@ARTICLE{10.3389/fnhum.2016.00415, AUTHOR={Heuer, Anna and Schubö, Anna and Crawford, J. D.}, TITLE={Different Cortical Mechanisms for Spatial vs. Feature-Based Attentional Selection in Visual Working Memory}, JOURNAL={Frontiers in Human Neuroscience}, VOLUME={10}, YEAR={2016}, URL={https://www.frontiersin.org/articles/10.3389/fnhum.2016.00415}, DOI={10.3389/fnhum.2016.00415}, ISSN={1662-5161}, ABSTRACT={The limited capacity of visual working memory (VWM) necessitates attentional mechanisms that selectively update and maintain only the most task-relevant content. Psychophysical experiments have shown that the retroactive selection of memory content can be based on visual properties such as location or shape, but the neural basis for such differential selection is unknown. For example, it is not known if there are different cortical modules specialized for spatial vs. feature-based mnemonic attention, in the same way that has been demonstrated for attention to perceptual input. Here, we used transcranial magnetic stimulation (TMS) to identify areas in human parietal and occipital cortex involved in the selection of objects from memory based on cues to their location (spatial information) or their shape (featural information). We found that TMS over the supramarginal gyrus (SMG) selectively facilitated spatial selection, whereas TMS over the lateral occipital cortex (LO) selectively enhanced feature-based selection for remembered objects in the contralateral visual field. Thus, different cortical regions are responsible for spatial vs. feature-based selection of working memory representations. Since the same regions are involved in terms of attention to external events, these new findings indicate overlapping mechanisms for attentional control over perceptual input and mnemonic representations.} }