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Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality

that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy

hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with

a good temporal resolution that is acceptable for brain-computer interface applications.

Researchers have developed several methods in last two decades to extract the neuronal

activation related waveform from the observed fNIRS time series. But still there is no

standard method for analysis of fNIRS data. This article presents a brief review of

existing methodologies to model and analyze the activation signal. The purpose of

this review article is to give a general overview of variety of existing methodologies to

extract useful information from measured fNIRS data including pre-processing steps,

effects of differential path length factor (DPF), variations and attributes of hemodynamic

response function (HRF), extraction of evoked response, removal of physiological

noises, instrumentation, and environmental noises and resting/activation state functional

connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized.

Keywords: hemodynamic response model, physiological noises, functional near-infrared spectroscopy,

differential path length factor, resting-state functional connectivity

INTRODUCTION

Near-infrared spectroscopy (NIRS) is an emerging non-invasive brain-imaging methodology that
utilizes near-infrared (NIR) light of 650–900 nm to determine cerebral oxygenation, blood flow,
and the metabolic status of a localized region of the brain (Saager and Berger, 2008; Yamada
et al., 2009; Khan et al., 2014; Molavi et al., 2014; Santosa et al., 2014; Naseer and Hong, 2015).
Activation in a particular part of the brain causes an increase in the regional cerebral blood flow
(rCBF) (Zhang et al., 2011b; Umeyama and Yamada, 2013; Kopton and Kenning, 2014). The rate
of rCBF increase exceeds that of the regional cerebral oxygen metabolic rate (rCMRO2), which
is the major cause of de-oxy hemoglobin (HbR) decrease in venous blood (Sitaram et al., 2009).
Thus, cortical activation causes an increase in total hemoglobin (HbT) and oxy-hemoglobin (HbO),
with a corresponding decrease in HbR. The absorption of NIR light changes with changes in
the concentration of HbO and HbR during activation and rest periods. The attenuation of NIR
light due to the absorption change reflects, according to the modified-Beer Lambert law (MBLL),
the concentrations of HbO and HbR. Among neuro-imaging modalities, functional near-infrared
spectroscopy (fNIRS)’s simplicity, portability, low cost, good temporal resolution (suitable for real-
time imaging), and high signal-to-noise ratio make it a favorable option (Hu et al., 2013; Chang
et al., 2014; Herff et al., 2014). fNIRS also has been considered as a potential multi-modality imaging
methodology (Yunjie and Blaise, 2012). One disadvantage of fNIRS, however, is its low penetration
depth. Details on the pros and cones of fNIRS can be found in Gervain et al. (2011), Barati et al.
(2013), and Tak and Ye (2013).
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The increase in HbR at particular area of brain is an indicator
of the neuronal activity in nearby area. The detection of the
neuronal activation in a particular cortical area is nothing
but extraction of a specific waveform in the hemodynamic
response (HR) (Ciftçi et al., 2008). In past, the canonical
hemodynamic response function (cHRF) is frequently be used
as desired impulse response in hemodynamic signal. Of course,
it could vary in its shape, time to peak, relaxation time, and
full width half maximum (FWHM). These variation in the
characteristics of HRF are observed in different brain areas,
among subjects and on repetition of trials. Such variations in
the attributes of cHRF measured by fNIRS, has been observed
in HbO concentration changes (Hong and Nugyen, 2014). The
major cause of this phenomenon is the brain’s continuous
consciously/unconsciously processing for several tasks at the
same instant of time. Even if the subject is instructed to relax and
sit comfortably during an experiment, the brain consciously or
unconsciously processes formany past, present and future events.
Several studies have reported such findings during the analysis of
fNIRS data. The difference in the dynamical shape of HRF during
event-related motor and visual paradigms revealed that the peak
times of HbO, HbR, and total hemoglobin (HbT) for visual
paradigm are approximately equal unlike for motor paradigm
(Jasdzewski et al., 2003). An additional source of such variations
in hemodynamic signal measured through fNIRS, could also be
as a result of certain artifacts (Yamada et al., 2009; Umeyama and
Yamada, 2013). The artifacts could be related to instrumentation
noise, not proper fixation of NIRS optodes, and motion of
subjects likewise body tilt, breathing hold, and head nodding
etc. (Yamada et al., 2009; Robertson et al., 2010; Umeyama and
Yamada, 2013). Among these considerations, there is another
factor that can affect the shape of HRF. This factor is known as
differential path length factor (DPF). It determines the additional
distance traveled by light photon due to scattered behavior of
brain tissues. It is found that the wavelength dependent DPF and
age can also affect the characteristics of HR (Duncan et al., 1996).
A mismatch between these features could result as a decrease in
the detection performance (Ciftçi et al., 2008).

