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Conceiving concrete mental imagery is critical for skillful musical expression and
performance. The precuneus, a core component of the default mode network (DMN),
is a hub of mental image processing that participates in functions such as episodic
memory retrieval and imagining future events. The precuneus connects with many brain
regions in the frontal, parietal, temporal, and occipital cortices. The aim of this study
was to examine the effects of long-term musical training on the resting-state functional
connectivity of the precuneus. Our hypothesis was that the functional connectivity
of the precuneus is altered in musicians. We analyzed the functional connectivity of
the precuneus using resting-state functional magnetic resonance imaging (fMRI) data
recorded in female university students majoring in music and nonmusic disciplines. The
results show that the music students had higher functional connectivity of the precuneus
with opercular/insular regions, which are associated with interoceptive and emotional
processing; Heschl’s gyrus (HG) and the planum temporale (PT), which process
complex tonal information; and the lateral occipital cortex (LOC), which processes visual
information. Connectivity of the precuneus within the DMN did not differ between the
two groups. Our finding suggests that functional connections between the precuneus
and the regions outside of the DMN play an important role in musical performance. We
propose that a neural network linking the precuneus with these regions contributes to
translate mental imagery into information relevant to musical performance.
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INTRODUCTION

Mental imagery plays a role in musical processing for both performers and listeners (Herholz
et al., 2012; Keller, 2012; Beaty et al., 2013). Musicians deliberately use concrete mental imagery
to improve musical expression and performance. Mental imagery and emotion are tightly linked;
music evokes emotions associated with conceived mental imagery that are qualitatively similar to
emotions experienced during everyday life (Juslin and Västfjäll, 2008). Emotion is so critical to
music that musicians are trained to create mental imagery for each piece of music and to reflect
these images in their performance. However, the neural substrates of the transformational
process from mental imagery into musical performance have not yet been elucidated.
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To some extent, the creation of mental imagery, or scene
construction, is constrained by or dependent upon episodic
memory: the memory of personal experiences, including
times and places, which are linked with emotions and
other contextual information (Dickerson and Eichenbaum,
2010). Episodic memory retrieval has been suggested to be
a reconstructive process involving the synthesis of various
mental images related to a memory (Hassabis and Maguire,
2007, 2009; Hassabis et al., 2007). The episodic memory
system is highly adaptive (Schacter et al., 2012) and thus
plays a critical role in formulating appropriate behaviors
in a continuously changing environment. The adaptive and
constructive nature of episodic memory is highly relevant to
musical performance because the mental scene progresses
continuously throughout a performance. Previous studies
show that visual imagery and scene-construction tasks
activate a variety of brain regions, including the prefrontal
cortex, pre-supplementary motor area, precuneus, angular
gyrus (AG), occipital cortex, and hippocampus (Mechelli
et al., 2004; Hassabis and Maguire, 2009; Summerfield
et al., 2010). Mechelli et al. (2004) demonstrated increased
connectivity between prefrontal and visual cortical areas
during visual imagery compared to that during visual
perception tasks. Therefore, mental image construction is
cooperatively mediated by multiple brain regions (Mechelli et al.,
2004).

The default mode network (DMN), whose core is composed
of the medial prefrontal cortex (mPFC), posterior cingulate
cortex (PCC), precuneus/PCC, and bilateral AG, has been
hypothesized to generate spontaneous thoughts during mind-
wandering and is believed to play an essential role in creativity
(Buckner et al., 2008; Vessel et al., 2012, 2013; Utevsky
et al., 2014). To date, a variety of functions have been
associated with this network; however, its overall function
remains controversial (Seghier and Price, 2012). The DMN
was originally thought to be deactivated during externally
assigned tasks (Raichle et al., 2001). However, more recent
studies have demonstrated that the DMN is in fact activated
during certain tasks (Spreng, 2012; Vatansever et al., 2015a,b).
The involvement of the DMN in goal-directed cognitive
tasks is controversial. One study found that the DMN
was deactivated during attention and working memory tasks
(Mayer et al., 2010), while other studies have demonstrated
dynamic changes in functional connectivity between the
DMN and task-related somatomotor regions during a finger
opposition task (Vatansever et al., 2015a,b). DMN activation
has been observed during tasks that involve episodic memory
retrieval, envisioning future events, inferring the thoughts and
perspectives of others, and social cognition (Addis et al.,
2007; Buckner et al., 2008; Mars et al., 2012; Moran et al.,
2012). All of these tasks involve scene-construction processes
(Hassabis and Maguire, 2009), suggesting overlap between the
DMN and neural networks that underlie scene construction.
Interestingly, the DMN is activated by music as well as
other forms of art (Vessel et al., 2012, 2013), supporting the
association of scene construction processes with music and
other arts.

