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In two experiments, we investigate group and individual preferences in a range of different
types of patterns with varying fractal-like scaling characteristics. In Experiment 1, we
used 1/f filtered grayscale images as well as their thresholded (black and white) and
edges only counterparts. Separate groups of observers viewed different types of images
varying in slope of their amplitude spectra. Although with each image type, the groups
exhibited the “universal” pattern of preference for intermediate amplitude spectrum
slopes, we identified 4 distinct sub-groups in each case. Sub-group 1 exhibited a typical
peak preference for intermediate amplitude spectrum slopes (“intermediate”; approx.
50%); sub-group 2 exhibited a linear increase in preference with increasing amplitude
spectrum slope (“smooth”; approx. 20%), while sub-group 3 exhibited a linear decrease
in preference as a function of the amplitude spectrum slope (“sharp”; approx. 20%).
Sub-group 4 revealed no significant preference (“other”; approx. 10%). In Experiment 2,
we extended the range of different image types and investigated preferences within the
same observers. We replicate the results of our first experiment and show that individual
participants exhibit stable patterns of preference across a wide range of image types. In
both experiments, Q-mode factor analysis identified two principal factors that were able
to explain more than 80% of interindividual variations in preference across all types of
images, suggesting a highly similar dimensional structure of interindividual variations in
preference for fractal-like scaling characteristics.
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INTRODUCTION

Dating back to the Greek philosophers from the 5th century BC, the attempts to understand
aesthetics can be cast as a continuous debate between views that consider it determined by objective
properties of objects, vs. those that emphasise subjective characteristics of observers in aesthetic
appreciation. Both the notions of the universal canons of beauty on the one hand and the beauty
as in the eye of the beholder on the other, have been and remain widespread reflection of these
opposing views.

Launched by Fechner (1876), experimental aesthetics was an attempt to empirically
ground the aesthetic experience as coming from ‘‘below’’, rather than being a quality of
ever-changing individual and/or cultural and philosophical contexts (Fechner, 1876). Early
incarnations of this approach included the strict mathematical proportions used in ancient
architecture, most famously those concerning proportion and symmetry. Fechner’s (1876)
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own investigations focused on the golden ratio and he found
that observers when asked to choose the most preferred
from the series of 10 rectangles varying in aspect ratio,
preferred the rectangle with proportions corresponding to
the golden ratio. While Fechner’s (1876) findings have been
criticized on methodological grounds (McManus, 1980; Russell,
2000), subsequent investigations of aesthetic preference in
nearly all domains have continually sought, and succeeded, in
demonstrating robust universal preferences for image properties
ranging from balance (Arnheim, 1974; McManus et al., 2010),
fractal dimension (Aks and Sprott, 1996; Spehar et al., 2003,
2015), to symmetry (Bertamini et al., 2013), informational
content and complexity (Eysenck, 1941; Berlyne, 1971; Garner,
1974), curvature (Hogarth, 1753; Bar and Neta, 2006; Gómez-
Puerto et al., 2016) as well as contrast and clarity (Gombrich,
1979).

However, while numerous studies have verified consistent
aesthetic preference for certain stimulus properties, there has
been a certain reluctance to use these results to claim the
universal nature of their aesthetic appeal. Indeed, nearly a
century ago, Thorndike (1917) was among the first to point
out that ‘‘the average tendency towards this or that preference
may give an impression of greater uniformity than exists’’,
and concluded that although any one person usually feels very
decided with strong preferences, these are rarely shared by others.

Thorndike’s (1917) study was motivated by Fechner’s (1876)
claims regarding the preference for golden ratio. He used a
number of different classes of stimuli (rectangles, triangles,
crosses, and lines) varying in proportion and asked observers
to first choose one item in each series that they liked
the look of most, then next most, and so on. Although
Thorndike (1917) found that the most liked rectangle and
triangle had the ratio of height to base which was close to
the golden ratio (1.8:1 for rectangles and 1.7:1 for triangles
respectively), the rankings given by different observers varied
considerably and even those most liked were ranked the lowest
by some observers. Thorndike’s (1917) initial observations were
later echoed by a number of subsequent studies (McManus,
1980; Hoge, 1995; Höfel and Jacobsen, 2003; McManus
et al., 2010), confirming that the universal preference for
the golden ratio is weak and that it might in fact not exist
if one uses bias-free methodology in measuring aesthetic
preferences.

In particular, McManus (1980) and McManus et al. (2010)
used the method of paired comparison, singled out as a
particularly good methodological option in measuring aesthetic
preference, to measure the preference for rectangles varying in
aspect ratio. They found that although population or group
preference for golden section was weak, the individual rectangle
preference functions were strong and stable over time but highly
variable between different participants. In order to characterize
the highly variable patterns of rectangle preferences seen at an
individual level, McManus et al. (2010) analyzed the structure of
the differences using a Q-mode factor analysis. Q-mode analysis
revealed two distinct factors: one that is loaded with preferences
for rectangles close to square, and the other loaded with
preferences for elongated rectangles. Together they explained

44% of variability and were also stable over time as indicated by
retests conducted up to months, or even years later. Interestingly,
the differences in rectangle preference functions did not correlate
with any of the Big Five personality traits, or a number of
other individual difference measured ranging from need for
cognition, tolerance of ambiguity and schizotypy, to vocational
types, and aesthetic activities. Indeed, at present, the large
interindividual differences in the rectangle preference functions
remain unexplained (McManus et al., 2010).

In another influential study of interindividual differences
in aesthetic preference, Vessel and Rubin (2010) looked at
relative preference between pairs of stimuli for a large sample
of real-world and abstract images. Vessel and Rubin (2010)
also found that while individual observers displayed robust and
consistent preferences, the agreement between observers was
quite low. Importantly, the interindividual agreement between
different observers was much higher in preference for real
world compared to abstract images. In order to explain this
pattern of results, Vessel and Rubin (2010) have strongly
emphasized the role of factors internal to individual observers
and observers’ personal experiences as critical in contributing
to preference. They argue that visual preferences are not driven
by the physical attributes of these stimuli per se, but by the
semantic content of these stimuli. The high agreement in real-
world images is attributed to common experiences and shared
semantic associations with visual stimuli, with shared semantic
interpretations leading to the shared preferences as well. Abstract
images contain more ambiguity and evoke different meaning for
different observers, leading to the low level of interindividual
agreement. These notions were echoed and further developed in
Vessel et al. (2012) claims that individuals’ taste in art is unique
and intertwined with their ‘‘sense of identity’’ and personal
relevance.