Additionally, NIRS signals include physiological noises
associated with heart beats, respiration rhythms and low-
frequency fluctuations. A special algorithm that not only
to suppress physiological signals present in optical signals,
measured through fNIRS, but also other unwanted (activation
not related to experimental paradigm) signals due to continuous
brain processing, therefore is required. In fNIRS signal analysis,
most of studies have been reported in relation with reduction of
physiological and instrumentation noises or to extract neuronal
activation related waveform. But recent research in this field has
also been turned toward the analysis of functional connectivity
of brain regions during resting states (Lu et al., 2010; Hu et al.,
2013). Additionally, does this resting state connection stays
during task periods of a particular region (Zhang et al., 2011b;
Hu et al., 2012, 2013)? Until now fNIRS has a limitation that
NIRS optodes cannot cover full skull at once to study/analyze
complete functional connectivity (Lu et al., 2010). Figure 1

summarizes different subfields in the area of fNIRS signal analysis
for development of a standard methodology.

BRAIN OPTICAL SIGNAL

Data Acquisition and Pre-Processing
In recent years, different types of NIRS imaging systems
have been developed, which can be grouped into continuous
wave (CW), frequency domain (FD), and time-resolved (TR)
categories. CW-fNIRS instrument measures the concentration
changes of HbO, HbR, and total hemoglobin with assumption
that scattering remains constant, while FD-fNIRS and TD-fNIRS
detects the absolute concentrations of HbO and HbR. TD-
fNIRS is based on the principle of time of flight measurement
and the most expensive instrument. The central differentiating
element among these instruments is the estimation of the path
length traveled by the photon due to scattering. The CW system,
the least expensive, provides relative-change information in the
forms of the concentrations of HbO and HbR, and was the
version utilized most frequently. Figure 2 shows the geometry of
fNIRS signal acquisition.

The transportation of light photon through tissue is a complex
process. When photon of different wavelengths incident on
tissues, the characteristics of the detected light depends upon the
combination of scattering, absorption, and reflection (Cope and
Delpy, 1988). It can bemodeled using themodified Beer-Lambert
law given as

Io(λ) = Iin(λ)e
−µa(λ)dDPF(λ)+G(λ) (1)

where Iin(λ), Io(λ) are the incident and the detected light
respectively, µa(λ) is the absorption, d is the source detector
separation, DPF(λ) is the DPF, and G(λ) is the geometry-
dependent parameter. The first step to express chromophore
changes from optical signal is to find the optical density (OD)
defined as (Cope and Delpy, 1988; Duncan et al., 1996; Kamran
and Hong, 2014)

OD = ln(
Iin(λ)

Io(λ)
) = µa(λ)dDPF(λ)+ G(λ) (2)

or

1OD = 1µa(λ)dDPF(λ)+ G(λ) (3)

Considering two chromophores, i.e., HbO and HbR and
assuming the phenomenon of scattering to be constant,

1ODλi = (ε
λi

HbO
1HbO+ ε

λi

HbR
1HbR)dDPF(λi)+ G (4)

whereλi is the wavelength of the incident light and ε
λi

HbO
and ε

λi

HbR
are the extinction coefficients of HbO and HbR, respectively. By
considering two different wavelength of light, the above equation
could be rearranged as follows (Ye et al., 2009; Kamran andHong,
2013; Santosa et al., 2013)

1HbOi(k) =
(ελ1

HbO
1ODλ2 (k)
DPFλ2

)− (ελ2
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, (5)
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HbO
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DPFλ1

)− (ελ1
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, (6)
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FIGURE 1 | Stages of fNIRS signal analysis.

where 1HbRi(k) and 1HbRi(k) are relative concentration
changes of HbO and HbR respectively, k is the discrete time,
i represents the ith-channel of emitter-detector pair, λ1 and
λ2 represent two different wavelengths, ε

λ1

HbO
, ε

λ1

HbR
, ε

λ2

HbO
, and

ε
λ2

HbR
indicates the extinction coefficients of HbO and HbR at

two different wavelengths respectively, 1ODλj (k) is the optical
density variation at kth-sample time at particular wavelength
(j = 1, 2), di is the source-detector separation and DPFλj is the
DPF at particular wavelength (j = 1, 2).

HEMODYNAMIC RESPONSE ANALYSIS

Effects of Differential Path Length Factor
The scattering behavior of human brain tissue to NIR light entails
that DPF is required to correct the reading observed through
fNIRS. Initially it was in practice to use DPF value between 3
and 6. Later, time of flight methodology or intensity modulated
spectroscopy were used to estimate the values of DPF. Duncan
et al. (1995) found the DPF values for adult heads for four
different wavelengths in a population of 100 (50 males and 50
females) subjects. It was found that the value of DPF are 6.51 ±

1.13, 6.53 ± 0.99, 6.26 ± 0.88, and 5.86 ± 0.98 for 690, 744, 807,
and 832 nm, respectively. The magnitude of the DPF determines
the magnitude of the calculated concentration changes (Kohl
et al., 1998). Therefore, DPF has an important role for any
instrument claiming accurate measurement of chromophores
changes. Kohl et al. (1998) has used the key idea that DPF is
proportional to the rate of change of absorbance with respect to
absorption. Thus, they found wavelength dependent DPF by the

ratio that rate of change of absorbance to the absorption spectrum
of arterial blood. Duncan et al. (1996) analyzed 283 subjects (age
between 1 day and 50 years) and developed equations to express
DPF values as a function of age at different wavelengths. Their
results summarizes the DPF values for four different wavelengths
as under;

DPF690 = 5.38 + 0.049∗(A0.877), (7)

