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Malfunctions in the neural circuitry of the basal ganglia (BG), induced by alterations

in the dopaminergic system, are responsible for an array of motor disorders and

milder cognitive issues in Parkinson’s disease (PD). Recently Baston and Ursino (2015a)

presented a new neuroscience mathematical model aimed at exploring the role of basal

ganglia in action selection. The model is biologically inspired and reproduces the main BG

structures and pathways, modeling explicitly both the dopaminergic and the cholinergic

system. The present work aims at interfacing this neurocomputational model with a

compartmental model of levodopa, to propose a general model of medicated Parkinson’s

disease. Levodopa effect on the striatum was simulated with a two-compartment model

of pharmacokinetics in plasma joined with a motor effect compartment. The latter

is characterized by the levodopa removal rate and by a sigmoidal relationship (Hill

law) between concentration and effect. The main parameters of this relationship are

saturation, steepness, and the half-maximum concentration. The effect of levodopa is

then summed to a term representing the endogenous dopamine effect, and is used as

an external input for the neurocomputation model; this allows both the temporal aspects

of medication and the individual patient characteristics to be simulated. The frequency

of alternate tapping is then used as the outcome of the whole model, to simulate

effective clinical scores. Pharmacokinetic-pharmacodynamic modeling was preliminary

performed on data of six patients with Parkinson’s disease (both “stable” and “wearing-

off” responders) after levodopa standardized oral dosing over 4 h. Results show that the

model is able to reproduce the temporal profiles of levodopa in plasma and the finger

tapping frequency in all patients, discriminating between different patterns of levodopa

motor response. The more influential parameters are the Hill coefficient, related with the

slope of the effect sigmoidal relationship, the drug concentration at half-maximum effect,

and the drug removal rate from the effect compartment. The model can be of value to

gain a deeper understanding on the pharmacokinetics and pharmacodynamics of the

medication, and on the way dopamine is exploited in the neural circuitry of the basal

ganglia in patients at different stages of the disease progression.
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INTRODUCTION

One of the main disabling features of Parkinson’s disease
(PD) is bradykinesia, defined as the progressive reduction in
speed and/or amplitude of repetitive actions. Several rating
scales are currently used to assess the clinical severity of PD,
which include also behavioral tasks where the patient performs
repetitive movements. Among the others, the finger tapping
task (Picillo et al., 2016) is one of the simplest, being able
to provide information about the severity of bradykinesia. In
particular, frequency of alternate finger tapping on two separate
keys has been shown to correlate strongly with part III of the
Unified Parkinson’s Disease rating scale (UPDRS III; Fahn and
Elton, 1987), namely with the bradykinesia subscore (Homann
et al., 2000; Taylor Tavares et al., 2005) and to have the
highest sensitivity to discriminate PD patients from the general
population (Pal et al., 2001).

The usefulness of the alternate finger tapping task for specific
PD motor assessment has been proven by evidences showing
correlation with the extent of loss of neurons in the substantia
nigra, assessed in vivo with [18F]-6-fluoro-L-dopa (6-FD) PET
(Pal et al., 2001). The correlation just mentioned is considered
relevant since the substantia nigra is the brain structure of the
basal ganglia (BG) in which the death of dopaminergic neurons
is responsible of the major motor symptoms of the disease.

At present, neither pure causal treatment nor neuroprotective
mechanisms are available for PD. As previously reported
(Contin and Martinelli, 2010) alternate finger tapping test seems
appropriate for the evaluation of levodopa (LD) effects on
bradykinesia, proving to be consistently affected in PD subjects
compared with a control group and a sensitive and reproducible
indicator of drug effect. As the disease advances, the practical
benefits of levodopa are hindered by modifications in drug
kinetic and dynamic mechanisms, resulting in a fluctuating
response during the day. Oral doses of levodopa at first achieve
a “long duration effect” persisting longer than the plasma
half-life of the drug, but with the progression of the disease
the clinical response becomes more dependent upon the rise
and fall of plasma LD concentrations. No differences in LD
pharmacokinetics have been observed in the shift from a “stable”
to a “fluctuating” response to LD doses (Contin et al., 2001).

The relevance of the information provided by the finger
tapping task, and its association with the pattern of the response
to levodopa, is usually assessed with empirical equations, which
assume a non-linear relationship (similar to the Hill law) between
levodopa concentration in the brain and the frequency of tapping
(Sheiner et al., 1979; Contin et al., 2001; Chan et al., 2004).
Of course, this information is incomplete and risks of being
under-utilized if not related with the neural circuitry of the basal
ganglia, directly involved with the disease and responsible for
movement’s initiation and termination. In particular, it is well
known that the response to levodopa affects the balance between
Go (direct) and No Go (indirect) circuitry in the BG (Albin et al.,
1989; Frank, 2005; Schroll and Hamker, 2013) which, in turn,
results in the observed bradykinesia and the appearance of motor
fluctuations. Indeed, the key point to understand the symptoms
of PD, and their temporal deterioration, should be searched in the

relationship between the activity of neurons in the BG (especially
in the striatum) and dopamine (or levodopa) levels in the brain.

Neurocomputational models, inspired by biology, represent
a powerful tool to quantify the main mechanisms involved
in a complex neural system, and to relate behavioral patterns
with the underlying neural circuitry. These models can also
mimic the plastic changes induced by experience (such as the
effect of reward and punishments on synapse potentiation and
depotentiation) and the role of tonic and phasic alterations in
neurotransmitter levels. The past years have seen a richness of
neurocomputational models of the BG, with the emphasis on
different neurophysiological or clinical problems (Frank, 2005;
Wiecki and Frank, 2010; Schroll et al., 2012; Helie et al., 2013).
Recently, we developed a neural model of the BG (Baston and
Ursino, 2015a), which represents a good compromise between
simplicity and accuracy. The model includes the three main
routes operating in the BG circuitry (that is, the direct (Go),
indirect (No Go), and hyperdirect pathways). Furthermore, it
incorporates the role of dopamine (both tonic and phasic, i.e.,
dopamine peaks or dips during reward and punishment), synapse
plasticity, and the role of the cholinergic interneurons (affected by
dopamine levels themselves). Preliminary simulations performed
in conditions of altered dopamine (Baston and Ursino, 2015b)
show that, in the model, the time required to accomplish an
action crucially depends on the tonic dopamine level, in a way
coherent with the present knowledge of PD symptoms. Hence,
we claim this model may be a suitable innovative tool to simulate
bradykinesia (and in particular the tapping frequency) by relating
the neural mechanisms with dopamine/levodopa levels in the
brain.