In summary, there is growing evidence that interindividual
differences play an important role in preference functions for a
range of different images and we are only beginning to broaden
our understanding of the structure and causes of these variations.

EXPERIMENT 1: GROUP AND INDIVIDUAL
PREFERENCES FOR PATTERNS VARYING
IN FRACTAL SCALING CHARACTERISTICS

In the present study, we focus on the individual differences
in visual preference for fractal patterns. A number of
studies have revealed robust average preference for mid-
range fractal dimension across many different types of
fractal patterns including geometrical shapes (Aks and
Sprott, 1996); abstract paintings, natural and computer
generated fractal patterns (Spehar et al., 2003); horizon lines
(Hagerhall et al., 2008); and synthetic images with fractal-
like scaling characteristics (Juricevic et al., 2010; Spehar
and Taylor, 2013). These highly consistent preferences,
observed despite the wide range of stimuli and methods
used in these studies, suggest that certain fractal characteristics
might be an objective image property that is universally
linked with aesthetic preference (see also Redies, 2007,
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2015). Spehar et al. (2015) have also demonstrated a close
link between visual preference and visual system’s ability to
detect and discriminate amongst the patterns with fractal-like
scaling.

However, the degree of interobserver agreement or
disagreement in these studies was not investigated, and the
extent of inter-observer agreement in preference for fractal
patterns remains unknown. Thus, the main purpose of this
study is to further probe the characteristics of both population
and individual preference functions for variations in fractal
characteristics. We investigate preference in different types of
fractal patterns in order to capture the variability of fractal
images used in previous studies and to be able to directly
compare patterns of group and individual preferences over a
wider range of images than has been done before.

In line with most of the previous studies, we use ‘‘statistical’’
as opposed to the ‘‘exact’’ fractals. Whereas exact fractals contain
exact repetitions of a certain pattern at different magnifications,
statistical fractals contain a certain degree of randomness that
disrupts the precise repetition so they only appear similar at
different magnifications. The three types of patterns used in this

study are illustrated in Figure 1. The first column represents
synthetic noise images generated using a 1/fα distribution of
rotationally averaged spatial scale specific amplitude variations.
From top to bottom, the synthetic images are increasing in
the exponent alpha, slope of the best fitting linear function
applied to the rotationally averaged amplitude spectrum. Plotted
in the second column are the binary variants of grayscale
patterns, generated by thresholding the grayscale image at the
mean luminance level, such that pixels below mean luminance
are assigned as white and those above are black. Finally,
the images in the third column were generated by extracting
edges from the black and white image in the middle column.
Conventionally, the fractal-like variations in the grayscale images
are referred to as ‘‘two dimensional’’ (2D) fractals, because
they form surface textures, whereas the thresholded and edge
patterns are referred to as ‘‘one-dimensional (1D) fractals
because they form fractal lines between the black and white
regions.

It is important to emphasise that whereas the input 1/f
alpha slope values used to generate stimuli across the three
corresponding image types are identical, the thresholding

FIGURE 1 | (A) Grayscale fractal patterns with exponent values of 0.5 (top), 1.5 (middle), and 2.5 (bottom). (B) Black and white fractal patterns created by
thresholding the grayscale patterns from the panel (A) at their mean luminance level. (C) Edges only patterns depicting the fractal boundaries created by extracting
edges from the thresholded patterns depicted in the panel (B). (D) The amplitude spectra plots corresponding to the grayscale (red), thresholded (green) and edges
only (blue) patterns; x-axis represents log spatial frequency while y-axis represents log amplitude. The lines (bold) are linear fits to the data (light).
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and edge extracting procedures alter the measured amplitude
spectrum slope values. In general, the thresholded and edges
only images result in a shallower 1/f slope, particularly at steeper
amplitude spectra slope values. This relationship can be seen in
the amplitude spectra plots depicted in the right most column of
Figure 1.

However, while the photometric properties (amplitude
spectra) between grayscale and thresholded image types differ,
their geometric or fractal-scaling properties are nearly identical
(Spehar and Taylor, 2013). That these three types of images
share their geometric, fractal scaling properties, despite their
visually distinct visual appearances, can be demonstrated
by thresholding the grayscale images at multiple luminance
levels and examining the geometrical characteristics of the
resulting thresholded and edge only images (Spehar and Taylor,
2013). This is illustrated in Figure 2 with two grayscale
patterns shown on the left (panel A), which have been
thresholded at five different luminance levels, as shown in the
middle (panel B). Although it might not seem intuitive at

first, the edges visible at the boundaries between black and
white regions in different thresholded variants have nearly
identical fractal scaling characteristics, as is evident from
the contour graph superimposed on the original grayscale
images, as depicted on the right (panel C). Here, the
differently colored edges correspond to those extracted at
particular thresholded levels. One can immediately discern
that in both top and the bottom panels, the edges extracted
at different thresholded luminance levels are nested within
each other and appear similar in their spatial appearance.
Moreover, it is obvious that the edges extracted in this
way from the grayscale image with a shallower amplitude
spectrum slope (bottom image) have smoother and less jagged
geometrical characteristics, consistent with different fractal
scaling characteristics associated with these images. Together,
these demonstrations show how the same contour-based fractal
characteristics can be traced even to the grayscale images
that do not contain explicitly visible sharp boundaries due to
the continuous intensity variations. As these demonstrations

FIGURE 2 | (A) The original grayscale synthetic noise image with the 1/f slope of −1.5 (top) and −2.0 (bottom). (B) The thresholded variants of the grayscale images
thresholded at relative luminance values of 0.1 (red), 0.3 (yellow), 0.5 (green), 0.7 (blue) and 0.9 (purple). (C) The contours extracted at the respective thresholded
luminance values superimposed on the original grayscale image. The average fractal dimension of the contours in the top image equals 1.41 (ranging from 1.38 to
1.43) and 1.13 (ranging from 1.05 to 1.18) in the bottom image.
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show, the grayscale images can nevertheless be conceived
as a series of nested boundary and contour patterns at
different threshold intensities. Thus, all three classes of images
share the shape and geometrical characteristics of their either
explicit or implicit boundary contours, determined by the
amplitude spectrum of grayscale images, as demonstrated in
Figure 2.