DPF744 = 5.11 + 0.106∗(A0.723), (8)

DPF807 = 4.99+ 0.067∗(A0.814), (9)

DPF832 = 4.67+ 0.062∗(A0.819). (10)

But CW-NIRS systems could be used for different wavelengths
for their equipment, thus a general equation was the requirement
that could be used for any wavelength and for any age. Schroeter
et al. (2003) analyzed fNIRS data from 14 young (23.9± 3.1 years
old) and 14 elderly (65.1± 3.1) subjects and suggested that DPF is
not only effected by age but also with different brain regions. They
concluded that the hemodynamic response can be decreased by
age in the frontal association cortex during functional activation
and proposed to calculate effect size to analyze age-related effects
in fNIRS studies. Scholkmann andWolf (2013) realized this need
and fitted a polynomial of degree three on the available data set
for the values of DPF. They represented DPF as a function of
wavelength and age as under

DPF(λ, A) = α + βAŴ + δλ3 + ελ2 + ςλ. (11)

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2016 | Volume 10 | Article 261

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kamran et al. A Review of fNIRS Cortical Signal Analysis

FIGURE 2 | The geometry of fNIRS signal acquisition.

The values of the unknown parameters were found by using
Levenberg-Marquardt algorithm (LMA) and least absolute
residuals (LAR). There results suggested that

DPF(λ,A) = 223.3+ 0.05624 A0.8493 − 5.723∗10−7λ3

+ 0.001245λ2 − 0.9025λ. (12)

The above equation is a generalized form of DPF correction
depending upon age and wavelength. This equation is
advantageous to use for any researcher because any one
can easily evaluate the DPF value at any wavelength and age. The
published articles presenting the values of DPF for different age
and wavelengths have been summarized in Table 1.

Variations in HRF Pattern
The neural activation indication, measured through fNIRS,
may be confounded with individual anatomical or systemic
physiological sources of variance (Heinzel et al., 2013). Generally,
inter-subject variability is due to the individual’s differences in
anatomical factors likewise skull and cerebrospinal fluid (CSF)
structure, vessels distributions, and the ratios of the arteries and
veins. Barati et al. (2013) observed that the variability in the
stimulus condition for HbO was revealed in the slope, amplitude,
and timing of the peak response. Jasdzewski et al. (2003) analyzed
the difference in the dynamical shape of HRF during event-
related motor and visual paradigms. Their results revealed that
the peak times of HbO, HbR, and total hemoglobin (HbT)
for visual paradigm are approximately equal unlike for motor
paradigm (Jasdzewski et al., 2003). Additionally, their results have

been analyzed for different values of source-detector separation.
But if the source-detector separation is greater than 3 cm than the
results are not much affected by DPF values (Duncan et al., 1996).
Power et al. (2012) analyzed two very important questions: (1)
is it possible to distinguish activation task from baseline or from
other tasks? And if so (2) are the spatiotemporal characteristics of
the response consistent across sessions? Their results concluded
that the mental arithmetic tasks can be distinguished from base
line but the characteristics of the response changes from session
to session. Hong and Nugyen (2014) analyzed 19 subjects to
conclude variations in the impulse responses at three different
brain regions, somatosensory cortex (SC), motor cortex (MC),
and visual cortex (VC). Their findings suggest that the activation-
and the undershoot-peak of the HbO inMC are higher than those
in SC and VC. Additionally, the time-to-peaks of the HbO in
three brain regions are almost the same (about 6.76 76 ± 0.2 s)
and the time to undershoot peak in VC is the largest among three.

Constrained Basis Set
The detection of cortical activation related waveform from
neuroimaging discrete signal is nothing but a search for a
consistent and specific wave pattern (Koray et al., 2008). This
is equaling to fit the measured signal to a known waveform
up to certain accuracy. A mismatch of such fitting might lead
to misleading results. The cHRF attributes includes magnitude
of initial dip, time to the first peak, time to the undershoot,
magnitude of the undershoot etc. In literature, cHRF consisting
of two gamma functions have been used most frequently. In
which, first peak is to tackle the main response and second peak
is for undershoot after the response. Likewise fNIRS, functional
magnetic resonance imaging (fMRI) modeling requires flexible
HRF modeling, with the HRF being allowed to vary spatially,
on repetition of trials and between subjects (Woolrich et al.,
2004). Thus, a Bayesian constrained frame work is described in
Woolrich et al. (2004) to best choose the HRF in the measured
data. Koray et al. (2008) proposed constraint GLM model
parameters such as main response (time to first peak) must be
within 3–8 s, not more than one positive peak, not more than
two dips, initial dip magnitude must be lesser than quarter of
the magnitude of onset, an undershoot after 2–8 s of time to peak
and magnitude of post stimulus undershoot must be lesser than
half of the magnitude of onset. A 3D volume of parameter values
of the canonical basis set then supposed as prior distribution
in the Bayesian analysis. Finally, Gibbs sampling in this volume
is used to find out the parameter of interest. This method is
advantageous as it tries to constraint the basis set with possible
reduction in solution space. The solution space is reduced on the
basis of HRF physical properties reported in fMRI data in past.

