz) indicated a
linear increase in cortical activation as the challenge of the game
increased (Figure 4), which corresponded with the trend in
subjective workload (Table 2). There was no main effect for
either manipulation upon the lower alpha band (7.5–10 Hz)
however, an interaction with site revealed sensitivity to demand

TABLE 4 | Differences in power between levels of Tetris demand by region
for upper alpha band (N = 20).

Upper alpha band power

Site t p η2

Central low > excess 5.14 <0.01 0.58
low > high 4.72 <0.01 0.54
high > excess 3.95 0.01 0.45

Parietal low > excess 4.24 <0.01 0.49
low > high 3.55 0.02 0.40
high > excess 3.18 <0.01 0.35

Frontal low > excess 4.18 <0.01 0.48
high > excess 3.31 <0.01 0.37
low > high 2.46 0.02 0.24
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FIGURE 3 | Grand average topographic distribution of spectral power
at the frequency of peak power for low, high and excessive demand
(N = 20: incentive and no-incentive conditions are collapsed). Peak
frequency = 6 Hz (the frequency at which a clear peak in EEG power was
evident within the 4–7 Hz range); this was identified by visual inspection of the
grand average frequency-power spectral plot. Images were constructed using
spherical spline interpolation.

over temporal and occipital areas of the scalp. The sensitivity
of upper alpha activity to game demand was specific to frontal,
central and parietal sites. In addition, upper alpha was the
only frequency band to respond to the incentive coins (greater
power reduction when game coins were present over the right
hemisphere).

Augmentation of frontal theta has been widely reported in
association with sustained attention, increased cognitive control
and working memory (Gevins et al., 1998; Klimesch, 1999;
Jensen and Tesche, 2002; Gevins and Smith, 2003; Sauseng
et al., 2005; Cavanagh and Frank, 2014; Hsieh and Ranganath,
2014; Clayton et al., 2015). However, the decline of frontal
theta power under conditions of excessive demand (Figure 3)
has not previously been observed. The reproduction of this
pattern in Tetris players provided an indication of the ecological
validity of this metric and the ability of frontal theta to retain
sensitivity to demand when generalized to spatial cognition
in a gaming context. The capacity of frontal theta to act as
a ‘‘generic’’ index of mental effort makes it an appropriate
input to a closed-loop system since games typically use different
elements of cognition at different stages of play. In addition,
frontal theta demonstrated a degree of face validity owing to
the similar pattern of modulation between EEG activity in this
band and subjective motivation. The large effect sizes attest to
the sensitivity of this measure and its capacity to discriminate
between three or more categories of demand as well as detect
the ‘‘tipping point’’ where effort is withdrawn due to overload
(Figure 1).

Alpha power in the upper band, which is associated with task-
specific cognitive processes (Klimesch, 1999), was suppressed as
demand increased from low to high to excessive levels (Figure 4);
a finding supported by a significant body of literature on cortical
activation (e.g., Pfurtscheller, 1992; Gevins et al., 1998; Fournier
et al., 1999; Klimesch, 1999). However, this main effect did
not extend to lower band power (an index of cortical arousal
and alertness), instead an interaction between demand and site
showed that sensitivity of lower alpha band was limited to
occipital and temporal areas. The lessening of power in the

FIGURE 4 | Grand average spectral electroencephalography (EEG)
power at 11.5 Hz (N = 20) for low, high and excessive cognitive
demand on the Tetris game with and without a game based incentive
(spherical spline interpolated; image displays rear of scalp).

upper alpha band, and hence the level of cortical activation,
was maximal during excessive demand despite a reduction
of frontal theta power at this level. This suggests that upper
alpha reflected the objective level of task demand upon spatial
cognition (e.g., the processing of high numbers of fast moving
stimuli in the form of falling Tetris blocks) whereas frontal
theta represented the level of effort mobilization in the face of
excessive demand (i.e., a withdrawal of effort). These findings
suggested that a two-dimensional space could be created akin
to the MIM (Figure 1) wherein demand is represented by upper
alpha power and frontal theta power is used as an index of mental
effort.