The shape of these boundaries can be quantified by a
scaling parameter known as the fractal dimension (D), and
widely used procedure to determine the fractal dimension of
complex patterns is the box-counting technique. While the
box-counting is not the only technique by which the fractal
dimension can be estimated, it is well-suited to calculating
fractal dimension for statistically self-similar patterns such as
the grayscale images used in our study (Lopes and Betrouni,
2009). The box-counting technique analyses a 2D image by first
converting it into a binary image and then covering it with a
mesh of identical spatial segments (‘‘boxes’’) of identical length
L, and simply counting the number of squares that contain
the pattern variations (N). This count is then repeated for
increasingly smaller squares, a procedure essentially equivalent
to examining the image at finer spatial scales (or frequencies).
The scale-invariance of the fractal pattern appears through the
power law relationship N ∼ (1/L)D (where the exponent D is
the fractal dimension). The relationship between the amplitude
spectrum slope of the 2D luminance (grayscale) image and
the D values is always an inverse, linear relationship, so that
an image quantified by an intermediate amplitude spectrum
slope value α will also be quantified by an intermediate
fractal dimension D value (Knill et al., 1990; Graham and
Field, 2007; Fairbanks and Taylor, 2011; Spehar and Taylor,
2013). This relationship is preserved when the 2D luminance
images are thresholded at different levels, as illustrated in
Figure 2.

Fractal dimension is also a statistical measure of a pattern’s
structural complexity, indexing how detail in a fractal pattern
changes with the spatial scale. It reflects the relative amount
of coarse and fine structure in the pattern, such that patterns
with higher amounts of fine structure, and thus higher visual
complexity, are quantified by higher D values. Unlike previous
measures of complexity, the fractal dimension affords a precise
quantification of visual complexity that can be applied across
a wide range of visually distinct images. Findings that the
visual preference is highest for patterns with intermediate fractal
exponents dovetails nicely with the findings that patterns with
a moderate degree of ‘‘complexity’’ are consistently preferred to
those with higher or lower degrees of complexity (Fechner, 1876;
Berlyne, 1971; Nadal, 2007; Forsythe et al., 2011). While it has
already been established that the apparent complexity of fractal
contours is positively correlated with the value of D (Cutting and
Garvin, 1987), the relationship between apparent complexity,
fractal dimension and amplitude spectrum slope of synthetic
noise images has not been investigated.

We capitalize on the regular relationship between amplitude
spectrum slope of synthetic grayscale noise images and
fractal dimension for the purpose of investigating observers’
generic visual preferences across a wide range of patterns. In

Experiment 1, we investigate both individual and group visual
preference in grayscale, thresholded and edges only images,
which despite superficial differences in their visual appearance
possess similar fractal scaling properties. In a separate group of
observers we also investigate perceived complexity of the same
patterns. In particular, we aim to establish whether observers’
preferences are determined by the fractal scaling properties or
by the exact photometric characteristics of these images. We
also investigate the relationship between visual preference and
perceived complexity in these patterns.

Experiment 1: Materials and Methods
Participants
A total of 310 Psychology undergraduate students at University
of New South Wales (mean age 22.52; 31% male) participated in
this experiment in exchange for course credit. Informed consent,
testing and debriefing procedures were approved by the UNSW
Human Research Ethics Advisory Panel. The preferences among
grayscale, thresholded and edges only images were measured
in 278 observers, with different observers viewing different
images: 94 observers viewed the grayscale images while 95
and 89 observers viewed theresholded and edges only images
respectively. An additional 32 observers rated the grayscale,
thresholded and edges only images for perceived complexity.

Design
This study employed a 3 (fractal image type: grayscale,
thresholded, or edges only)× 9 (amplitude spectrum slope: from
0.5 to 2.5 in increments of 0.25) mixed design. Fractal image type
was between-subject factor while the amplitude spectrum slope
was within-subject factor.

Stimuli
Grayscale Synthetic Noise Images
The grayscale images were constructed by first creating a
512 × 512 pixels, random noise pattern with each pixel
value (0–255) selected from a Gaussian distribution. A Fourier
transformwas then performed to obtain the amplitude frequency
spectrum, which was adjusted to create a range of spectral
slopes ranging from 0.5 to 2.5 in increments of 0.25. The nine
resulting experimental images had amplitude spectrum slope α

values of 0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50
and are depicted in Figure 3. Next to each image are the values
representing its input amplitude spectrum slope, its measured
amplitude spectrum slope and the fractal dimension D calculated
by a box-counting procedure. The slopes of amplitude spectra
were measured using the imspect image processing Matlab
function, available through the Standford VISTA experimental
control and display toolbox1. The number of frequency bins
used was the default value of 100. The low cutoff was kept at
2% (also a default value) to avoid the amplitude spikes at low
frequencies.

The mean brightness and the RMS contrast of grayscale
images were controlled at 126 and 0.30 respectively. Following

1https://github.com/vistalab/vistadisp/tree/master/exptTools2/noiseTools
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FIGURE 3 | Grayscale images varying in amplitude spectrum slope from 0.5 to 2.5 in increments of 0.25. The values next to each image show its
respective amplitude spectrum slope used to create the grayscale image (top); its measure amplitude spectrum slope (middle) and its fractal dimension D determined
by a box-counting procedure applied to the equivalent edge only images.

these specifications, three different sets of seed grasycale images
were created, resulting in a total of 27 grayscale noise images
(3 seed images× 9 amplitude spectrum slope values).

Thresholded Black andWhite Images
The binary black and white variants of grayscale patterns were
generated by thresholding the grayscale image at the mean
luminance level, such that pixels below mean luminance were
assigned as black and those above as white. The examples
of black and white images are illustrated in Figure 4 with
the corresponding input and measured amplitude spectrum
slope, and fractal dimension D values respectively. As discussed
previously, the thresholding process flattens the amplitude
spectrum of each image resulting in measured amplitude
spectrum slopes that are considerably lower compared to those
of the original grayscale images.