Extraction of Evoked-Response
Jobsis (1977) was the first to present an idea that there is a
possibility to detect changes of cortical oxygen using NIR light.
Later, Cope and Delpy (1988) designed an NIR system with
four different wavelengths (778, 813, 867, and 904 nm). It is
well-known fact that the neuronal activity generates an early
de-oxygenation in a particular area of the brain from where the
activity is started. The characteristics of HRF include an early
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TABLE 1 | The published references for DPF values.

References Cortex Subjects Age Wavelengths S-D separation

van der Zee et al., 1992 Temporal frontal 10 adults, 10 Infants 22∼54 Y 761 nm 2.5 cm

Duncan et al., 1995 Left forehead 100 adults, 35 Infants 21∼ 9 Y and Infants 690, 744, 807, 832 nm >4 cm

Duncan et al., 1996 Left forehead 283 1 day ∼50 Y 690, 744, 807, 832 nm 4.5 cm

Cooper et al., 1996 Temporal frontal 19 23∼38 weeks 730 and 830 nm 4.9 cm

Kohl et al., 1998 Right occipital 10 23∼40 Y 700–1000 nm 3cm

Scholkmann and Wolf, 2013 NA NA Applicable to all Applicable to any NA

rise after 1–2 s of stimulation and reaches to peak around 5–
6 s. Finally, it starts to drop down and reaches a base line level
after having a slight undershoot. The total duration of HRF
for impulse stimulation is around 26–30 s. Friston et al. (1994)
introduced the statistical parameter mapping (SPM) software for
fMRI signal analysis, modeling the oxygen dependent signal as
linear combination of two Gamma functions.

This two Gamma function model is most frequently used
to account the first peak and final undershoot of the oxygen
dependent waveform. Figure 3 displays two Gamma functions
(on left side of Figure 3) and final cHRF by employing their linear
combinations (right side of Figure 3). The standard values to
generate the shape of cHRF are given in SPM (Friston et al., 1994,
1998). The mathematical form to generate this type of HRF is
described below

HRF(k) = h(k) ∗ u(k), (13)

h(k) =

[

kα1−1βα1
1
e−β1k

Ŵ(α1)
−

kα2−1βα2
2
e−β2k

6Ŵ(α2)

]

(14)

where u is the experimental paradigm, h represents the cHRF, α1
is the delay of response, α2 is the delay of the undershoot, β1 is the
dispersion of the response, β2 is the dispersion of the undershoot
and Ŵ represents the Gamma distribution. Boynton et al. (1996)
presented the idea to model neuronal related fNIRS waveform by
employing only one Gamma function with two free parameters.

In contrast with fMRI, fNIRS observed signal is contaminated
with several physiological noises. In most of studies, such
signals are filtered out in pre-processing steps with known cutoff
frequencies. But, Prince et al. (2003) modeled such signals as a
linear combination of different sinusoids. In past several studies
have modeled HRF using the model presented in Equations (13)
and (14) in GLM based analysis framework. Jasdzewski et al.
(2003) analyzed impulse response attributes in the form of a
linear model. Later, Koh et al. (2007) introduced a functional
optical signal analysis (fOSA) software based upon the GLM
methodology. Plichta et al. (2006, 2007) presented the functional
brain maps of visual cortex by employing GLM methodology
with ordinary least square estimation (OLSE) to extract the values
of activity strength parameters. Taga et al. (2007) analyzed the
effects of source-detector separation to extract neuronal activity
related fNIRS signal. Koray et al. (2008) estimated HRF by
fitting constrained parameters of cHRF in Bayesian framework.
NIRS-SPM (Ye et al., 2009) is the extension of SPM (Friston

et al., 1994, 1998), frequently been used in fMRI analysis. This
software package has employed the concept of GLM with known
regressors to decompose the measured NIRS time series. The
brain signal model could be represented mathematically in the
form of known n-regressors,

yi(k) = x1(k)β1 + x1(k)β2 + · · · + xn(k)βn. (15)

The GLM methodology has been employed quite frequently
while analyzing the fMRI time series. For this purpose, a basis
set including predicted HRF (pHRF) and a base line correction is
been used. Furthermore, the temporal and dispersion derivatives
have been added to tackle the temporal and spatial effects
in HRF (Friston et al., 1994, 1998). Likewise fMRI, fNIRS
instrument monitors the concentration changes of HbO/HbR,
thus an identical regression vector with fMRI is used in optical
signal analysis. But fNIRS time series has additional challenges
of existence of physiological signals in the measured waveform.
Thus, Abdelnour and Huppert (2009) described the basis set as
linear combination of pHRF, a base line correction and three
sinusoids for physiological signals. Hu et al. (2010), supposed
regression vector to be a combination of five components;
pHRF, a baseline correction and remaining three forms a set
of high pass filter with cut-off frequency 0.0006Hz. Zhang
et al. (2011b, 2012) introduced the use of recursive algorithms
for better extraction of neuronal related concentration changes
in observed fNIRS data. Aqil et al. (2012a) supposed fNIRS
signal in a standard GLM framework with estimation of activity
strength parameters using recursive algorithm. They modeled
the fNIRS time series as a linear combination of pHRF, first
derivative of pHRF (temporal derivative), second order derivative
of pHRF (dispersion derivative) and a base line correction.
Kamran and Hong (2013) has modified the method and analyzed
the measured optical data in the form of linear parameter varying
approach with a recursive technique that can estimate activity
strength parameters in a Lagrangian framework. Scarpa et al.
(2013) presented the idea to consider a reference channel with
a source-detector separation of <0.7 cm. This reference channel
contains only the physiological signals and useful component
from nearby channel could be extracted by subtracting the
data measured through reference channel. Later, Kamran and
Hong (2014) modeled cortical signal in the form of auto-
regressive moving average with exogenous signal (ARMAX). The
physiological signal have been considered as a known amplitude
and frequencies and variation in HRF is modeled by employing
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FIGURE 3 | Canonical hemodynamic response function (cHRF).