The sensitivity of the alpha band was found to vary
across recording sites. Upper band effects occurred at frontal,
central and parietal sites which provides some agreement
with other studies linking these cortical areas with mental
rotation—a key cognitive component of Tetris play (e.g.,
Inoue et al., 1998; Yoshino et al., 2000). Conversely, the
effects of demand in the lower alpha band were restricted
to temporal and occipital electrodes. In addition, the lower
band revealed stronger activation in right hemisphere, which
is traditionally associated with spatial tasks (Hellige, 1993),
whereas the upper band indicated bilateral sensitivity to game
demand. This regional variation indicates the importance of
targeting the right cortical sites in order to maximize the
sensitivity of the EEG metrics to the chosen psychological
variables.

The results from the study identified two EEG measures
as suitable inputs to a biocybernetic loop designed to control
an adaptive game of Tetris. Frontal theta was selected to
index mental effort due to its sensitivity to this variable, its
reliability and its specificity (i.e., theta did not respond to
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the incentive+feedback manipulation), The sensor location Fz,
which generally lies at the center of the scalp area associated
with frontal theta augmentation was selected as the recording
site. Power in the upper alpha band (10.5–13 Hz) was selected
to index the level of task cognition; this variable was sensitive
to the objective difficulty of the task and demonstrated a linear
pattern over the three levels of demand in accordance with
subjective workload ratings. There is also strong literature based
support for the involvement of upper alpha band with task
related cognition, including mental rotation (for a review see
Klimesch, 1999). The right parietal site P4 was the chosen
sensor input for the sampling of upper alpha oscillations. A
parietal site was selected because in the first study parietal
sites P3 and P4 detected sensitivity to game demand; central
sites were also responsive but there were concerns that these
would be subject to confounds from motor activity associated
with game play. Although sensitivity was recorded at frontal
sites this was smaller in magnitude than the parietal response
to demand (Table 4). The choice of recording site was also
constrained to the set of sites analyzed in study one i.e., frontal
(F3, F4), temporal (T7, T8), central (C3, C4), parietal (P3,
P4) and occipital (O1, O2) to preserve the validity of the
psychophysiological inference regarding game-related cognition.
Although there was no interaction of demand with hemisphere
in the first study to guide this selection of site, the right
hemisphere electrode P4 was selected on the basis of a robust
association of right hemisphere with spatial cognition (Klimesch,
1999).

To summarize, the selection of the two EEG inputs to the
biocybernetic loop made it possible to operationalize the adapted
MIM (Figure 1) i.e., frontal theta was used to represent effort
and parietal upper alpha to represent game demand (Figure 5).
According to this conceptual model the desirable states of
‘‘zone’’ and ‘‘engagement’’ are associated with high effort while
undesirable states are defined by low effort combined with high
demand (overload) or combined with low demand (boredom).

DEVELOPMENT OF THE REAL-TIME
ADAPTIVE GAMING SYSTEM

The working biocybernetic loop was created from a network
that involved the connection of two PCs; one PC that ran the
adaptive Tetris Software and a second PC that hosted a virtual
instrument (VI) constructed with LabVIEW. Raw EEG data
were transmitted to the VI to be filtered and averaged prior to
transformation into estimates of motivation and workload by
a state classification algorithm. These estimates were defined
in terms of the four states of boredom, engagement, zone and
overload (Figure 5). If the state fell within the undesirable
categories of boredom or overload, a signal would be transmitted
to the adaptive Tetris Software in order to adjust the level of
game demand. The components of this loop are illustrated in
Figure 6.

EEG data was recorded monopolarly from two Ag-AgCl
pin-type active electrodes mounted in a BioSemi head cap
at the locations Fz and P4 (sites determined by the 10–20
system). AC differential amplifiers amplified signals at source

FIGURE 5 | Two dimensional representation of the user state using
EEG measures (cortical activation is inversely proportional to alpha
band power).