Accordingly, the aim of this work is to quantify the connection
between levodopa levels and finger tapping performances by
means of biologically inspired models and computer simulations.
In particular, we want to show that the model is even able to
reproduce the qualitatively different finger tapping pattern in
time of PD patients with no motor fluctuations (here referred as
group 1) and PD patients showing motor fluctuations (referred
as group 2). With this objective in mind, the neurocomputational
BG model has been linked with a classic model of levodopa
pharmacokinetics and pharmacodynamics. In particular, the BG
model used has the same structure as the model presented in
Baston and Ursino (2015a) including the main neural structures
(cortex, Go, and NoGo neurons in the striatum, subthalamic
nucleus, globus pallidus pars interna and externa, thalamus)
involved in action selection by the BG. The difference is that
here we assumed only two possible actions to be selected, and
we simulated a dynamic shift between these actions to mimic an
alternate finger tapping task. In other words, the model is used
to perform a dynamic task; conversely, in our previous works,
the model was used to perform a static task, in which just a
single static choice had to be selected. The global model aspires to
simulate the entire chain of mechanisms involved in the patient
behavior, from levodopa administration to the response of motor
cortical neurons.

With the model, we first analyzed how different dopamine
levels may affect the frequency of tapping. Then, we simulated the
temporal patterns of levodopa concentration in plasma and the
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temporal pattern of tapping frequency in six PD patients, during
4 h after levodopa administration.

MATERIALS

Patients
We retrospectively modeled levodopa (LD) test results obtained
from six PD patients referred to the Institute of Neurological
Sciences for therapeutic drug monitoring (TDM; Contin et al.,
2001). Patients had given their written informed consent to
personal data processing for research purposes. These patients
were divided in two groups, on the basis of motor fluctuations:
group 1 included patients without motor fluctuations, and group
2 patients showing motor fluctuations.

Clinical characteristics of patients are reported in Table 1.

Levodopa Kinetic-Dynamic Test
On themorning of TDM the patients received an oral fasting dose
of LD/benserazide (100/25 mg) after a 12 h washout of LD.

Blood venous samples (2ml) for measurements of plasma
LD concentrations were drawn by an indwelling catheter
immediately before the drug dose, at 15min intervals for the
first 90min, then on the half hour up to 3 h after dosing. Blood
specimens were collected and processed for plasma LD analysis
as reported previously (Baruzzi et al., 1986).

Patients’ motor response to the LD test dose was assessed
by the alternate finger tapping test simultaneously with blood
sample collection (Contin et al., 2001) up to 4 h post-dosing.
This test objectively measured the number of times the patient
could alternately tap two buttons 20 cm apart in 60 s with
the most affected hand, using a touch-screen computerized
system. Patients were comfortably seated in an armless chair and
instructed to alternate tap the two touch-sensitive buttons as fast
and as accurately as possible.

Latency to onset of a clinical significant motor response
elicited by the LD test dose is defined as the time to increase in
tapping frequency of ≥15% of baseline values. Duration of the
tapping effect was calculated as the difference between the time to
return to <15% of baseline values and time to onset of response.

For the objective of the present modeling application, patients
were defined “stable” or “wearing-off” responders when no
return or return to baseline tapping performances, respectively,
was observed within the 4 h length of examination.

MODEL DESCRIPTION

The overall model consists of:

(i) a two-compartment description of pharmacokinetics;
(ii) a single compartment effect description, with a non-

linear sigmoidal relationship between concentration and the
effect;

(iii) a neurocomputational model of the basal ganglia, which
converts the effect (dopamine + levodopa) into action
selection. In this particular work, the BG accomplish an
alternate movement of one finger, from which the tapping
frequency is computed.

The relationships between the different parts of the global model
are depicted in Figure 1, and illustrated qualitatively below.
Equations can be found both in the main body of the manuscript
and in the Appendix in Supplementary Material.

Modeling the Levodopa Pharmacokinetics
The kinetics of levodopa was simulated using an approach similar
to that used in former papers (Sheiner et al., 1979; Contin
et al., 2001; Chan et al., 2004). The overall model (subdivided
in a plasma model and an effect compartment) is illustrated in
Figure 2.

A two-compartment model (blocks 1 and 2 in Figure 2)
was adopted to describe plasma levodopa concentration. This
corresponds to the following equations:

V1
dc1

dt
= −

(

k21 + k31 + ke1
)

c1 + k12c2 + i (1)

V2
dc2

dt
= k21c1 − k12c2 (2)

The first represents a central compartment, where levodopa
is administered and plasma concentration is measured. The
second is a peripheral compartment, representing the interaction
between plasma and other body fluids. As shown in Figure 1 and
in the equations, the model contains five parameters: the inter-
compartment rate constants (k12 and k21), the total body rate
constant (ketot = ke1 + k31), and the compartment volumes
(V1 and V2). It is worth noting that, compared with some
previous models (Chan et al., 2004, for instance) we adopted two
different values for the inter-compartment rate constants. This
choice is necessary to obtain good fitting of the measured plasma
concentration values (see Section Results). Assuming the same
rate (i.e., k12 = k21) results in poor fitting of real data.

The parameters describing the levodopa plasma kinetics were
estimated in individual patients by minimizing a least-square
criterion function of the difference between model predictions
and in vivo data of plasma concentration, during 4 h after
levodopa administration. Minimization was achieved using the
Nelder-Mead algorithm (Press et al., 2007), which performs
a direct search in the parameter space and does not require
the computation of gradient. However, in order to reduce the
number of estimated parameters (thus reducing the risk of
overfitting) wemaintainedV1 andV2 at constant values, and only
parameters k12, k21, and ketot were estimated individually. The
fixed values of V1 and V2 were mean values taken from Chan
et al. (2004), who essentially considered a subject with a standard
weight of 70 kg. A personalization on the individual weights may
be adopted in future works; however, we deem this specialization
uninfluential at present, since our aim was to achieve a good
fitting of plasma concentration, to be used for the downstream
effect compartment.