ARMAmodel. Hong and Nugyen (2014) has used the same basis
set as described in Aqil et al. (2012b) to model impulse response
as a state-space model.

Independent component analysis (ICA) is a powerful blind
signal processing technique (Katura et al., 2008). It can extract
independent components frommeasured discrete series by using
statistical concepts. Morren et al. (2004) analyzed and detected
fast neuronal signal with a source-detector separation of 3 cm
using ICA technique. Zhang et al. (2013) has employed ICA
methodology to explore the existence of particular wave form,
modeled as Gamma variants. Similarly, Santosa et al. (2013) has
used ICA to extract the pHRF from regression vector including
pHRF, a baseline correction and physiological noises. NIRS data
analysis is performed in medical field as well for detection of
different brain diseases. Machado et al. (2011) have used the
GLM methodology to estimate the existence of hemodynamic
responses to epileptic activity. As a general comparison, the
most of above methods could be analyzed on the basis of
computational cost. For example, ICA needsmore computational
cost as compared to ordinary/recursive least squares estimation
algorithm for unknown parameter estimation. Initial dip is an
important and most crucial attribute and indicator of neuronal
activity. It gives the idea of a particular location which is involved
in originating the said activity. Thus, using Gamma functions
as basis set could be more advantageous if the factor of initial
dip is added and analyzed. Table 2 summarizes the list of studies
describing methodologies to extract the neuronal activity related
wave pattern from fNIRS signal.

HRF Model Using State-Space Model
fNIRS measured time series is a discrete data series that could
be converted into state-space model for further analysis. Aqil
et al. (2012b) summarizes the state space model of optical
time series using standard subspace-based approach, but the
numeric values of final matrices were not been displayed. The
brain model used in their work is similar with Aqil et al.
(2012a). Later, Hong and Nugyen (2014) converted fNIRS
cortical signal model (same as Aqil et al., 2012a) into state-
space model by using standard subspace based approach. They
have summarized the mathematical derivation as well and finally

they used built in Matlab function to extract final state-space
model and matrices of order six. They have also summarized the
numeric values of finalized matrices for different brain regions
as well. Kamran and Hong (2013) presented the idea that linear
parameter varying model could be beneficial to tackle the time
varying characteristics of the human brain signal. In their work,
the measured optical data is modeled as a state-space model
whose matrices are dependent upon time varying parameter.
But a final state-space model has not been reported in their
work. Modeling using state space methods could be beneficial
over other estimation methodologies with recursive algorithms
because the analysis in state space model would be much easier
if a model is developed that can cater the attributes of HRF as
variable parameters.

Physiological Noises
fNIRS data analysis incorporates an additional challenge
of temporal correlation presented in the data due to the
physiological signals. The physiological noises includes cardiac
beat, respiration rhythm and low frequency fluctuations known
as Mayer waves. In most of studies, the physiological signals are
pre-filtered by using standard signal filtering techniques. Prince
et al. (2003) has presented the idea to model the biological
signals as a set of sinusoids. Zhang et al. (2007) has proposed
to nullify the effects of global interferences by using multi-
separation probe configuration (placing a detector close to the
source) and adaptive filtering. Abdelnour and Huppert (2009)
included physiological signals as known regressors in their
regression set. Hu et al. (2010) have added a set of high pass
filter with cut-off frequency 0.0006Hz to tackle the physiological
signals. Zhang et al. (2011b) analyzed multi-distant source-
detector separation further by decomposing short distance
source-detector measurement into intrinsic mode functions
(IMFs). An estimate of global interference is derived by analyzing
weight coefficients of IMFs. Cooper et al. (2012) has analyzed
the simultaneous fNIRS and fMRI recordings to reduce the
physiological effects. They calculated the variance of the residual
error in a GLM of the base line fMRI signal and the observed
variance is reduced by incorporating NIRS signal in the model.
Zhang et al. (2012) presented to remove physiological effects
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TABLE 2 | Signal processing methodologies for extraction of evoked-hemodynamic response.

References Methodological details

Jobsis, 1977 Possibility to detect changes of cortical oxygen using NIR light.

Cope and Delpy, 1988 Design of NIR system with four wavelengths (778, 813, 867, and 904 nm) with applying modified Beer-Lambert law for data conversion.

Friston et al., 1994 Statistical parameter mapping software for fMRI but later used for fNIRS data analysis with modifications.