FIGURE 6 | Components of the biocybernetic loop.

with continuous digitization at 16,384 Hz and online down
sampling to 512 Hz. No filters were applied online to allow
visual inspection of noise. The EEG signal was filtered using a
Kasier Finite Impulse Response (FIR) of 2–30 Hz then subjected
to a FFT in real time using a 2 s Hanning window. Theta
activity between 4–8 Hz was obtained from the midfrontal
electrode Fz and activity in the upper alpha band (10.5–13 Hz)
was derived from right parietal site P4. The FFT calculated
power spectra for each frequency band to generate total power
values for each measure. These values were then converted to
estimates of workload (upper alpha) and motivation (frontal
theta).

For the operational model to trigger adaptations of game
demand in real-time, it was necessary to select criteria for
adaptation so that the four regions of the user state model
could be defined (Figure 5). To maximize the effectiveness of
adaptation, it was desirable to calibrate the criteria or trigger
levels to individual players to counteract individual variability in
the magnitude of EEG responses to game demand (Gevins et al.,
1998).
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The criteria for triggering adaptations of the Tetris interface
were developed based upon patterns of theta and upper alpha
oscillations that were observed relative to a baseline reading.
Our participants were required to watch a relaxing video clip
(Piferi et al., 2000) in order to establish baseline EEG levels
of frontal theta and (parietal) upper alpha for each participant.
Baselined derivatives of theta and alpha were captured in
5-s windows during subsequent game play. For example, if
frontal theta activity increased or decreased from baseline by
100% in any 5-s window whilst parietal alpha increased or
decreased by 100% then system adaptation may be triggered.
In practice, frontal theta and parietal alpha were assessed
every 5 s as the participant played the adaptive version of
Tetris. If the system detected that frontal theta had decreased
by 100% or more (from baseline) whilst parietal alpha had
increased by 100 or more (from baseline), the player was
assessed to be in a state of boredom (Figure 5). If the
decrease of frontal theta was accompanied by a decrease of
parietal alpha, the player was deemed to be in a state of
overload.

A straightforward strategy for the adaptation of the game
interface was used, i.e., reducing or increasing the drop speed of
the falling Tetris blocks to manipulate game difficulty. Speed was
increased if the player was deemed to be in a state of boredom and
decreased if overload was detected (Figure 5). If neither of those
states were detected by the system, the drop speed of the Tetris
blocks was maintained. This assessment took place in 5-s epochs,
hence the drop speed of the game increased or decreased over a
period of play depending on the relative frequency of ‘‘boredom’’
or ‘‘overload’’ epochs that occurred within that period.

A series of pilot tests were conducted to determine an
appropriate magnitude of the drop speed changes and whether
or not to incorporate feedback of drop speed into the interface.
The outcomes from these tests indicated that small adjustments
without any overt feedback of drop speed were the most
acceptable version of the Tetris interface from a user perspective.
This design corresponded to a covert adaptive strategy where
the adaptive process is expected to produce a gradual impact
rather than an immediate impact on player state. This strategy
was adopted in order to focus the attention of the players on
the game as opposed to the ongoing activity of the biocybernetic
loop.

STUDY TWO: EVALUATION OF THE
BIOCYBERNETIC LOOP

Introduction
A study was conducted to evaluate the adaptive Tetris game with
respect to two questions: (1) does adaptation improve player
experience compared to a manual adjustment of game demand;
and (2) how does varying the reactivity of the biocybernetic
loop (i.e., liberal vs. conservative trigger levels) impact upon
player experience and the behavior of the closed-loop. The first
question contrasts a covert, automated process of adjustment
with a scenario where adjustments of game demand are both
overt and manually instigated by the player. The second question
pertains to the design of the trigger events for adaptation and

how psychophysiological criteria can impact upon the process of
system adaptation and the player experience.