Located in the posterior part of the cortical midline
structures, the precuneus and surrounding areas show the
highest resting metabolic rates among all brain structures
(Cavanna and Trimble, 2006). The precuneus is one of
the core nodes of the DMN (Cavanna and Trimble, 2006;
Fransson and Marrelec, 2008; Utevsky et al., 2014) and
shows widespread functional connectivity across the entire
cortical area (Margulies et al., 2009; Zhang and Li, 2012).
Importantly, the precuneus plays a critical role in mental image
processing by integrating multimodal information collected
from a wide variety of brain regions (Hassabis and Maguire,
2009; Summerfield et al., 2010). Graph theoretical analyses
have suggested that the precuneus is 1 of 12 ‘‘rich-club
nodes’’ that are highly connected to other brain regions and
to one another (van den Heuvel and Sporns, 2011, 2013;
Ottet et al., 2013). Furthermore, dynamic causal modeling
studies have suggested that the precuneus plays a central
role in the visual imagery network (Mechelli et al., 2004).
The precuneus also plays a pivotal role in constructive
processing, which is important for multiple functions such
as predicting future occurrences and judging fitness of an
object or tool for a particular purpose (Hassabis and Maguire,
2007, 2009). A previous study that compared playing the
piano in the mind with actual performance demonstrated that
the precuneus was activated under both conditions (Meister
et al., 2004), indicating that the integrative mental image
processing capability of the precuneus contributes to musical
performance.

Musicians would unconsciously utilize constructive processes
when creating mental imagery during performance that enable
them to visualize the entire course of a performance and to
create sounds that represent his or her mental images. Therefore,
we predicted that the functional connectivity of the precuneus
is altered in musicians compared to nonmusicians. In this
study, we used functional magnetic resonance imaging (fMRI) to
investigate the functional network that mediates the conversion
of mental imagery to an internal representation that is used
during musical performance. Because the precuneus is critically
involved in the creation and processing of mental imagery, this
structure would be central to the network.We performed resting-
state fMRI in female university students majoring in music
and nonmusic disciplines to examine whether there is altered
connectivity of the precuneus in musicians.

MATERIALS AND METHODS

Participants
Study procedures were approved by the Ethics Committees
of Sophia University and Juntendo University. University
students majoring in music were recruited for this study
using advertisements (n = 26; age, 18−27 years; mean
age, 21.5 years) and nonmusic disciplines (n = 26; age,
19−27 years; mean age, 21.3 years). All participants were
healthy, right-handed Japanese females with no history of
neurological or neuropsychiatric disorders. Among the students
majoring in music, musical training had begun at 3−5 years
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of age and continued through the start of the present
study. These students specialized in classical music played on
various instruments (piano, violin, cello, contrabass, clarinet, or
trumpet). The majors of nonmusicians were diverse, including
literature, philosophy, psychology, economics, and science and
engineering. All subjects provided written informed consent
before participation in the study. All subjects completed the
imaging and the data were used for the analysis of this
study.

Image Acquisition and Preprocessing
Blood-oxygen-level dependent (BOLD) fMRI data were collected
during a resting-state session with the eyes closed. Data were
acquired using a Philips Achieva 3.0 Tesla MRI scanner at
Juntendo University Hospital. A T2∗-weighted gradient-
echo echo-planar imaging (EPI) sequence was used with the
following parameters: echo time (TE) = 30 ms; repetition time
(TR) = 2000 ms; field of view (FOV) = 240 × 240 mm;
matrix = 64 × 64; flip angle = 90◦; number of axial
slices = 33; voxel size = 3.75 × 3.75 × 4.00 mm. Each
session consisted of 200 scans (total time, 6 min 40 s).
Imaging data were preprocessed using the CONN toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012) running
on MATLAB (version 8.3.0, MathWorks Inc., 2014). The
first four volumes were discarded, and the remaining 196

volumes were subjected to preprocessing: The slice timing
was corrected according to the slice order. The fMRI data
were realigned and subsequently normalized to the standard
Montreal Neurological Institute (MNI) template as implemented
in the Statistical Parametric Mapping (SPM) Software
platform. Image artifacts originating from head movement
were handled using the ART scrubbing procedure1. Signal
contributions from white brain matter, cerebrospinal fluid,
and micro head-movement (six parameters) were regressed
out from the data. The fMRI data were bandpass filtered
(0.008–0.09 Hz). All functional images were spatially smoothed
using a Gaussian filter kernel (full width at half maximum,
FWHM= 8 mm).