Edges Only Images
Edges only images were created by the Laplacian of Gaussian
edge extraction method from the thresholded binary images and
are depicted in Figure 5.

Apparatus
Testing was done on a Hewlett-Packard workstation, connected
to a BenQ 24′′ monitor set at its native resolution of 1920× 1080.
The luminance output was linearized and a mean luminance of
58 cd/m2 was maintained throughout the duration of all trials in
an otherwise dark environment.

Procedure
Visual Preference Measurements
To investigate preference function in the three classes of images
a forced-choice paired-comparison procedure was used. In this
task the participants are only required to compare the two images
presented at each trial, without needing to pay attention to
any stimuli that appeared on previous trials, or anticipate any
subsequent stimuli/trials. The participants indicate which image
in a pair they prefer by a button press.

For the three image types, each amplitude slope value was
paired with all other three amplitude slope values from the same
image type, creating 72 unique pairs of grayscale, thresholded
and edges only images. Across each set of 72 unique pairs,
each pattern is shown an equal number of times overall and
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FIGURE 4 | Thresholded images varying in amplitude spectrum slope from 0.5 to 2.5 in increments of 0.25. The values next to each image show its
respective amplitude spectrum slope used to create the original grayscale image (top); its measure amplitude spectrum slope (middle) and its fractal dimension D
determined by a box-counting procedure applied to the equivalent edge only images.

an equal number of times on the left and the right side. Each
amplitude slope pairing was repeated three times, generating
a total of 216 trials that were presented in a random order.
For each repetition, images for a different seed image set
were used, so that there were no exact repetitions of any
trials.

Participants were seated at a viewing distance of 60 cm,
with the head stabilized in a height-adjustable chinrest. Each
pattern was centered at an eccentricity of 4◦ and subtended
a visual angle of 6◦. All stimuli were presented against the
uniform gray background of the same luminance. Each trial
started with a 500 ms fixation point, followed by the side-
by-side stimulus choice display. The task of the observers was
to simply indicate (via key press) which of the two stimuli
they visually prefer. The duration of the response interval was
unlimited.

Perceived Complexity Measurements
The same procedure was used to investigate the perceived
complexity of the grayscale, thresholded and edges only images.

Here, the task of the observers was to indicate (via key press)
which of the two stimuli appears more complex.

Experiment 1: Results and Discussion
Average (Group) Preferences for Different Types of
Images
The raw proportion data have been scaled using (Thurstone,
1927, 1929) approach by converting the individual raw
proportion scores into standardized, z-scores and the
corresponding inverse Gaussian cumulative density
function values. The scaled average visual preference
functions for grayscale, thresholded and edges only images
are depicted in Figure 6. The various panels show the
proportion of trials by which the certain image was chosen
against all others in a given image type. The error bars
correspond to 95% confidence intervals (CI) associated
with the respective condition means. Given the variety
of images used, the average preferences are plotted in
three different ways: (1) as a function of their measured
amplitude spectrum slope values (panel A); (2) as a
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FIGURE 5 | Edges only images varying in amplitude spectrum slope from 0.5 to 2.5 in increments of 0.25. The values next to each image show its
respective amplitude spectrum slope used to create the original grayscale image (top); its measure amplitude spectrum slope (middle) and its fractal dimension D
determined by a box-counting procedure.

function of the input amplitude spectrum slope of the
grayscale seed images from which they were derived
(panel B); and (3) as a function of their fractal dimension
D (panel C).

As indicated in Figures 3–5, the grayscale, thresholded
and edges only images possess different spatial frequency and
associated amplitude spectrum characteristics. The amplitude
spectrum slope values ranged from−0.68 to−0.19 for edges only

FIGURE 6 | Average preference for variations in amplitude spectrum slope values in grayscale (red), thresholded (green) and edges only (blue)
images plotted as a function of their measured amplitude spectra (A); the amplitude spectra of the input grayscale image (B) and their fractal
dimension D, measured by box-counting (C).
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images, from −1.51 to −0.45 for the binary thresholded images,
and from −2.13 to −0.51 for the grayscale images. If the visual
preference is determined by the photometric characteristics
of the entire amplitude spectrum of these images, then the
preference should be a monotonic function of alpha slope values,
irrespective of the image type. It is obvious that the results do
not follow this trend and that instead, for each different image
type the preferences peak for the intermediate slope values within
each range of slope values, regardless of their absolute alpha
slope values. That the preference functions for the three different
image types are closely aligned is more obvious when they are
plotted as a function of either the input alpha of the grayscale
seed images from which the thresholded and edge variants were
derived (panel B) or the fractal dimension of these images (panel
C).

The average preference functions for the three different image
types show a similar pattern with the visual preference highest for
the intermediate amplitude spectrum slopes or fractal dimension
values. Mixed-measures analysis of variance (ANOVA) revealed
no main effect of the image type (F(2) = 2.34, p < 0.100)
but a significant main effect of the amplitude slope/fractal
dimension (F(8) = 28.09, p < 0.001) and significant interaction
between amplitude slope/fractal dimension and image type
(F(16) = 2.83, p < 0.018). To further explore the average
preference functions we performed post hocHolm-Sidakmultiple
comparison tests between each image type at each of the
amplitude spectrum slope values. The number of comparisons
per family was three, with nine families, with the significance
level set at 0.05. Out of 27 comparisons in total, only five
were statistically significant. The post hoc comparisons revealed
significant differences between grayscale and edges only images
at amplitude spectrum slope values of −1.0 (t = 2.678, p <

0.05), −1.25 (t = 3.536, p < 0.01), −2.0 (2.699, p < 0.05),
−2.25 (t = 3.075, p < 0.05) and −2.5 (t = 3.913, p < 0.01).
Interestingly, the difference between thresholded and grayscale
images and thresholded and edges only images do not reach
significance at any of the input amplitude spectrum slope (or
fractal dimension) values. This pattern is consistent with Spehar
and Taylor (2013) who separately compared grayscale and
thresholded images and thresholded and edges only images and
found no difference between different image type in either of the
comparisons.