The input to the central compartment, representing the
levodopa administration, was maintained constant during a
certain period, to mimic a progressive oral assimilation.
The duration of this period corresponds to the period in
which the measured plasma levodopa concentration increased
progressively. The constant value was computed so that the
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TABLE 1 | Clinical characteristics of each patient: age [years], Parkinson’s disease symptom duration [years], levodopa therapy duration [years],

anti-parkinsonian cotherapy dose (PRA stands for pramipexole, ROP for ropinirole and RAS for rasagiline) [mg/day], levodopa dose per day [mg/day],

Unified Parkinson’s disease Rating Scale (UPDRS) III scores, Hoehn and Yahr scores.

Group Subject Age Sex PD symptom duration LD therapy duration Anti-PD cotherapy dose LD dose UPDRS III H and Y

1 1 78 m 3 0.5 – 300 11 2

2 59 m 2 0.5 – 200 11 1

3 62 f 3 1 PRA–2.1 400 27 3

2 1 65 m 6 5 PRA–0.26 400 18 2

2 52 f 5 2.5 – 300 21 2

3 56 f 4 3.5 ROP–6.0 RAS–1.0 450 29 2

FIGURE 1 | Block diagram describing the connections between the three sub-models (pharmacokinetics, pharmacodynamics, and basal ganglia)

used in the present simulations.

overall amount of administered levodopa was equal to the
experimental one.

Modeling the Levodopa
Pharmacodynamics
In order to simulate the effect of levodopa on the basal
ganglia, and therefore on the finger tapping response, we
needed to calculate the levodopa concentration in the “effect
compartment.” We used the model proposed by Sheiner et al.
(1979); this model assumes that the drug concentration in plasma
and in the effect compartment tends to become proportional
in steady state conditions (i.e., when all transient phenomena
have exhausted, and all quantities settle at a constant equilibrium
value), and that no levodopa comes back from the effect
compartment to the central one. Hence, thanks to the last
assumption, the effect compartment does not affect the kinetics
of the plasma compartment, provided a single parameter (ketot) is
used to describe total body clearance. As shown in Figure 2, the
effect compartment contains three parameters: k31, ke3, and V3,
which describe the drug absorption from the central to the effect
compartment, the drug removal from the effect compartment,
and the compartment volume, respectively. However, these
parameters are not independent, since a combination of them
produces the same model output. First, only two parameters
actually appears in the equations, i.e., k31/V3 and ke3/V3.
Furthermore, it can be demonstrated that the shape of the c3 (the
concentration of levodopa in the effect compartment) temporal
pattern depends only on the ratio k31/V3. In fact, the general

solution of Equation (3):

V3
dc3

dt
= k31c1 − ke3c3 (3)

can be written as follows (assuming no levodopa in the effect
compartment at the instant t = 0):

c3(t) =
k31

V3

∫ t

0
c1(τ )e

−
ke3

V3
(t−τ )

dτ (4)

Hence, the ratio k31/V3 represents only a proportionality factor
for the previous equation. This can be accounted for by a different
value of parameter Dc50 in the subsequent equation (Hill law,
law, Equation (6)), without affecting the overall fitting procedure.
Therefore, without a loss of generality, we used a fixed value
for the parameter k31/V3 in all trials, and only the remaining
parameter ke3/V3 was assigned individually. This parameter was
estimated, together with the other parameters describing the
pharmacodynamics, by fitting the global model to the finger
tapping frequency values (see below).

Finally, we needed a law describing how the concentration
in the effect compartment (i.e., c3) affected the activity of the
neurons in the striatum. In fact, as described in the sub-section
“Modeling the basal ganglia” below, our neurocomputational
model assumes an input quantity (named D) representing how
dopamine modulates the activity of the Go and NoGo neurons.

First, in order to account for the observed delay between
plasma concentration and the clinical response, we introduced
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FIGURE 2 | Compartment model used to simulate plasma pharmacokinetics (compartments 1 and 2) and the drug effect in the brain (compartment 3).

a pure delay (say T) between the computed concentration in the
effect compartment and its action on the striatum neurons. The
delayed concentration will be named c3delay below. We have:

c3delay (t) = c3 (t − T) (5)

A classic way to describe the binding of amolecule with a receptor
(or a reaction with cooperative effects, where an enzyme can bind
one or more substrate molecules) is the Hill law (Keener and
Sneyd, 2009). We can write:

D = D0 +
Dmaxc

N
3delay

DN
c50 + cN

3delay

(6)

where D0 represents the basal value (i.e., the effect immediately
before the beginning of levodopa administration) and the second
term, with a sigmoidal shape, represents the effect induced by a
levodopa concentration c3, delayed by the time T. Dmax is the
maximum effect that levodopa can produce, Dc50 is the levodopa
concentration which produces 50% of the maximum effect, and
N is the Hill coefficient, which determines the slope of the
concentration-effect relationship.

All the parameters in the previous equation (D0, Dmax,
Dc50, and N) together with the parameter ke3 in the effect
compartment, and the delay T, were assigned to simulate
the tapping frequency values measured on patients during 4 h
after levodopa administration. At present, the estimation was
performed manually, through trial and error adjustments of
the parameters. The reason for this choice is that the tapping
frequency exhibits significant outliers, which preclude a reliable
automatic fitting. An automatic better fitting will be attempted
in future works. Indeed, the aim of this preliminary work was
not to achieve parameter estimation automatically, but rather to
show that the present neurocomputational model of the BG can
simulate the behavior of disparate patients, at different stages of
PD severity.

Modeling the Basal Ganglia
A significant difference of this model compared with previous
ones (for instance, Contin et al., 2001; Chan et al., 2004) is
that Equation (6) was not used to fit the tapping frequency
directly, but is used as an external input for the neural network
model described below. The advantage is that, after parameter
estimation, the model may be used to simulate other tests in the
same patients, or to make additional predictions on the patient

behavior, thus providing a much more flexible interpretation of
the neurological status (see Section Discussion). We are aware
that different parts of the basal ganglia may have different
functions (for instance cognitive in the basal part and motor
in the dorsal part) and that these may be differently damaged
in different patients. Since we simulate a motor test (the finger
tapping) we can assume that the model, and the estimated
parameters, refer to the dorsal portion of the BG.