Boynton et al., 1996 HRF model with one Gamma function with two free parameters.

Prince et al., 2003 Biological signals modeled as sum of sinusoids.

Jasdzewski et al., 2003 Impulse response, initial dip, and time to peak analysis in fNIRS signal.

Koh et al., 2007 A software functional optical signal analysis (FOSA) was introduced based on GLM methodology.

Plichta et al., 2006, 2007 GLM methodology with ordinary least square estimation to generate functional maps of visual cortex.

Taga et al., 2007 Analysis of effect of source-detector separation to fNIRS hemodynamic response.

Koray et al., 2008 Estimation of constrained HRF parameters in Bayesian frame work.

Abdelnour and Huppert, 2009 GLM based methodology with Kalman filter to estimate handedness.

Ye et al., 2009 GLM based NIRS-SPM software package for analysis of fNIRS data.

Hu et al., 2010 Brain functional maps by using GLM and Kalman filtering.

Zhang et al., 2011b Recursive least squares (RLS)-empirical mode decomposition for noise reduction.

Zhang et al., 2012 RLS estimation with forgetting factor to remove physiological noise.

Aqil et al., 2012a GLM and RLSE for estimation of brain functional maps.

Aqil et al., 2012b Generation of cHRF using state-space approach.

Scarpa et al., 2013 Reference channel based methodology for estimation of evoked-response

Santosa et al., 2013 ICA methodology to estimate pre-defined cortical activation signal.

Kamran and Hong, 2014 Linear parameter varying model and adaptive filtering to estimate HRF and functional maps of brain.

Barati et al., 2013 Principle component analysis to continuous fNIRS data (using spline method).

Kamran and Hong, 2014 Auto-regressive moving average model with exogenous signal (ARMAX) model for cortical activation estimation.

Hong and Nugyen, 2014 State-space model for impulse response using fNIRS.

from simulated fNIRS data set of near and far detectors
using recursive algorithm. Yamada et al. (2012) proposed that
functional and systemic responses could be separated on the
basis of a negative and positive linear relationship between HbO
and HbR changes of the functional and the systemic signals.
Later, Kirilina et al. (2012) included an additional predictor to
account for systemic changes in the skin to analyze time course,
localization and physiological origin of task related superficial
signals in fNIRS measured data. They found that skin blood
volume depends upon the cortical state. Additionally they found
that origin of the task related systemic signals in fNIRS are co-
localized with veins draining the scalp. Frederick et al. (2012)
generated regressors for systemic blood flow and oxygenation
fluctuation effects by applying a voxel-specific time delay to
concurrently acquired fNIRS-fMRI time series. Kamran and
Hong (2014) added three sinusoids with known frequencies and
amplitudes as exogenous signal in their ARMAX frame work. It
is very important to find out the frequencies and amplitudes of
existing sinusoid in measured data in addition with its origin.
Since, the frequency of experimental paradigm coincident with
physiological noises could result in the generation of harmonics.
Most of the previous studies were using a generic idea regarding
a fixed frequency and amplitude of known sinusoid to cater the
physiological signals in fNIRS data. A recently published Kamran
et al. (2015) is more advantageous estimation algorithm because
it allows the user to estimate the frequency and amplitude of
physiological signals automatically from measured data instead
of using a fix pattern. The studies related to removal of

physiological noises from fNIRS signal have been summarized
in Table 3 describing cortical area, number of subjects, nature of
mental task, methodology used and source-detector separation.

Resting State Functional Connectivity
Human brain generates continuous low frequency fluctuations
during resting state. These low frequency fluctuations could be
used as an informative source to understand the mechanism of
different brain regions. The reason that these fluctuations are
useful because they are correlated with different brain regions.
These findings opened up a newway of thinking to explore a topic
named as resting state functional connectivity (RSFC). There is
no consensus available at the moment to specifically designating
a range of frequencies for resting state low frequency fluctuations
of hemodynamic measured waveform (Fox and Raichle, 2007; Lu
et al., 2010). fMRI studies have reported a high level of inter-
hemispheric correlations in different brain regions (Damoiseaux
et al., 2006; De Luca et al., 2006). White et al. (2009) have
reported their analysis regarding RSFC in motor in visual brain
cortices. They calculated correlations using Pearson correlation
coefficient. Their results suggest inter-hemispheric correlations
exist in both motor and visual networks. Lu et al. (2010) analyzed
the RSFC maps of the sensory motor and the auditory cortices
using seed-based correlation analysis and data driven cluster
analysis during resting state and motor-localizer task sessions.
Their results suggested RSFCs were detected both within the
ipsilateral and between the bilateral sensorimotor seed-regions.
Additionally, it was found that significant correlation exist
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TABLE 3 | Physiological noise estimation and reduction in fNIRS measured signal.