Method
Design
Three types of biocybernetic loop were compared: (a) a
conservative system that produced an upward or downward
adjustment of game demand (i.e., drop speed) when changes
in frontal theta and parietal alpha substantially deviated from
baseline (greater than 200%); (b) a liberal system that adjusted
game demand in response to smaller deviations from baseline
EEG activity (100%); and (c) a moderate system that responded
to moderate changes in EEG (150%). It was anticipated that
the conservative system would be the least reactive and would
respond slowly and only to extreme examples of boredom and
overload. By contrast, the liberal system was expected to make
frequent adjustments and be the most responsive to instances
of boredom/overload. For the fourth system, which operated
under manual control, participants were required to speak aloud
an instruction to increase (‘‘higher’’) or decrease (‘‘lower’’) the
speed of the falling blocks. These adjustments were made in
real-time by an experimenter sitting behind a screen in the
laboratory. Ten participants played each of the four Tetris
games (conservative closed-loop, liberal closed-loop, moderate
closed-loop, manual) for 5 min. The order of presentation of
each system was counterbalanced and participants were given
a 5 min rest break between each game. Every game began
on the slowest speed setting. If the blocks reached the top
of the board and ‘‘game death’’ occurred, the game would
restart with an empty board on the slowest speed setting. The
procedure for the experiment and data collection protocol was
approved by the LJMU University Research Ethics Committee
and the experiment was conducted in accordance with the
recommendations of this same committee.

Participants
Ten volunteers (6 females) participated in the evaluation
session. A repeated measures design was used where each
participant encountered each of the four versions of the system
(conservative/liberal/moderate/manual). All participants were
volunteers who gave their written informed consent prior to data
collection in accordance with the Declaration of Helsinki.

Subjective Measures
Player experience was analyzed using subjective measures of
mood and game immersion. The mood adjective checklist
(UMACL; Matthews et al., 1990) assesses three components
of mood: energetical arousal (EA: tired-alert), tense arousal
(TA: relaxed-tense) and hedonic tone (HT: happy-sad). The
UMACL was administered before and after each game to
allow calculation of the change scores (post- minus pre-game)
for each mood component. Participants also completed the
Immersive Experience Questionnaire (IEQ) designed to capture
the immersive quality of the gaming experience (Jennett et al.,
2008); this scale was administered after each game.
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Measures of System Behavior
Data were obtained in order to quantify the behavior of each
version of the system. This enabled the three versions of the
adaptive closed-loop to be contrasted with one another and an
understanding to be acquired of how they differed from the
manual control system. Three aspects of system behavior were
measured for each system version:

• The mean frequency of increases and decreases in game
demand

• The mean frequency of game deaths/resets (when blocks
reached the top of the board and the game required resetting)

• The average demand level of each game (game difficulty could
vary between 1 and 10 in accordance with the drop speed of
falling blocks)

Results
An ANOVA analysis was conducted on each of the three
measures of system behavior (see Table 5 below for
the descriptive statistics). Each measure (mean freq. of
increases/decreases in demand, mean freq. of game deaths
(resets), average game difficulty) was subjected to a one-
way ANOVA to assess statistical significance. The number
of adjustments to increase task demand was significantly
higher for the conservative system compared to the other
three systems; unsurprisingly, all three biocybernetic systems
exhibited a higher rate of upward adjustment compared to
the manual system (F(3,7) = 79.40, p < 0.01). The analysis of
downward adjustment (to decrease game demand) revealed
that automated decreases of demand occurred more frequency
during games played with the moderate and liberal versions of
the biocybernetic loop (F(3,7) = 18.4, p < 0.01). The analysis
of reset frequency indicated that resets were most common
in the conservative system, however, this increase failed to
reach statistical significance. The analysis of mean demand level
indicated that difficulty was significantly lower for the liberal
system compared to all other systems (F(3,7) = 12.3, p< 0.01).

The impact of system adaptation on the user experience was
assessed using two types of subjective questionnaire; the IEQ
and the UMACL mood adjective checklist. The UMACL was
administered before and after each game session in order for us to
calculate a change score that quantified the changes in the three
components of mood: EA (alert-tired), TA (tense-relax) and HT
(happy-sad). All three components were subjected to a one-way
ANOVA; mean values are displayed in Table 6.

TABLE 5 | Mean values for measures of system adaptation across the four
systems (N = 10).

System Increase Decrease Mean Mean
demand demand reset difficulty level

Conservative 63.6 43.2 1.3 3.8
Moderate 41.7 56.6 0.6 2.4
Liberal 28.6 62.4 0.4 1.9
Manual 9.4 1.7 0.5 3.3

Highest difficulty level = 10; lowest difficulty = 1.