The perceived complexity of the grayscale, thresholded and
edges only images are shown in Figure 7, plotted as a function
of the measured amplitude spectrum slope of these images
(panel A), and as a function of the amplitude spectrum slope
of the grayscale seed images (panel B). Similar to what was
observed with the visual preference data, the ratings of perceived
complexity as a function of the measured slope of the three types
of images do not follow an overall monotonic trend. Instead,
the perceived complexity increases almost linearly within the
each range of amplitude spectrum slope values for the three
image types. In all cases, the steeper amplitude spectrum values
are associated with lower ratings of complexity compared to
the images in the same class but with the shallower amplitude
spectrum slope values. When plotted as a function of the
amplitude spectrum slope of the input grayscale seed images,
the ratings of complexity for the grayscale, thresholded and
edges only images exhibit a nearly perfect overlap (panel B).
Mixed-measures ANOVA revealed no main effect of image
type (F(2) = 1.76, p < 0.178) but a significant main effect
of the amplitude slope/fractal dimension (F(8) = 1260, p
< 0.00001) and a significant interaction between amplitude
slope/fractal dimension and image type (F(16) = 3.412, p <

0.018).
Figure 7C plots the average preference ratings for the

grayscale, thresholded and edges only images as a function of
the corresponding perceived complexity of these images. In all
three cases one can see an inverted U-shaped function with
the preference peaking for the images with the intermediate
perceived complexity.

Interindividual Differences in Preference for Fractal
Images
Although all three different image types exhibited the ‘‘universal’’
pattern of preference for intermediate amplitude spectrum
slopes, in each case there were clearly noticeable differences
between individual preference functions of different observers.
Thus, for each of the three image types we subjectively defined
distinct sub-groups of preference functions as illustrated in
Figure 8. Over 90% of participants could be easily classified
as exhibiting three readily distinguishable and distinct patterns
of preference. We label these three patterns as ‘‘intermediate’’,
‘‘smooth’’, and ‘‘sharp’’ in line with the appearance of the image

FIGURE 7 | Average perceived complexity in grayscale, thresholded and edges only images plotted as a function of their measured amplitude
spectra (A); and the amplitude spectra of the input grayscale image (B). (C) Average preference for the three types of images as a function of perceived complexity
of these images.
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FIGURE 8 | Summary preference function for participants subjectively classified as belonging to different preference sub-groups for the grayscale
(A), thresholded (B) and edges only (C) images in Experiment 1.

in each category that was associated with the peak preference.
The ‘‘intermediate’’ group exhibits a typical peak preference for
images with the intermediate amplitude spectrum slope values,
while the ‘‘smooth’’ and ‘‘sharp’’ groups consist of participants
with the peak preference for the images with the steep (blurry
in appearance) and shallow (sharp in appearance) amplitude
spectrum slope values respectively. Participants in the ‘‘smooth’’
group exhibit a linear decrease in preference as a function of
the amplitude spectrum slope while those in the ‘‘sharp’’ group
exhibit a linear increase in preference.

The panels (A) to (C) in Figure 8 plot the average
preference function for each of the three subgroups with
grayscale, thresholded and edges only images respectively. The
data points are the average preference functions of the each
subgroup with the 95% CI and the corresponding second-
order polynomial fits. The highest number of participants,
approximately 50% across all image types was subjectively
classified as the intermediate group, followed by approximately
20% of participants in each of the smooth and sharp groups.
Approximately 10% of participants exhibiting either flat, or noisy
pattern of preference were classified as the ‘‘other’’ group (data
not shown).

These subjectively derived groups were confirmed by
the k-means clustering approach performed on a 9 × 278
matrix of individual preference scores for the grayscale,
thresholded and edges only images. K-means clustering was
performed with the MATLAB k-means function utilizing the
default squared Euclidean distance measure. Participants were
clustered into three subgroups and the visual preferences
for participants when assigned to these cluster solutions are
plotted in Figure 9A. For each identified cluster, the average
silhouette values, representing how well each participant
fits within the assigned cluster, were calculated with the
silhouette MATLAB function and shown in Figure 9B.
The average silhouette value of all participants for a three-
cluster solution was 0.56 (95% CI from 0.53 to 0.58)
with means for Clusters 1, 2 and 3 of 0.51, 0.60 and 0.52
respectively. Overall, the three identified clusters seem to
provide a good partitioning of individual preference functions
(Rousseeuw, 1987). In addition, the clusters derived via the
k-means procedure seem to correspond remarkably well
with the subjective classification of individual preference
functions into intermediate, smooth and sharp groups
respectively.

FIGURE 9 | (A) Summary preference function for participants classified as belonging to one of the three clusters determined by the k-means clustering procedure.
(B) Silhouette values for participants assigned to different clusters.
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Dimensional Structure of Interindividual Differences
In order to investigate the dimensional structure of the observed
interindividual differences we performed a Q-mode factor
analysis as was done in McManus (1980) and McManus et al.
(2010). Q-mode analysis is based on a transposed data set and
pairwise correlations between the participants instead of stimuli.
The principal component analysis identified two factors that
were able to explain more than 80% of variations between
observers for each image type. Summary preference functions for
the two factors with each image type are depicted in Figure 10.

Factor 1 differentiates between preference for images with
either high or shallow amplitude spectrum slope values and
it explains 56.2%, 42.7%, and 67.9% of the variance for the
grayscale, thresholded and edges only images respectively. With
the grayscale images this factor has positive and negative loadings
associated with the lower and higher amplitude spectrum slope
values respectively while the opposite seems to be the case
with the threshoded and edges only images. As discussed
previously, the differences in Factor 1 loadings between the
grayscale and other images are consistent with the specific
effect of image blur in grayscale images. Factor 2 can be
described as the intermediate preference factor and it explains
33.5%, 41.2% and 19.6% of the variance for the grayscale,
thresholded and edges only images respectively. Overall, these
results suggest that remarkably similar, image driven, structural
dimensions mediate inter individual differences in the preference

for the range of visually distinct images with fractal-like scaling
characteristics.