Data Analysis
Functional connectivity analysis was performed using the CONN
toolbox. In individual analysis, Pearson’s correlation coefficients
were calculated between the time course of the precuneus,
defined by the Harvard-Oxford Atlas, and the time courses of
all other voxels, which provided a seed-to-voxel connectivity
matrix. Positive and negative correlation coefficients defined
positive and negative functional connectivity, respectively
(Whitfield-Gabrieli and Nieto-Castanon, 2012). The correlation

1www.nitrc.org/projects/artifact_detect/

FIGURE 1 | Surface functional connectivity maps of the precuneus as the seed region in musicians. (A) Music group, (B) nonmusic group, (C) music vs.
nonmusic. The maps were thresholded at p < 0.05, false discovery rate (FDR)-corrected.
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coefficients were then converted to normally distributed
scores using Fisher’s transform, which were subsequently
used in the population-level analysis. The connectivity matrix
with converted scores was compared between the music
and nonmusic groups. The hight-threshold of p < 0.001,
uncorrected, was applied to individual voxels to define clusters.
The extracted clusters were thresholded at p < 0.05 with
the false discovery rate (FDR) correction to report the
results.

RESULTS

Functional connectivity maps of the precuneus are shown
in Figures 1A,B. Regions of negative functional connectivity
appeared larger in nonmusicians than in musicians. Musicians
showed connectivity between the precuneus and insular cortex
(IC)/central operculum (CO)/parietal operculum (PO), Heschl’s
gyrus (HG)/planum temporale (PT), and the left inferior
lateral occipital cortex (iLOC). Figure 1C shows regions with
significantly higher connectivity to the precuneus in musicians
compared to nonmusicians. These regions were composed of
three clusters of voxels, which are summarized in Table 1.
Connectivity of the precuneus with other structures of the DMN
did not differ between the groups.

DISCUSSION

In this study, we analyzed the functional connectivity of the
precuneus in female musicians and nonmusicians. Connectivity
strength between the precuneus and the opercular/insular
regions, HG/PT regions, and LOC differed between the two
groups. None of the regions within the DMN showed different
connectivity with the precuneus between the groups.

TABLE 1 | Functional connectivity of the precuneus as the seed region
that was higher in musicians compared to nonmusicians.

Clusters (x, y, z) Voxel size Cluster p (FDR)

Cluster 1 (−34 −34 +08) 1037 0.000
Cluster 2 (+60 −30 +22) 542 0.000
Cluster 3 (−56 −64 +08) 188 0.029
Cluster 1
330 voxels covering 34% of CO.L
221 voxels covering 17% of IC.L
142 voxels covering 46% of HG.L
82 voxels covering 15% of PT.L
68 voxels covering 12% of PO.L
Cluster 2
147 voxels covering 27% of PO.R
96 voxels covering 3% of PostCG.R
75 voxels covering 9% of CO.R
53 voxels covering 12% of PT.R
Cluster 3
142 voxels covering 7% of iLOC.L

There were no regions showing significantly lower connectivity in musicians

compared to nonmusicians. CO, central operculum; IC, insular cortex;

HG, Heschl’s gyrus; PT, planum temporale; PO, parietal operculum; PostCG, post-

central gyrus; iLOC, lateral occipital cortex, inferior division.

Roles of the Insula and Operculum in
Musical Performance and Sensory
Integration
Musicians showed higher connectivity between the precuneus
and the insula, a cortical region that links external and internal
information processing (Lamm and Singer, 2010; Couto et al.,
2013). Because it is highly connected with limbic, sensory,
and motor regions, the insula is involved in the processing of
emotional, sensorimotor, visceral, and interoceptive information
(Craig, 2009). In particular, the insula is critically involved
in evaluating the emotional salience of both external and
interoceptive stimuli (Craig, 2009; Taylor et al., 2009; Menon
and Uddin, 2010; Straube and Miltner, 2011; Couto et al., 2013).
Together with the dorsal cingulate cortex, the insula constitutes
the core part of a salience network that integrates cognitive and
emotional information to make appropriate responses (Menon,
2015), which is highly relevant to musical performance. The
insula also participates in emotional perception and social
cognition (Jabbi et al., 2008; Menon and Uddin, 2010); this
function is linked to the role of the insula in interoception, which
is thought to be important for understanding the emotional
states of oneself and others (Singer et al., 2004; Straube and
Miltner, 2011; Seth, 2013; Ondobaka et al., 2015). The insula
has been implicated in emotional responses to music (Blood and
Zatorre, 2001; Brown et al., 2004; Griffiths et al., 2004; Trost et al.,
2012).