TABLE 6 | Mean values for subjective data: EA, energetic arousal (change
score); TA, tense arousal (change score); HT, hedonic tone (change
score); IEQ, immersion (N = 10).

System EA TA HT IEQ

Conservative 4.3 3.1 0.0 64.7
Moderate 2.0 2.4 −1.9 65.5
Liberal 0.2 1.1 −2.0 66.1
Manual 1.1 0.7 −1.6 73.9

The mean values for the changes in mood indicated some
consistent trends, namely that participants found the game to
be alerting and conducive to tension and negative affect. An
ANOVA analysis of all three mood components revealed a
significant effect for EA (energetic arousal) only (F(3,7) = 5.48,
i.e., p < 0.05), i.e., participants found the experience of playing
the conservative version of the biocybernetic game to be more
alerting compared to the liberal version (p < 0.05). The analysis
of responses to the immersion questionnaire was insignificant,
but a trend was observed that participants found the manual
version of the game to be the most immersive.

Discussion
This evaluation study demonstrated how the reactivity of the
biocybernetic loop affected the performance of the system and
the experience of players.

The analysis of system behavior revealed that the conservative
system provided the greatest level of challenge, i.e., it produced
the highest average level of demand and made the largest
number of adjustments to increase game demand. This skew
towards increased adjustment of demand was mirrored by the
liberal system, which tended to adjust difficulty in the opposite
direction, such that the liberal version produced the lowest
number of game deaths and lowest average level of demand. The
moderate system produced a pattern of upward and downward
adjustments that represented a midpoint between that of the
conservative and liberal systems. As anticipated, the number of
adjustments made manually by participants was lower than the
numbers produced by the biocybernetic loop as they tended to
simply increase the level of difficulty to their preferred level
early in the game without making any subsequent adjustments.
The mean level of difficulty during play on the manual system
(included as benchmark to compare with the adaptive protocols)
provided an indication of the optimal level of demand for
the group (3.3). By contrast the conservative system generally
pushed the players to a higher level of demand (3.8), resulting
in the greatest number of game deaths; the moderate and
liberal systems tended to set difficulty at a lower level than
the manual system on average. Therefore, the three adaptive
systems and their respective triggers tended to either over- or
undershoot the mean level of demand that was preferred by our
participants.

It was noteworthy that the conservative system produced a
large number of upward adjustments in game demand (63.6)
suggesting that this system was detecting boredom via the EEG
(i.e., a 200% decrease in theta and increase in alpha relative to
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baseline; Figure 5). Boredom may have resulted from games
starting on the slowest drop speed setting and the return to
the slowest speed when the game was reset (Table 5). By
contrast, the liberal system produced more downwards than
upwards adjustments even though games started at the easiest
level, meaning on some occasions where the trigger criteria
for a downward adjustment was fulfilled the interface was
unable to slow the speed because the player was already at
the lowest level. The liberal system was also detecting more
player overload than the other two adaptive systems (more
downward adjustments), i.e., the trigger criteria of a 100%
decrease in theta and alpha power relative to baseline were
fulfilled the most frequently (Figure 5). This is surprising in
view of the low levels of demand delivered by the liberal system.
One explanation may be that the EEG indicators of overload
used were incorrect and that simultaneous decreases in alpha
and theta power of around 100% indicate low effort (reduced
frontal theta) combined with low levels of sensory processing
(reduced parietal alpha) instead of overload (Klimesch, 1999).
It may be that deviations of 200% or more are required to
indicate overload where excessive demand leads to a high level
of alpha power suppression, as occurred when demand was
excessive in the first study (Figure 4). This underlines the
importance of not only selecting the best combination of input
measures for the biocybernetic loop, but also of defining accurate
trigger criteria in terms of the relative magnitudes of the input
variables.