EXPERIMENT 2: STABILITY OF
INTERINDIVIDUAL DIFFERENCES IN
PREFERENCE FOR FRACTAL SCALING
CHARACTERISTICS ACROSS VARIETY OF
PATTERNS

In Experiment 1, we identified three major sub-groups of
individual preference functions in grayscale, thresholded and
edges only fractal images. The patterns of individual preference
functions in different sub-groups and the dimensional structure
of the observed inter individual differences were remarkably
similar across different image types. However, the observed
similarity concerns the regularity between different groups of
observers. The main aim of this study is to investigate the
extent to which the patterns of preferences across different
stimulus categories remain ‘‘stable’’ at the level of individual
observers.

The individual preferences have been reported as generally
consistent and stable over time. For example, Vessel and
Rubin (2010) reported high within-observer split-half
reliability of individual observers’ preferences for both
abstract and real-world images (0.67 and 0.70 respectively).

FIGURE 10 | Summary preference functions for the two factors resulting from the Q-mode principal component analysis for the grayscale
(A), thresholded (B), and edges only images (C). Percentages in each panel indicate the proportion of variance explained by each factor.
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Even when the testing occasions were separated by longer
intervals in between, such as days or weeks, the high level
of consistency in individual preference was still evident
(Halpern et al., 2008; McManus et al., 2010). However, these
measures of stability are generally based on the same type of
stimuli.

In this study, we probe whether participants with preference
for certain fractal structure will also prefer similar structure
in a range of visually distinct images. In other words, stability
here denotes the consistency of an individual’s preference
patterns. For example, an individual whose preference for
high amplitude slope is maintained for all fractal classes
would be regarded as more stable than an individual whose
preference for high amplitude slopes is limited to only one
class. Stable patterns of individual differences, or a lack thereof,
can suggest factors mediating preference for different kinds of
fractal classes and variations in fractal scaling characteristics of
images.

For this purpose, wemeasure group and individual preference
functions in the same group of observers across different image
types. Figure 11A shows examples of image types used in this

study, that in addition to the grayscale, thresholded and edges
only images include ‘‘mountain’’ and ‘‘terrain’’ derivations from
the original grayscale image. As it can be seen in Figure 11B, the
terrain image is simply a depth plot of the grayscale image in
which the height of each point is proportional to the grayscale
value (brightness) of the corresponding point in the grayscale
image. The ‘‘mountain’’ variant is created by taking a vertical
slice through the terrain to create 1D mountain profile. In
relation to the terrain image, the thresholded variant can also
be viewed as a horizontal slice taken through the terrain at
a selected height. Then all of the terrain below this height is
colored black and all of the terrain above is colored white. In
fractal terminology, this is often referred to as the coastline
pattern (black being the water), with the ‘‘edges only’’ image
generated from this image by highlighting the coastline edges in
white.

Taken together, these five families of fractals are powerful
stimuli for examining people’s generic responses because,
although superficially quite different in appearance, they all
possess identical scaling properties. Based on our previous
investigations, we expect that preference within each image

FIGURE 11 | Types of images with fractal-like scaling characteristics used in Experiment 2. (A) From left to right, examples of grayscale, thresholded,
edges, mountain and terrain images. (B) An illustration of the relationship between different types of image, all derived from the original seed grayscale image.
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type will vary systematically as a function of amplitude slope.
Stability in preference will be assessed by calculating correlation
coefficients between preference scores for different image types
for each individual observer.

Experiment 2: Materials and Methods
Participants
A total of 50 Psychology undergraduate students at University
of New South Wales (mean age 19.28; 50% male) participated
in exchange for course credit. All observers viewed all five
different image types. Informed consent, testing and debriefing
procedures were approved by the UNSW Human Research
Ethics Advisory Panel.

Design
This study employed a 5 (fractal image type: grayscale,
thresholded, edges, mountain, and terrain) × 9 (amplitude
spectrum slope: from 0.5 to 2.5 in increments of 0.25) repeated
measures design.

Stimuli
The grayscale, thresholded and edges only images were
constructed in the same way as described in Experiment 1. The
terrain images were created by converting the grayscale images
into a depth map by using a 3D Adobe Photoshop tool which
creates a mesh with the height of each point proportional to
the grayscale value of the corresponding point in the grayscale
image (see Figure 12). The ‘‘mountain’’ images were created by
taking a vertical slice through the terrain to create 1D, black and
white mountain profile. Each series of images contained nine
experimental images varying in the input amplitude spectrum
slope α values of 0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and
2.50 of the original grayscale images. For each different image
type five different separate sets were created and as in Experiment
1 the mean brightness and the RMS contrast of all images were
controlled at 126 and 0.30 respectively.

Apparatus
The same apparatus as in Experiment 1 was used.

FIGURE 12 | Group preference functions for different type of fractal
images in Experiment 2 (N = 50).

Procedure
As in Experiment 1, the paired comparison procedure was used
to measure preference in five different types of images. Each
participant viewed 360 unique pairings of different amplitude
slope value across five different image types. Asmentioned before
there were five different sets with different seed images and they
were counterbalanced across different participants such that each
set was viewed by a subgroup of 10 participants.

Experiment 2: Results and Discussion
Average (Group) Preference for Different Types
of Images
The average visual preference functions for the five different
types of images are depicted in Figure 13. The preference
expressed as the proportion of trials on which the certain image
was chosen plotted as a function of the input amplitude spectrum
slope of the original grayscale images. The error bars correspond
to 95% CI associated with the respective condition means. As
before, the average preference functions show a similar pattern
with the visual preference highest for the intermediate amplitude
spectrum slopes or fractal dimension values for the grayscale,
thresholded, edge and terrain images.With themountain images,
the average preference function, while showing the same trend
as other images at the shallower amplitude spectrum slope
values, remained high for the intermediate as well as the higher
amplitude spectrum slope values. Repeated-measures ANOVA
revealed the significant main effect of the amplitude slope (F(8,42)
= 5.866, p< 0.000) and significant interaction between amplitude
slope/fractal dimension (F(32,18) = 2.262, p < 0.035). The main
effect of image type was not significant (F(4,46) = 1.676, p <

0.172).