The specific structure of the network is depicted in
Figure 3A, with further details clarified in Figure 3B. The
detailed description of the BG computational model, including
its equations, is presented in the Appendix in Supplementary
Material. Parameters and synaptic weights of these equations are
reported respectively in Table 4 and Table 5.

Each neuron in the model is represented as a computational
unit, which calculates its activity from the weighted sum of
inputs. The output activity of each neuron is in the range [0,
1], representing a normalized firing rate. In particular, we used a
sigmoidal static relationship to represent the presence of a lower
threshold and upper saturation for neuronal activity, and a first
order low-pass dynamics to mimic the integrative capacity of
neuron membrane.

The model includes a sensory representation (S), which
represents the external context, and the corresponding motor
representation in the cortex (C). This representation considers
several actions in mutual competition, each represented by a
segregated channel. In the previous model version (Baston and
Ursino, 2015a,b) we assumed four actions for simplicity. In the
present work, devoted to a simulation of the alternate finger
tapping test, only two actions are considered and sufficient to
represent the task in an adequate way: tapping down (action
1) and lifting the same finger up while moving it to the other
position (action 2). For this reason, just two different and
segregated action channels are shown in Figure 3A, each coding
for a different alternative choice. Of course, including more
channels, the network can also be used to simulate more complex
alternative choices.

Moreover, the model includes the thalamus (T), the striatum,
functionally divided according to dopamine (DA) receptor
expression (D1: Go or G, D2: NoGo or N), the subthalamic
nucleus (STN), the globus pallidus pars externa (Gpe or E) and
an output part represented by the globus pallidus pars interna
(Gpi or I) and the substantia nigra pars reticulata (SNr) taken
together. This framework implements the three main pathways
(direct, indirect, and hyperdirect; Albin et al., 1989; Nambu
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FIGURE 3 | (A) Graphical representation of the basal ganglia model adapted to reproduce the finger tapping task. Rectangles represent different structures, circles

neurons, arrows projections: green excitatory, red inhibitory, orange lateral inhibition. (B) Effect of dopamine and cholinergic interneuron on Go and NoGo cells in the

model. Arrows projections: green excitatory, red inhibitory.

et al., 2002) used by the BG. In absence of sufficient stimuli,
all actions are inhibited, due to a prevalence of the No Go
pathway on the Go one, which leads to inhibition of the thalamus.
In the presence of a sufficient external stimulus, the cortex
can select a response based on a competition among cortical
neurons. This competition is realized with a winner-takes-all
(WTA) process, implemented via lateral inhibition in the cortex
and a positive feedback from the thalamus. In particular, if the
Go pathway prevails on the No Go within an action channel,
the corresponding neuron in the thalamus is disinhibited, thus
providing an excitatory input to the corresponding cortical
neuron. This positive loopmaintains the winner neuron to a high
level (the action is selected) while the other rival neurons in the
cortex are inhibited.

A simplification in the model consists in the use of the
dopamine effect (D) directly as a modulating input factor,
without explicitly representing the dopaminergic neurons in the
substantia nigra pars compacta, which are responsible for the
release of the dopaminergic neurotransmitter. This choice allows
simple simulations of normal and pathological conditions, in
which dopamine levels can be artificially altered by the disease
or by external intervention. It is worth noting that D does
not represent the real tonic dopamine level, but an input that
modulates the working point of the Go and NoGo neurons in
the striatum. High values of D mean high dopamine effect on
receptors in the striatum. Conversely, low values of D indicate a
poor dopamine effect. Experimental studies show that dopamine
can exert different effects depending on the receptor (Hernández-
López et al., 1997; Hernandez-Lopez et al., 2000). In particular,
the effect of D is different within the striatum, being primarily
excitatory for the Go part and inhibitory for the NoGo part. As a
result, high values of D favor a rapid selection of actions, whereas
low values ofD are associated with a prevalence of the NoGo, and
so with slow or inhibited actions. Furthermore, we also included
a contrast enhancement effect on the Go neurons (Frank, 2005),
i.e., the quantity D is able to excite only the neurons in the Go

pathway with a high excitation, thus further potentiating their
response, but has an inhibitory effect on Go neurons with poor
excitation. This mechanisms further help the WTA dynamics,
accelerating the choice of a winner action.

A novelty of this model, presented for the first time in
Baston and Ursino (2015a), is the description of the cholinergic
pathway. Indeed, dopamine exerts its effect on the striatum not
only directly (i.e., by exciting Go neurons with high activity
and depressing both Go neurons with poor activity and NoGo
neurons) but it also inhibits the cholinergic pathway (see
Figure 3B). The latter, in turn, has an opposite effect on the
striatum, favoring the No Go pathway, and depressing the Go
pathway. Since the cholinergic system is active at rest, and is
inhibited by a dopamine increase, the two mechanisms work in
synergy. In particular, we observed that a change in dopamine
level per se is insufficient to have appropriate responses, without
the potentiation induced by the synergistic cholinergic effect.
A lesion of the cholinergic mechanisms in the model would
reduce the dopaminergic influence, thus resulting in a further
bradykinesia.

Finally, evidences (Schultz, 1998) show that BG are able to
modify their synaptic weights, in particular those entering into
the Go and NoGo striatal neurons. This relies on dopamine
and acetylcholine (Ach) changes. In particular, plasticity occurs
in case of punishment or reward, when phasic changes in
dopamine (a transient peak during rewards; a transient dip
during punishments) induce a synaptic change via Hebbian
mechanisms. A dopamine peak, with the consequent fall in Ach,
further excites the winner Go neurons, and depresses the NoGo
neurons, thus causing Hebbian potentiation of the winning
action and depotentiation of all other actions. The opposite effect
occurs during punishment.

In this study, however, differently from our previous work, we
only test different tonic dopamine levels, avoiding the analysis of
phasic changes and neglecting possible synapse plasticity during
the trials.
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In conclusion, the BG, through the combined action of
the three pathways described above, modulate the inhibition
provided from the Gpi to the thalamus, thus consenting or
blocking the WTA process. Ultimately, it is the imbalance
between the two pathways (Go and No Go), due to different
values of the synapses and of dopamine level, that modulates the
activity of the Gpi. If the Go pathway prevails, the Gpi provides
less inhibition to the corresponding neuron of the thalamus
(i.e., the BG “let go” the response). On the contrary, if the No
Go pathway is more active, the Gpi provides more inhibition
to the thalamus (i.e., the BG “stop” the response). Challenging
situations, characterized by a high conflict among alternative
actions, are managed by the hyperdirect pathway, carried out by
the STN: its role is to provide an overall stop signal to all the
units of the Gpi in order to prevent many simultaneous cortical
winners and let the cortex more time to solve the conflict.