References Cortex Subjects Task Methodology S-D separation

Prince et al., 2003 motor 5 Hand tapping/Rest Stochastic model with extended

Kalman filter

>2 cm

Zhang et al., 2007 Five layer slab model Simulated

data

Block design paradigm Multi-separation probe configuration

and Monte Carlo

1.5∼4.5 cm

Abdelnour and

Huppert, 2009

Motor 3 Finger tapping GLM with Kalman estimator 3.1 cm

Zhang et al., 2011b Five layer slab model Simulated

data

Block design paradigm Multi-distance approach with

empirical mode decomposition

0.1 cm

Zhang et al., 2012 Five layer slab model Simulated

data

Block design paradigm Recursive least square estimation

(RLSE) filtering

0.15∼4.5 cm

Yamada et al., 2012 Primary motor 7 Finger tapping Negative and positive correlation 1∼4 cm

Frederick et al., 2012 Right frontal lobe 6 Resting state Voxel-specific time delay 0.1 and 3 cm

Kamran and Hong,

2014

Motor 6 Finger tapping ARMAX ∼ 2.5 cm

Erdogan et al., 2014 Pre-frontal 18 Mental arithmetic Extended superficial signal regression

method.

2.5 cm

Kirilina et al., 2013 Frontal lobe 15 German words recognition Time-domain fNIRS with wavelet

coherence analysis.

3 cm

Bauernfeind et al.,

2014

Motor cortex 12 Cue-based right hand (RH) and

both feet (FE) motor execution

A common reference method, ICA

and transfer function models

3 cm

Zhang et al., 2013 Five layer slab model Simulated

data

Epoch block Multi-distance probe configuration

and ICA

0.5 and 4.5 cm

Barker et al., 2013 Pre-frontal 22 Resting state Regression analysis using GLM –

Tong et al., 2013 Middle hand and left Big toe 7 Resting state Group ICA 1.5 cm

Santosa et al., 2013 Pre-frontal 8 Arithmetic task ICA with pre-defined regressors 2.2, 2.5, and

4.3 cm

Scarpa et al., 2013 Motor 10 Key pressing with left or right

index finger

Reference channel based noise

removal

1.5 and 3 cm

Kirilina et al., 2012 Pre-frontal 15 Semantic Continuous

performance task

Concurrent fNIRS and fMRI with

Bio-signals

3 cm

Cooper et al., 2012 Frontal and temporal lobe 7 Resting state Variance of residues in GLM for

concurrent fNIRS and fMRI

1 and∼ 3cm

Hu et al., 2010 Motor 5 Finger tapping Kalman filters and GLM 2cm

Scarpa et al., 2010 Parieto-occipital 13 Visual graphics Bayesian filtering 3 cm

Katura et al., 2008 Sensrimotor 30 Finger tapping ICA 3 cm

Saager and Berger,

2008

Left pre-frontal 21 Resting state Multi-detector CW-fNIRS 3.3 cm

Zhang et al., 2005 Sensrimotor 10 Finger movement task Eigen vector based spatial filtering > 3 cm

Cui et al., 2010 Motor 10 Finger tapping with head

motion

Maximization of negative correlation

Haeussinger et al.,

2011

Frontal 24 Working memory Identification of channels with major

extra-cranial signal contributions

within the ipsilateral and between the bilateral temporal auditory
cortices but not between temporal auditory areas. Zhang et al.
(2011a) raised an issue of reliable RSFC maps. They analyzed
test-reset reliability at three different scales; maps cluster and
channel wise at individual and group levels. Their finding suggest
that one should be very careful when interpreting the individual
channel wise RSFC. But individual level and group level RSFC has
excellentmap-/cluster wise reliability. The trial-to-trial variability
(TTV) in fNIRS signal exist even if the experimental procedure
is kept constant. Hu et al. (2013) suggested to reduce TTV
using RSFC information. They concluded that low frequency
fluctuations are significant source of TTV and TTV decreases

after removing the effects of bilateral connectivity. Since, fNIRS
optodes cannot cover whole head surface which makes it difficult
to analyze the RSFCs between all different brain regions (Lu et al.,
2010). One possible way of covering whole skull is to increase the
number of optodes. But this shall affect the temporal resolution
of the equipment.

Environmental and Instrumental
Effects/Artifacts/Noises
fNIRS measured data series includes hemodynamic signal related
to certain artifacts. These artifacts could be related to biological
processes or from outer sources. Instrumental noise is one of
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major external sources whose affect could be reduced/nullify by
proper calibration of the instrument. The other artifacts could
be as a result of not good contact between skull and NIRS
optodes. The uncoupling of optodes and skull is the source of
fluctuations in the detected intensity, leading to uncorrected
results. Thus, it must be insured that optodes and skull have
a proper contact at correct angle. Removal of unnecessary
hair at contact could also improve the quality of the signal.
Another artifact is due the motion (tilt in the body, slight
head moment, and breath holding) of the subject. This motion
cause changes in the blood flow which is a major reason of
fluctuations in the measured hemodynamic response. A crude
way to remove motion artifacts is to average a certain number
of experiments that its effects could be nullified. But for real-
time BCI applications, it is necessary to estimate the actual
contributions of the motion artifacts in single-trial. Yamada et al.
(2009) presented a theoretical analysis of optical signal using
Monte Carlo simulation. They proposed a multi-distant probe
arrangement can reduce/eliminate artifacts in fNIRS measured
data. Later, Robertson et al. (2010) experimented in a co-located
channel configuration to analyze the known motion artifacts
around three axis. They found motion related hemodynamic
signal is detectable at co-located channels but not at unique
channel. Cui et al. (2010) studied the effect of artifacts on fNIRS
data induced by the head motion and they found that oxy-
and deoxy-Hb are generally negatively correlated, head motion
causes the correlation to become more positive. They proposed
a correlation based signal improvement method to maximize
the negative correlation between oxy- and deoxy-Hb signals.
Haeussinger et al. (2011) developed amethod to identify channels
with major extra-cranial signal contributions and subtracted the
average of these channels from all channels to obtain improved
fNIRS signals. Thus, it would be concluded that moment in
different direction caused changes in the absorption of light at
different brain regions.