FIGURE 13 | The distribution of consistency scores for 500 bootstrap
simulations with randomly perturbed sub-group (yellow columns) or
cluster (blue columns) membership. Blue and yellow diamond represent
the average consistency scores for subjectively defined sub-groups and for
clusters assigned by k-means analysis.
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Stability of Inter-individual Differences in Preference
for Fractal Images
Like in the Experiment 1, it was possible to subjectively identify
four distinct sub-groups of individual preference functions
with each of five different image types. On average, across all
image types, the percentage of participants classified as the
intermediate, sharp, smooth and other sub-groups were 32.4%,
26.8%, 31.2% and 9.6% respectively. Similarly, the, k-means
clustering procedure yielded 21.2%, 34%, 34.4% and 10.4%
of participants classified as intermediate, sharp, smooth and
other groups respectively. A Chi-square analysis has revealed
a significant difference between the frequency distributions
of different sub-groups across different image types (35.81,
p < 0.0003 for subjectively classified and 25.12, p < 0.05 for
the k-means clustering). There was relatively higher proportion
of intermediate and sharp categories with the grayscale and
terrain images compared to the thresholded, edge and mountain
images.While these variations appear to be somewhat larger than
those observed in Experiment 1, it is hard to make the direct
comparisons and conclusive interpretations of these differences
given the variations in the experimental design between the two
studies.

The within subject design employed in this study allows
us to investigate intraindividual stability of preference for
variations in fractal scaling across a widely different image
types. As an index of the stability of individual preference
functions, for each observer, we compute the consistency
score for each participant by counting the highest number
of consistent response types across the five image categories.
The consistency scores could range from minimum of two to
the maximum of five with the obtained average consistency
scores of 3.8 (95% CI from 3.5 to 4.1) and 3.32 (95%
CI from 3.0 to 3.6) for the subjectively- and k-means
clustering-based classifications. In order to estimate the baseline
consistency score we performed random permutations of
assigned classifications within each image type and re-
calculated consistency scores for each individual participant.
Figure 13 depicts the distribution of average consistency scores
based on 500 bootstrap simulations of random permutations
for subjectively- (yellow) and k-means clustering- (blue)
based classifications. The yellow and blue symbols represent
the obtained average consistency scores based on the two
classification procedures respectively.

As another index of the stability of individual preference
functions, we calculate pairwise correlations between
participant’s preference scores among different types of
images. With five different types of images, there were 10
unique pairings for each of 50 observers, resulting in a total
of 500 individual correlation coefficients; 50 for each of the
ten unique pairings between different image types. Figure 14
shows the histogram of all 500 correlations across all individual
and all image types (panel A) and the average correlation
between preference scores for different image type parings for
50 observers (panel B). Figure 14C shows the histograms of
intraindividual correlations for each of the specific image type
pairings (top panel) and the corresponding box and whiskers
plots of the frequency distributions of these intra-individual

correlations. In the boxplot, the 25–75 percent quartiles of the
distribution are drawn using a box. The median is shown with
a horizontal line inside the box. Maximum ‘‘whisker’’ length
corresponds approximately to±2.7 SD and 99.3% coverage.

As the various panels in Figure 14 show, the levels of within-
observer consistency in preference between different image types
observed in this study are quite high despite the substantial
differences in the appearance of these images. As can be seen
in Figure 14B, the highest individual correlations of preference
scores were obtained between the thresholded and edges only
images (Mean = 0.69; 95% CI = 0.56–0.78, t(49) = 11.95,
p < 0.0001), with relatively high intraindividual correlations also
obtained between threshoded and mountain (Mean = 0.60; 95%
CI = 0.45–0.73, t(49) = 8.658, p < 0.0001) as well as edge and
mountain images (Mean = 0.52; 95% CI = 0.31–0.68, t(49) =
5.458, p < 0.0001). The lowest intraindividual correlations were
obtained between the grayscale and other types of images, in
particular between the grayscale and mountain images (Mean =
0.19; 95% CI =−0.02 to 0.37, t(49) = 1.756, p = 0.0853).

In general, although the observed within-observer consistency
does not reach the levels of the immediate and short-
term (30 min) test-retest reliability reported by McManus
et al. (2010), the highest levels of within-observer consistency
observed in this study are similar to the measures of split-
half reliability in aesthetic preference for the abstract and real
world images reported by Vessel and Rubin (2010). Given
the large heterogeneity of image types used in our study,
the observed levels of within-observer consistency can be
considered as measure of generalizability of aesthetic preference
across different image types, as opposed to a more traditional
conceptualization of test-retest, or split-half reliability.

The generalizability seems the highest between thresholded,
edge and mountain images and the lowest between the
grayscale and mountain and grayscale and terrain images. While
the preference scores seem to be overwhelmingly driven by
the variations in the fractal scaling characteristics across all
image types, we think that relatively lower agreements in the
preference scores between specific pairings are attributable to
the presence of additional image features known to be effective
in influencing image preference. For example, in the case of
grayscale and mountain images we believe that image blur and
contour smoothness respectively have influenced the respective
individual preference functions (Bar and Neta, 2006; Juricevic
et al., 2010).

We believe that might be related to the high degree of
perceived image blur at higher amplitude spectrum slope values
in grayscale images, which is not present in thresholded, edges
only and mountain images. Previous studies, including our
own, have reported decreased visual preference as a function
of image blur (Juricevic et al., 2010; Spehar and Taylor, 2013;
Spehar et al., 2015). The thresholded, edges only and mountain
images are not associated with any degree of edge blur and
at certain levels are comprised of smoothly curved contours.
The smooth contour curvature is a feature often associated
with a high degree of visual preference and aesthetic rating
(Hogarth, 1753; Bar and Neta, 2006; Carbon, 2010; Bertamini
et al., 2015; Gómez-Puerto et al., 2016) and this might have
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FIGURE 14 | Pairwise, within-observer, correlations between different image type: (A) Histogram of individual correlations between preference functions for
different image types (N = 500); (B) Heatmap depicting the average individual correlations between different image pairings (∗∗p < 0.001). (C) Pairwise,
within-observer, correlations between different image types broken by the specific image type pairings: (top panel) Histogram of individual correlations for each
specific image type pairing; (bottom panel). The corresponding box and whisker plots of correlation coefficients of individual preference functions between different
image type pairings.

contributed to the intraindividual differences observed in our
study.