RESULTS

In the first part of this section, we will present some computer
simulations results, to show how the model can simulate the
alternate finger tapping test, and how the pattern of cortical
motor neurons reflects the level of tonic dopamine.

In the second part, we will present the results of
parameter estimation, obtained by fitting the overall model
(pharmacokinetic-pharmacodynamic and neurocomputational)
to the data obtained on six patients.

Simulation of a Finger Tapping Test
Figures 4, 5 show the temporal pattern of activity in the
two cortical motor neurons, during two different simulations.
We assume that the first neuron of the cortex (top panel of
Figures 4, 5) encodes the tapping, i.e., the movement downwards
of the finger in either position, while the activity of the
second neuron of the cortex (bottom panel of Figures 4, 5)
encodes its movement upwards together with the spatial shift.
The first simulation was performed using a high value of D,
typical of an healthy individual. The second was performed
using a low value of the parameter D, typical of a PD
patient.

In our model the external sensory input is used to denote
the action to be selected (1 means that the action is strongly
preferred, 0 no preference for this action). During these
simulations we first presented a stimulus S = [1 0], which means
excitation to the first channel and inhibition to the second. This
provokes the activation of the first channel, inducing the finger
to go down in the first position, preventing at the same time
its movement upwards (deactivation of the second channel).
However, for the movement to initiate, we need the Go pathway
to prevails on the No Go one, to activate the thalamus and to
allow the corresponding cortical neural activity to reach a level
close to 1. In fact, we assumed that an action starts only when the
cortical activity exceeds a given threshold, close to the maximum.
This requires a transient period, clearly evident in Figures 4, 5.

Furthermore, we assumed that, when an action has been
selected, the input stimulus is reversed (in the previous example,
we now provide an input S = [0 1] which excites the second

action channel) to represent that the subject is now trying to
perform the second action, which induces the movement of
the finger upward and the shift toward the second position. A
physiological time delay of 100ms has been included after the
beginning of the first action, to account for the physiological
time necessary to initiate the movement, detect the action and
communicate it to the central neural system. Similarly but
opposite to the previous case, this time the finger has to lift up and
shift, avoiding the tapping down. Again, after a transient period,
the activity of the second neuron of C reaches its action threshold
level, inducing the lifting of the finger and a new reverse of the
input stimuli.

We are aware that simulating the tapping task as a simple
choice between two actions (finger down in either position,
finger up and shift) is a strong simplification. Of course, the
real movements consist of a sequence of simpler movements,
suitably chained. We summarized this chain of movements using
only two macroscopic choices to reduce model complexity to a
minimum. Moreover, with this assumption we are able to fully
reproduce clinical data of the finger tapping task.

The activities of the two neurons of the cortex follow this
iterative pattern, establishing recurring alternate signals.

In Figure 4, parameter D is 0.55 and the frequency of the
neural signals is 2.89Hz (173 taps/min), reflecting the short time
required for the winner neuron to reach the action threshold.

Figure 5 shows the same recurring alternate pattern for
cortical activities, but with a tonic D = 0.22. Now the frequency
of the neural signals is just 1.00Hz (60 taps/min), indicating a
severe stage of bradykinesia. In this last case it is worth noting
the very long time required for the winner neuron to reach the
threshold level that initiates the action: this is the consequence of
the low levels of the input D, which inhibit the Go neurons and
potentiate the NoGo ones.

Iterating the previous procedure several times, i.e.,
establishing a level of tonic D and evaluating the frequency
of the neural activities patterns of the cortex (and so the alternate
finger tapping task), a curve that maps D into the tapping
frequency, and therefore tapping score, can be built.

As it is evident from Figure 6, this curve has a clearmonotonic
trend, with an upper saturation. An increase in D corresponds to
an increase in the tapping frequency, more pronounced for lower
values ofD and nearly negligible for higher values ofD, where the
curve reaches saturation.

In our model, tonic D-values typical of Parkinson’s disease
may be between 0.2 and 0.3; in this range the curve obtained
predicts that the tapping frequency for PD subject should be
between 1 and 2Hz. On the contrary, tonic D-values typical of
healthy subjects in our model are set between 0.4 and 0.5, and the
same curve predicts that the tapping frequency should be around
3Hz. In other words, PD subjects are slower at performing the
finger tapping task. This finding is coherent with the well-known
bradykinesia of PD subjects compared to the normal motor
behavior of healthy subjects (Contin et al., 1990).

Parameter Estimation in PD Patients
As previously specified, the patients were subdivided in two
groups, on the basis of the duration of the tapping response.
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FIGURE 4 | Temporal patterns of neural activities of the first neuron (top panel) and of the second neuron (bottom panel) of the cortex C, when the

dopaminergic input is typical of an healthy subject (frequency f = 2.89Hz (173 taps/min)).

FIGURE 5 | Temporal patterns of neural activities of the first neuron (top panel) and of the second neuron (bottom panel) of the cortex C, with a

dopamine input typical of a PD patient (frequency f = 1.00Hz (60 taps/min)).

Parameters describing the pharmacokinetics (k12, k21, and ketot)
were fitted on the plasma concentration curves, while the other
parameters (ke3/V3, T, D0, Dmax, Dc50, and N) were assigned to
simulate the finger tapping frequency.

The results are shown in Figure 7, for what concerns the three
patients of the first group, and in Figure 8 for the patients of the
second group. The values of all estimated parameters are reported
in Table 2, for what concerns pharmacokinetics, and Table 3, for
what concerns the drug effect.