It was expected that player experience would be affected by
the different outcomes in system behavior between the four
versions of the system. However, there were few statistically
significant effects on mood and immersion. Alertness was
enhanced under the conservative system relative to the liberal
system but there were no other significant effects. Of the
four systems analyzed the conservative version of the loop
produced the most desirable overall impact on player mood,
i.e., it evinced the greatest increase in arousal and least negative
affect which may be because participants were too challenged
to dwell upon their emotional state. This may be because
the conservative system was the most successful at detecting
boredom and alleviating it with increases in demand. Conversely
ratings of immersion in the game were greatest for the manual
system, which may reflect the impact of taking momentary
breaks from the game to voluntarily control difficulty with
a verbal instruction. Even very short breaks from a task are
known to increase vigilance performance (Ariga and Lleras,
2011) and opportunities for control can increase the intrinsic
motivation for a task (Fisher, 1978). Alternatively, it may be
argued the level of demand during the manual control condition
was optimal for enhancing immersion. The observation that
play on the game increased negative affect under all but
the conservative system was unanticipated and may reflect
the impact of the lower levels of challenge experienced by
participants.

Based upon the results, it would appear that the criteria used
to define the three versions of the biocybernetic loop were too
similar to evince much difference in player experience. It may
be speculated that if players were provided with more time to

experience play upon each version of the system they may have
been better able to differentiate their respective experiences.

The biocybernetic loop employed a straightforward linear
process of calibration to the individual instead of machine
learning algorithms. The rationale for this approach was that
our psychophysiological measures, EEG theta and upper alpha
frequency power, had been validated prior to construction of
the loop—and we wished to preserve the transparency of both
measures and criteria when testing the working loop. However,
there may have been scope to use machine learning during
calibration such that more precise linear models may have been
generated especially for each participant.

The results highlighted a number of questions surrounding
the evaluation of working biocybernetic systems, particularly
with respect to the benchmarking of system performance. In
this study, a manual system was selected as the benchmark
for comparative purposes on the assumption that participants
would tailor gameplay to their personal preference. However,
this comparison was asymmetrical because the locus of system
control for a manual system resided with the user while control
was automated within the biocybernetic loop. This is a significant
factor when comparing player experience across automated and
manual systems since the opportunity for control over a task
(as provided by the manual system) is known to affect the
level of engagement with that task (Fisher, 1978; Wright and
Kirby, 2001). Comparisons with other autonomous systems
may therefore be more informative. For example, benchmarking
against a system that adapts game demand in a random fashion
without an objective rationale, or by using a ‘‘yoked’’ system
where the game responds to the physiology of another individual
(Bailey et al., 2006). Either of these options may have provided
a more parsimonious comparison with the three versions of the
working biocybernetic loop.

GENERAL DISCUSSION

This article has described the process of creating a working
biocybernetic loop whereby hypotheses derived from
experimental work on EEG were first validated in a gaming
context in order to select the input measures for the loop.
Predictions regarding the modulation of EEG frontal theta and
alpha power by variations in the level of cognitive demand
and effort were validated during Tetris play; subsequently an
adaptive game of Tetris was built that used a biocybernetic loop
with the EEG measures tested during the validation stage. Our
development process for this prototype exemplifies the principle
of designing interactive technologies based upon a theory-driven
process of psychophysiological inference (Fairclough, 2009).

The evaluation of autonomous, closed-loop control systems
raises important issues for the development of biocybernetic
adaptation. The relationship between criteria or categories
of psychophysiological activity and the triggering of adaptive
responses at the interface requires careful design. The derivation
of valid input measures and effective categorization of
psychophysiological data in real-time is one stage of this
process. Once a method of categorizing the states of the user
has been defined (Figure 5), these classes must be mapped onto
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appropriate responses at the interface. This mapping reflects
more than a simple linkage between state x and response y;
decisions must be made regarding the frequency and likelihood
of those responses as well as the temporal characteristics and
relative magnitude of the adaptations. As was demonstrated
in the evaluation study, once a working biocybernetic loop
has been constructed, responses may be adjusted to optimize
the user experience, a process that inevitably involves exploring
the interaction between the user and the adaptive response. The
behavior of the biocybernetic loop and the interaction between
user psychophysiology and adaptive control is an object of study
in itself.

Together these two studies provide a potential blueprint
for the development and evaluation of a biocybernetic
loop. However, further research is required to incorporate
psychophysiological theory into the design of physiological
computing systems and to develop an effective methodology for
system evaluation.
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