The central and posterior operculum showed higher
connectivity with the precuneus in musicians. Previous studies
have demonstrated activation of the operculumwhile performing
or listening to music. For example, the operculum is activated
in opera singers during actual and imagined singing of an
Italian aria (Kleber et al., 2007) and in subjects listening
to pleasant music (Koelsch et al., 2006). The operculum
and insula are continuous and interconnected structures
and appear to work cooperatively. The CO and insula have
been suggested to be involved in music-related emotional
processing (Gebauer et al., 2014), consistent with the results
of a previous study showing that a patient with a CO/insular
lesion was unable to experience emotional responses to music
(Griffiths et al., 2004). A recent stepwise functional connectivity
analysis showed that functional connections from sensory
areas converge on the operculum/insula, suggesting that this
region is involved in the integration of multimodal sensory
information and may form a connection between auditory
and somatosensory areas (Sepulcre et al., 2012). Further,
the OP4 region of the PO is connected to both the auditory
and motor cortices and may therefore play a critical role in
audiomotor integration (Sepulcre, 2015). Therefore, a neural
network connecting the precuneus with the operculum and
insula may integrate mental imagery with interoceptive and
emotional information to influence musical performance. In our
analysis, higher precuneus connectivity in the left hemisphere
of musicians was detected by a larger cluster in the CO than
in the PO. In the right hemisphere, however, the cluster in
the PO was larger than that in the CO. This left-lateralized
connectivity between the precuneus and the CO may be due
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to the frequent dominance of the right hand when playing
an instrument such as the piano. Similarly, when playing a
string instrument such as the violin or cello, bowing with the
right hand is a significant factor in the emotional expression
of the music.

Heschl’s Gyrus and the Planum Temporale
Functional connectivity between the precuneus and the HG/PT
region was also higher in musicians compared to nonmusicians.
The HG/PT region processes music-related pitch information
(Hall and Plack, 2009; Puschmann et al., 2010; Angulo-Perkins
et al., 2014). Voxel-based morphometry studies have reported
that the HG is larger in musicians than in nonmusicians
(Gaser and Schlaug, 2003; Bermudez et al., 2009). The PT,
which partially overlaps with Wernicke’s area, is a critical
region for the processing of various aspects of sound and is
involved in the analysis of sounds with complex spectrotemporal
structure (Griffiths and Warren, 2002). Therefore, connectivity
between the precuneus and the HG/PT region may allow the
integration of mental imagery with analysis of complex sounds;
the higher connectivity between these regions in musicians
may reflect the fact that musicians are trained to integrate
imagery and sound information. Moreover, the HG/PT region
has been demonstrated to have strong connections with the
operculum (Sepulcre et al., 2012; Sepulcre, 2015), suggesting
further integration of sounds with emotional, interoceptive, and
sensorimotor information.

The Lateral Occipital Cortex
Musicians also showed higher connectivity between the
precuneus and the left LOC compared to nonmusicians. The
LOC plays an important role in object perception (Malach et al.,
2002; Nagy et al., 2012). An fMRI study has suggested that
this region also participates in scene construction from objects
(MacEvoy and Epstein, 2011). Therefore, the observed increase
in connectivity between the precuneus and LOC further supports
our hypothesis that musicians utilize scene construction during
musical performance.

Limitations of the Study
Resting-state functional connectivity analysis is suited for
exploring differences in connectivity between musicians and
nonmusicians. However, the causal relationship between the
observed group differences and musical training cannot be
assessed in this cross-sectional study. For the test of the causal
relationship, a longitudinal study is necessary. There is another

uncertainty that the part of network whose differences in
connectivity have been detected in this study is truly utilized in
mental imagery processing for musical performance. To verify
this, an fMRI experiment with ‘‘imagined’’ musical performance
is currently in progress. By combining the results from the
resting-state and task-fMRI, one will be able to associate the
alteration of functional connectivity in musicians with mental
imagery processing for musical performance.

CONCLUSION

The precuneus has been associated with visuospatial and motor
imagery, episodic and autobiographical memory retrieval, and
self-related information processing (Cavanna and Trimble, 2006;
Zhang and Li, 2012). Creating mental imagery requires the
integration of various types of information, consistent with
findings that the precuneus is connected to many cortical
and subcortical areas (Cavanna and Trimble, 2006) and is
involved in the multistep functional convergence of visual,
auditory, and somatosensory information (Sepulcre et al., 2012).
Thus, the precuneus is a connector hub that communicates
with many brain regions and is a central site for the
creation of mental imagery. We demonstrate that musicians
show higher connectivity between the precuneus and brain
regions involved in the processing of auditory, interoceptive,
sensorimotor, and emotional information, indicating that the
precuneus plays an important role in musical performance.
We propose that this higher connectivity contributes to the
translation of mental imagery into information to be utilized
by the motor control system during musical expression and
performance.
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