The model, with a suitable choice of parameters, is able to
simulate the patterns of levodopa concentration in plasma and
the tapping frequency in all patients. Looking at the curves
and at the estimated parameter values, no significant differences
can be found between the two groups for what concerns
the plasma concentration of levodopa. Conversely, significant
differences can be observed in the relationship between the
effect compartment concentration and its effect on the striatal
neurons.
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In particular, the patients in the first group have a much
lower value of the parameter N (as low as 2 for all three)
whereas patients in the second group have much higher
values of N (7 or 8). This means that the relationship
is much steeper for patients in the second group, and
therefore that even a moderate reduction in levodopa

FIGURE 6 | Curve expressing the relationship between the

dopaminergic input, D, and tapping frequency [taps/min] in the

alternate finger tapping task.

concentration can produce a quick reduction of the tapping
frequency.

Another parameter that seems higher in patients of the second
group is Dc50, i.e., the levodopa concentration at half of the
maximum effect. This implies that the effect of levodopa starts
to be reduced at higher level, and higher concentrations values

TABLE 2 | Parameters of the compartmental model obtained using the

Nelder-Mead algorithm for minimization and corresponding cost

functions: k21, k12, and ketot are in [L/min].

Group Subject K21 k12 ketot Fval

1 1 9.11 10.0 0.80 0.376

2 8.7 7.4 1.16 0.113

3 1.07 1.75 0.45 0.448

2 1 3.53 4.50 0.65 0.418

2 1.26 1.77 0.58 0.055

3 1.12 1.57 0.43 0.235

V1 and V2 values were set a priori at 12 L and 32 L, respectively, corresponding to mean

values typical of a 70 kg man, as done by Chan et al. (2004). The last column represents

the criterion function after minimization, i.e., the sum of the square errors.

FIGURE 7 | Results concerning the three patients in the first group (subjects with no motor fluctuations). The first line represents the subject 1, the second

the subject 2, and the third the subject 3. The first column reports the experimental data of plasma levodopa concentration (red dot and dashed line), the

corresponding fitting curve (blue line) and the delayed estimated brain levodopa concentration curve (green line) vs. time. All concentrations are represented in µg/ml.

The second column represents the tapping frequency [taps/min] vs. time [min]. Experimental data are represented with red dots, the fitting curve with a blue line. The

third column represents the tapping frequency [taps/min] plotted vs. brain levodopa concentration [µg/ml]: experimental data are represented with red full points,

estimated values with a blue line.
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FIGURE 8 | Results concerning the three patients in the second group (subjects with no motor fluctuations). The meaning of all the plots, curves, and

symbols is the same as in Figure 7.

TABLE 3 | Parameters of the effect model, i.e., the drug removal rate

ke3/V3, the delay T, and the parameters of the Hill equation tuned in order

to fit the alternate finger tapping frequency pattern in each subject.

Group Subject ke3/V3 T D0 Dmax Dc50 N

1 1 0.01 15 0.29 0.50 0.25 2

2 0.02 0 0.28 0.317 0.03 2

3 0.025 0 0.22 0.305 0.12 2

2 1 0.03 15 0.27 0.304 0.13 7

2 0.02 15 0.279 0.31 0.38 8

3 0.035 0 0.275 0.333 0.20 8

The absorption rate (k31/V3) was maintained at the same value (0.01) for all patients.

ke3/V3 is in [min
−1 ], T is in [min], Dc50 is in [µg/ml], D0, Dmax , and N are dimensionless.

are necessary to obtain a sustained effect. However, differences in
this parameter are less evident between the two groups.

A parameter that seems to have a certain role is also the
drug removal rate from the effect compartment, i.e., ke3/V3.
This parameter is higher in the second group than in the first,
indicating a greater reabsorption rate in more severe PD patients.

It is worth noting that patient 3 in the first group exhibits value
of Dc50 and of ke3/V3 more similar to those of the second group,
suggesting that this patient is borderline between the two groups.

TABLE 4 | Parameter values of the basal ganglia computational model.

The parameters refer to the complete description and equations of the

computational model represented in the Appendix section.

Name Value

τ / τL 24 [ms]/120 [ms]

a 4

u0 1

ϑG 0.3

IE 1

II 3

IH 1.25

α 1

β −1

γ −1

σ 0.1

ϑPRE 0.5

ϑPOST 0.5

DISCUSSION

In recent years, we developed a simple model of action selection
in the basal ganglia, which incorporates the main physiological
mechanisms acting in the BG and represents a good compromise
between simplicity and accuracy (Baston and Ursino, 2015a).
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TABLE 5 | Synaptic values of the basal ganglia computational model. The

synaptic values refer to the complete description and equations of the

computational model represented in the Appendix section.

Name Projection Type Values

L Inhibition Extradiagonal matrix l
ij

i 6= j

= −1.2

WCS Excitation Full matrix wCS
ii

= 1.1; wCS

ij

i 6= j

= 0.2

WCT Excitation Diagonal matrix wCT
ii

= 4

WGC Excitation Diagonal matrix wGC
ii

= 0.48

WGS Excitation Full matrix wGS
ii

= 0.9; wGS

ij

i 6= j

= 0

WNC Excitation Diagonal matrix wNC
ii

= 1.08

WNS Excitation Full matrix wNS
ii

= 0.1; wNS

ij

i 6= j

= 0

WEN Inhibition Diagonal matrix wEN
ii

= −2.2

W IE Inhibition Diagonal matrix wIE
ii

= −3

W IG Inhibition Diagonal matrix wIG
ii

= −12

WTC Excitation Diagonal matrix wTC
ii

= 3

WTI Inhibition Diagonal matrix wTI
ii

= −3

wESTN Excitation Scalar wESTN = 1

wISTN Excitation Scalar wISTN = 14

kE Excitation Scalar kE = 7

WSTNE Inhibition Row vector wSTN
i

= −1

wGH Inhibition Scalar wGH = −1

wNH Excitation Scalar wNH = 1

The most important aspect of that model was the reproduction,
although in a simplified form, of the dopamine effect on
the BG (in particular on the Go and NoGo neurons in the
striatum) taking into account both the basic level (i.e., tonic
dopamine) and phasic changes (peaks and dips during rewards
or punishments). An important novelty was also the inclusion
of the dopamine-acetylcholine balance on the striatum, which
allowed a much better reproduction of the dopamine influence
(especially during a fall in dopamine, potentiated by an excitation
of the cholinergic system).