Statistical Significance and Functional
Maps
fNIRS signal are highly corrupted by several measurement noises
and physiological interferences. Therefore, a careful statistical
analysis is required to extract neuronal-activity related signal
from observed optical data (Tak and Ye, 2013; Kamran and
Hong, 2014). The existence of a particular response HRF(k) in
the measured data is found by a statistical analysis known as t-
test (Hu et al., 2010; Kamran andHong, 2013; Santosa et al., 2013,
2014; Hong and Nugyen, 2014). The basic idea is to test whether
the estimated value of the activity strength parameter is greater or
less than a target value zero with statistically significance (t-value
> tcritical and p < 0.05). Thus, it is equivalent of testing a null
hypothesis Ho with proper statistics i.e.,

Null hypothesis Ho : β1 = 0 (16)
Alternative hypothesis: β1 6= 0.
Finally, t-value could be evaluated as under

tvalue =
β1 − 0

SE(β1)
. (16)

where SE is the standard error of the estimated coefficient.

However, in practical situations while analyzing fNIRS
data, multiple comparison problems are often required to be
addressed. Thus, there is chance that such analysis shall result in
increase of inference error. Therefore, in addition to analyze the
multi-data gathered through fNIRS modality, it is also required
to put necessary checks that each individual data is analyzed with
more care and strong level of evidence so that to reduce inference
error in proceeding steps. For example, in Plichta et al. (2006), the
Bonferroni correction and the Dubey/Armitage–Parmar alpha
boundary were used for statistical inference of activated channels
to estimate the statistical significance of fNIRS response during
task periods. A detailed review on statistical analysis of fNIRS
data could be found in Ye et al. (2009) and Tak and Ye (2013).

Challenges
fNIRS signal is not consistent among subjects, repeated trails
and repetition of experiment even if the conditions are assumed
to be similar. Therefore, the optical signal model constitutes
an additional challenge to the researchers working in this area.
Since, fNIRS time series is a combination of several physiological
signals (Hu et al., 2010). These physiological signals are cardiac
beat (∼ 1Hz), respiratory rhythm (∼ 0.2–0.3Hz) and low
frequency fluctuations (< 0.1Hz) among others. The first step
is to estimate the frequency of particular signal present in the
observed time series. In addition to this, it is also required
to estimate the amplitudes of the signal present in the data.
The next target is to find out the attributes of the HRF. There
are several important characteristics, e.g., initial dip, FWHM,
time to peak, peak height, post stimulus undershoot etc. Thus,
a non-linear model is required to incorporate such attributes.
For instant, two Gamma function model is most attractive
because each Gamma function represents each peak (actual
response and post dip). Furthermore, an iterative non-linear
optimization algorithm is needed to estimate the free parameters
in the model with significant accuracy. Finally, more precise
statistical support is required to state that the estimation in the
model is statistically significant. Another important factor is the
design of experimental paradigm. The frequency in experimental
paradigm must be different from physiological signals to avoid
harmonics. Brain functionality is complex and coupled non-
linear system. The analysis of different brain region’s coupling is
also a fundamental step toward improvement of fNIRS analysis.
Considering the fact that fNIRS optodes cannot cover full skull,
the number of optodes could be increased but it shall reduce the
temporal resolution as well. Thus, an optimal source-detector
separation is needed to establish for significant and maximum
surface analysis.

CONCLUSION

Brain engineering is a multi-disciplinary field with a focus to
extract useful information from cortical signal observed by
neuroimaging equipment. In this article recent advancements
in the analysis of the optical signal observed through fNIRS are
summarized. It is important for new researcher to understand
the importance of pre-processing steps, effects of DPF and
other factors during analysis. The recent conclusion for such
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factor is also presented. Additionally, different methodologies
that have been developed in past to extract the neuronal
activation related waveform (pre-processing steps, effects of
DPF, variations and attributes of hemodynamic response
function (HRF), extraction of evoked response, removal of
physiological noises, instrumentation, and environmental
noises, and resting/activation state functional connectivity),
are summarized. Since systemic, instrumentation, and
environmental noises effect the measured signal and the
analysis. Therefore, reduction/removal of such noises must be
performed carefully. Special consideration must be given for
the selection of experimental paradigm to avoid physiological
harmonics. Several methodologies that have been reported in
past decade for noise removal, have also been summarized here.
It is well-known by fMRI studies that different brain regions
have connections during resting and task periods. Thus, it is
very important to analyze such connections of brain using

fNIRS as well. A brief review of RSFC is also added in this
article.
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