Dimensional Structure of Inter-individual Differences
Like in Experiment 1, in order to investigate the dimensional
structure of the observed inter-individual differences we
performed a Q-mode factor analysis (McManus, 1980; McManus
et al., 2010) on pairwise correlations between preference scores
of different observers. Again, the principal component analysis
identified two factors that were able to explain a large proportion
of variations between observers for all image types. The summary
preference functions for different image types for the two factors
are illustrated in Figure 15.

The Factor 1 accounts for approximately 72% of the
total variance across different image types and, like before,
differentiates between preferences for images with either low
or high amplitude spectrum slope values. The Factor 1
loadings for the grayscale and terrain images are positive

with the low amplitude spectrum slope values and negative
with the high amplitude spectrum slope values, suggesting
the similar effect of image blur and surface smoothness on
visual preference between different observers. The opposite
pattern holds for the Factor 1 loadings with the grayscale,
edge and mountain images where contour smoothness is a
likely factor affecting visual preference at high amplitude
spectrum values in some observers. Factor 2 accounts on
average for approximately 16% of the total variance and
corresponds to the preference for the intermediate spectrum
slope values.

GENERAL DISCUSSION

Our study extends the previous efforts to systematically
investigate both the extent and structure of individual
differences in aesthetic preference (Thorndike, 1917; McManus,
1980; Höfel and Jacobsen, 2003; McManus et al., 2010;
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FIGURE 15 | Summary preference functions for the two factors resulting from the Q-mode principal component analysis for the grayscale (A),
thresholded (B), edges (C), mountain (D) and terrain images (E) respectively. Percentages in each panel indicate the proportion of variance explained by
each factor.

Vessel and Rubin, 2010). We focus on individual differences in
preference for variations in fractal-like scaling characteristics
in visual patterns ranging from filtered synthetic noise to
fractal contours and terrain images and find that the average
group preferences with all image types mostly conform to
the previously reported pattern of highest preferences for the
intermediate levels of fractal-like scaling characteristics (Spehar
et al., 2003, 2015; Juricevic et al., 2010; Spehar and Taylor, 2013).
Our analyses also suggest that the fractal edge parameters, not
the overall photometric characteristics, are important drivers of
both image preference and perceived complexity in these images.

Both the subjective and statistical clustering analysis of the
observed interindividual differences revealed distinct subgroups
that were highly stable across all image types. While a sizable
proportion of participants exhibited a typical peak preference for

the intermediate fractal-scaling characteristics, other participants
exhibited either a linear increase in preference with increasing
amplitude spectrum slope, or a linear decrease in preference
with increasing amplitude spectrum slope. Labeled ‘‘smooth’’
and ‘‘sharp’’ respectively, these sub-groups had approximately
20% of participants each in Experiment 1 and around 30%
of participants in Experiment 2. The patterns of preference
exhibited by these two groups in our study are quite similar to
what was observed in a recent study by Satgunam et al. (2013)
investigating factors affecting preference for enhanced video
quality. Theymeasured visual preference for videos with different
levels of contour enhancement levels, resulting in contours
with different degrees of sharpness. Although they were not
interested in individual differences at the outset of their study,
they found that participants could be clearly classified into those
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who preferred contour enhancement (also labeled ‘‘sharp’’) and
those who preferred unenhanced images (also labeled ‘‘smooth’’).
As the increasing levels of contour sharpness are associated with
the concomitant changes in the amplitude spectrum slopes of the
entire image and the associated fractal scaling characteristics, the
preference for different degrees of contour enhancement might
reflect the preference for the images with varying fractal scaling
characteristics, as observed in our study.

Our investigation of aesthetic preferences for fractal-like
scaling characteristics was extended to include 1D contour
images (mountain profiles) as well as the simulated three-
dimensional terrain images. Moreover, the visual preference
across different image types was measured in the same
group of participants, allowing us to systematically investigate
the stability of individual preferences for fractal-like scaling
characteristics. Both the average and individual preference
functions were correlated across different image types, thus
demonstrating a good agreement and stability of image-
driven influences on visual preference. Individual observers
demonstrated high levels of consistency in preference for
certain fractal scaling characteristics across a large range of
image categories. In addition, a formal principal component
analysis (Q-mode) has revealed a highly consistent latent
dimensional structure of the observed interindividual differences
in both experiments. For all investigated image types, the
principal component analysis identified two factors that
were able to explain more than 80% of variations between
observers.

These findings are in agreement with the past finding that
individuals tend to be consistent in the particular dimension or
structure of stimuli they preferred (Jacobsen, 2004; Halpern et al.,
2008; McManus et al., 2010; Vessel and Rubin, 2010). However,
our measures of stability extend the traditional split half or test-
retest measures as they speak to the generalizabiliy of preference
patterns across images types ranging from one-dimensional
contours to the simulated three-dimensional surfaces.

Abstract images have low semantic meaning, and we do not
believe that the observed patterns of preference were substantially
influenced by the factors such as interpretability and shared
semantic associations related to these images (Vessel and Rubin,

2010). Our initial experiments (Spehar et al., 2003) used stimuli
for which we couldn’t exclude the possibility of a semantics
playing a role—photographs of natural objects such as trees and
clouds, Pollock paintings which are frequently referred to as
organic and look tomany like trees and vegetation, and computer
simulations of clouds (which looked like clouds!!!). Although
Rogowitz and Voss (1990) suggested that participants could
derive representational meaning even from abstract images, such
as those resembling clouds, the physical appearances of stimuli
used in the present study varied substantially, making it unlikely
that participants derived similar representational meaning across
different image types. Semantic meaning is consequently unlikely
to be the essential factor for the preference stability found in the
present study.

Another possible factor that could facilitate the stability of
preferences are the properties inherent and shared in stimuli.
Güçlütürk et al. (2016) have recently reported systematic
differences in visual preference for patterns varying in
perceived and objectively measured levels of complexity.
All our images possess scale invariant characteristics that
are encountered in natural scenes. Our visual system has
evolved within, and has the enhanced processing capabilities
related to these characteristics (Knill et al., 1990; Tadmor
and Tolhurst, 1994; Párraga et al., 2000, 2005; Hansen
and Hess, 2006). Consistent with these notions is our own
work showing a close association between the aesthetic
judgments of spatial patterns and visual sensitivity to precisely
defined spatial structure of such patterns (Spehar et al.,
2015).
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