Previously, other neurocomputational models contributed to
our understanding of both cognitive and motor deficits in PD.
They mainly focused on the notion that reduced dopamine
increases the activity and causes long-term potentiation in the
indirect pathway of the BG, as observed by Wiecki and Frank
(2010). These authors also state that this view can account for
progressive motor degeneration as well as cognitive issues. Frank
(2005) tried to explain cognitive tests results of medicated and
unmedicated PD subjects, and particularly avoidance behavior
in unmedicated PD on both motor and cognitive sides, using a
computational framework (the LEABRA network) that, although
incomplete (the hyperdirect pathway was actually lacking), is able
to provide some explanations on clinical results. In a subsequent
work the same authors included all the three main routes (direct,
indirect, hyperdirect), using the same mathematical approach

(Frank, 2006). The model by Moustafa and Gluck (2011) instead
focused specifically on PD’s issues in a peculiar cognitive task, the
“weather prediction” task, pointing out a key role of prefrontal
cortex dopamine in addition to striatal dopamine in affecting the
action selection process. Stocco et al. (2011) described a model
quite similar to the present, considering general interneurons
as well. PD condition was simulated lesioning dopaminergic
neurons. On the pure motor side, the influence of BG in the
motor program selection functions and dysfunctions has been
investigated by means of a spiking neural model (i.e., detailed
neural description) by Humphries et al. (2006). Schroll et al.
(2014) proposed a completely new viewpoint with respect to the
majority of the computational models in literature, proposing
that the motor impairments and pathway imbalances assessed
in PD might also result from dysfunctional synaptic plasticity
in the BG. In providing evidence of their original position,
they used a detailed mathematical model, faithful to biological
knowledge of BG, and different learning rules according to
different BG structures driving the synaptic plasticity. In the
motor domain, reaching has been studied, being a simple motor
task: Magdoom et al., 2011 provided an original model, deviating
from the classical Go/No Go model of the BG by adding an
intermediate regime called the “explore regime,” used to control
the stochasticity of action selection. PD was simulated reducing
the dopamine level and affecting the indirect pathway.

Compared to other models, our computational model belongs
to the class of those that describe neuron dynamics with more
simple and compact equations, still remaining constrained by
the neurobiological architecture, being able at the same time to
simulate both motor and behavioral aspects. This may contribute
to understanding the nature of the computation performed by
entire brain regions. Hereafter, we will specifically compare our
mathematical implementation, our novelties and results with
previous computational models in literature. Ashby and Crossley
(2011) also introduced cholinergic interneurons, but using a
detailed mathematical approach and interpreting these neurons
only as a “switch” for learning events. Stocco et al. (2011)
considered general interneurons, but did not account for their
differential effect on Go or NoGo neurons of the striatum. In
fact, the authors state that their role is only to release inhibition
on projection neurons when proper cortical inputs are detected,
thus allowing the incoming cortical signals to be processed. Other
models (Frank, 2006; Wiecki and Frank, 2010; Cavanagh et al.,
2011) share some similarities with the present one, especially
in the physiological knowledge incorporated, but use different
mathematical representations. The main differences are observed
between our model and the model by Magdoom et al. (2011),
which uses a much more simplified view of the basal ganglia
and network structure, recalling more of an actor-critic model.
Other relevant models lack some BG pathways and/or structures,
compared with ours (Frank, 2005; Moustafa and Gluck, 2011;
Stocco et al., 2011; Schroll et al., 2012).

Going back to our model, previous preliminary simulations
(Baston and Ursino, 2015b) endorsed the potential usefulness of
the model in the study of PD patients, for whom the relationship
between dopamine level and action selection in the BG plays
a crucial role. In particular, we showed that a reduction in
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dopamine levels induces a slowdown in the action time (Baston
and Ursino, 2015b). A subsequent necessary step toward model
application is now to test its behavior on real data, to verify the
capability to reproduce effective responses in PD patients with
different chronic levels, and to point out the relationships with
the underlying neural circuitry.

Accordingly, the objective of this work was to simulate patient
responses during a simple test (the alternate finger tapping)
routinely used in the clinical practice. Hence, a simple BG model
with only two action channels seemed suitable to grasp the main
aspects of the test.

The first simulations, performed by varying the tonic
dopaminergic input from a normal level to a level leading
to severe bradykinesia (Figures 4–6), confirmed the existence
of a clear monotonic relationship between the input and the
velocity of movement selection (quantified by means of the
tapping frequency). An important contribution emerging from
Figure 6 is that this relationship is quite flat at high values of
the input (D > 0.4 in Figure 6), indicating a stable behavior.
This points out that even quite large fluctuations in the input
induce only minor fluctuations in the action selection velocity,
as is typical for a healthy subject. Conversely, at low values of
D this relationship becomes quite steep: at this position, even
small changes in D can cause large alterations in the action
selection velocity. We think this is the zone more disabling for a
PD patient.

With this scenario in mind, we exploited the
neurocomputational BG model within a more comprehensive
integrated model, to mimic the overall chain of events from
levodopa administration to the alternate finger tapping response.
Using this global model, we then simulated the behavior of six PD
patients, providing individual estimation of the most influential
parameters. Furthermore, to account for patients’ variability,
three patients were chosen from a first group, showing no
motor fluctuations, and three from a second group, with motor
fluctuations.

In building the global model, we used a classic representation
of pharmacokinetics and pharmacodynamics, already used in
previous studies (Sheiner et al., 1979; Contin et al., 2001; Chan
et al., 2004). Indeed, these former compartment models were
adequate to simulate levodopa temporal effects, hence we did not
deem necessary to modify them.

Actually, the great novelty of the present work is in the
connection between the pharmacodyamic compartment and the
BG neurocomputational model (see Figure 1). In other words,
the output of the pharmacodynamic model is not directly related
with the tapping frequency, as done in previous papers, but is
added to the dopaminergic input of the neural model, thus acting
on the excitation/inhibition balance between the Go and No Go
pathways. This balance, in turn, affects the tapping frequency.

We wish to emphasize that, in our model, the wearing-off of
levodopa effect depends on two concomitant factors, while only
the first is usually considered in previous models:

(i) the sigmoidicity of the concentration/effect relationship
(Equation (6)), mainly influenced by parameters Dc50 and
N. A steep relationship (i.e., the Hill curve) means a

large influence of small levodopa changes, hence a possible
unstable behavior; a high value of Dc50 indicates the need for
high levodopa doses;

(ii) the position of the input quantity, D, on the global curve
depicted in Figure 6. The latter aspect, which reflects the
behavior of the neurocomputational model, depends, above
all, on the dopaminergic basal value D0, which sets the
central working point on this curve. A subject with a
high basic dopamine works positioned in the high segment
of this curve (like a healthy subject with physiological
high D values), and therefore exhibits a stable behavior
independently on fluctuations of the dopaminergic input. In
fact, as we demonstrated in our previous work too (Baston
and Ursino, 2015a), in this case the velocity of the action
selection is almost unaffected by moderate fluctuation in
the input D. Nevertheless, changes in D in these subjects
(as occurring during rewards and punishments) can have
a significant effect on synapse learning, by potentiating or
depotentiating a synapse via Hebbian plasticity. On the other
hand, a subject with a low basal value of D (as typical of PD
subjects) works in the steep portion of the curve in Figure 6,
hence he is naturally more prone to large fluctuations in the
action selection velocity. This is the zone where therapeutic
interventions are more effective, but also where instability
is more easy to occur, and where the use of the model
may provide significant benefits in future applications (as
discussed in the last part of this session).

To elucidate these concepts, and look for model clinical use,
in this work we undertook a preliminary model validation in
a clinical setting by estimating parameters on six patients. We
are aware that six patients are too few to attempt a critical
analysis of the estimated parameter values. Indeed, the aim
of this work was not to provide an exhaustive statistical
investigation on parameter estimates (that would require
a large dataset and an automatic estimation algorithm)
but rather to show that the model is able to simulate the
temporal patterns of the alternate finger tapping response
in various patients, with potential clinical applications.
Nevertheless, we can derive some preliminary indications,
which of course require a subsequent confirm on a larger
dataset.

An automatic procedure was chosen only for fitting the
parameters in the compartment model. In fact, in this model,
due to the regularity of plasma levodopa, the fitting was
unique and reliable, quite independently on the initial guess.
Conversely, an automatic fitting for the Hill parameters in the
effect portion of the model was not appropriate, at least in
the present initial work, since, due to the large noise on the
experimental data, the obtained parameter values were crucially
dependent on the initial guess and influenced by some outliers.
Hence, we preferred a manual investigation in the parameter
space. We are aware that our conclusions may be not unique,
since other parameter combinations might produce quite similar
results. In future works, with more data available, we will
develop a constrained automatic fitting procedure, to solve the
aforementioned problems.
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Among the estimated parameters, three of them seem to have a
more relevant role in discriminating between stable and wearing-
off patients. The most important is the Hill coefficient N, which
sets the slope of the sigmoidal curve (Equation (6)). Critical
patients in the second group have higher values of N, suggesting
a steeper relationship between levodopa and its effect (see also
the last column in Figures 7, 8). This signifies that even a small
change in levodopa concentration may induce the passage from
saturation to the lower level.

Another parameter that seems to play a role is Dc50, which
represents the value at which levodopa exerts half of its maximal
effect. The greater values found in two patients of the second
group signify that higher doses of levodopa are required to have
sustained beneficial effects.

Finally, the parameter ke3/V3, which describes the levodopa
removal from the effect compartment, is also of interest, setting
the velocity at which concentration in the effect compartment
decreases. Two patients of the second group have higher values.

We expect that the previous parameters may have a clinical
impact. In particular, a high value of N and, although less
important, a high removal rate mean that a patient may rapidly
decay from quite a stable behavior (corresponding to a high value
of D in our model) to a bradykinetic behavior. This is related
with the duration of the tapping response and, more generally,
with the length of clinical effects. A high value of parameter Dc50

implicates a smaller impact of levodopa on the patients, hence
the necessity of higher doses. Indeed, patients with wearing-
off phenomena may require almost two-fold higher levodopa
concentrations (Contin et al., 1993).

The present results, although obtained on a small number
of cases, emphasize the potential model benefits, and agree
reasonably well with those found in former papers, where the
pharmacodynamic model was directly linked to the tapping
frequency. For instance, Contin et al. (1993, 2001) observed
that patients with wearing-off phenomena required almost two-
fold higher levodopa concentration (a result related with the
parameter Dc50 in our model) and that regression toward a
more unstable response to levodopa was associated with an
increase in the sigmoidicity index N. Moreover, these authors
found no clear role for the maximum magnitude effect (Dmax)
with the progression of the disease. All these results agree
with our observations, as evident looking at Table 3. It is
worth noting that all the previous parameter changes have
a substantial implication on the relationship between plasma
levodopa concentration and its effect. Although plasma levodopa
kinetics may remain substantially unchanged, the same pattern
may produce shorter and more elusive effects in the advanced
patients, being associated with a more rapid onset but also with a
curtailed duration of motor response.

As also discussed in Contin et al. (1993, 1994) this knowledge
may have strong practical effects. It might assist in designing
a better dose regimen, for instance by reducing the dose of
levodopa and increasing its frequency in more critical patients.
A challenge for future works may be to find the optimal curve
for levodopa administration, after the individual parameters have
been estimated, in order to reduce the bradykinesia periods
but maintaining levodopa to a minimum. In patients like those

of the second group, for whom even a small fall in levodopa
level may induce a large change in responsiveness, a model
application may be to predict the moment when the wearing-off
is starting. A further aspect that may be studied with the model
in future work is dyskinesia, which may depend on an altered
balance between Go and No Go pathways, hence on dopamine
levels too. Finally, patients with a poor responsiveness may also
exhibit an unbalance between reward and punishment during
learning tasks. The latter aspect may also have a strong practical
impact.

In conclusion, we claim that this approach is original and
may have important benefits in future works. Specifically, once
parameters have been estimated on the individual patient, the
global model can be used not only to simulate results of the
alternate finger tapping test, but also to investigate the patient’s
behavior in other conditions of clinical interest. For instance,
an excessive response to levodopa (as occurring in patients
with elevated Hill coefficient N) may excessively trigger the Go
pathway, resulting in hyperkinesia when levodopa concentration
is high, or in bradykinesia, with a delayed or absent response,
when the levodopa concentration falls down. Future works may
concentrate on these aspects, for instance also evaluating the
impact of some external noise (which is always present both
in the inputs and in the neuronal responses) on the action
selection, or the effect on synapse plasticity during tasks which
require learning, as a function of the estimated levodopa effect
parameters.
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