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Schizophrenia is characterized by marked language deficits, but it is not clear how these
deficits arise from the alteration of genes related to the disease. The goal of this paper
is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give
support to the view that the abnormal presentation of language in this condition is heavily
rooted in the evolutionary processes that brought about modern language. To that end
we will focus on how the schizophrenic brain processes language and, particularly, on its
distinctive oscillatory profile during language processing. Additionally, we will show that
candidate genes for schizophrenia are overrepresented among the set of genes that are
believed to be important for the evolution of the human faculty of language. These genes
crucially include (and are related to) genes involved in brain rhythmicity. We will claim that
this translational effort and the links we uncover may help develop an understanding of
language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile,
and its high prevalence among modern populations.
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INTRODUCTION

Schizophrenia is a pervasive neurodevelopmental disorder entailing several (and severe) social
and cognitive deficits (van Os and Kapur, 2009). Usually, people with schizophrenia exhibit
language problems at all levels, from phonology to pragmatics, which coalesce into problems for
speech perception (auditory verbal hallucinations), abnormal speech production (formal thought
disorder), and production of abnormal linguistic content (delusions, commonly understood to be
distinct from thought disorders), which are the hallmarks of the disease in the domain of language
(Stephane et al., 2007, 2014; Bakhshi and Chance, 2015). Importantly, although schizophrenia
is commonly defined as a disturbance of thought or selfhood, some authors claim that most
of its distinctive symptoms may arise from language dysfunction; in particular, from failures in
language-mediated forms of meaning (Hinzen and Rosselló, 2015).

There is ample evidence that schizophrenia is caused by a complex interaction between genetic,
epigenetic, and environmental factors. To date, schizophrenia has been related to mutations,
copy number variation, or changes in the expression pattern of an extensive number of genes
(see O’Tuathaigh et al., 2012; Flint and Munafò, 2014; McCarthy et al., 2014; Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014 for recent reviews). Many of them
point to specific regulatory and signaling pathways (like dopaminergic, glutamatergic, GABAergic,
and cholinergic pathways, the neuregulin signaling pathway, and the Akt/GSK-3 pathway) and
to specific neural mechanisms (like those involving dendritic spines and synaptic terminals,
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synapses, gray matter development, and neural plasticity,
Buonanno, 2010; Karam et al., 2010; Bennett, 2011;
Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014; Hall et al., 2015). However, the gap between
genes, brain abnormalities, and cognitive dysfunction in
schizophrenia still remains open, particularly regarding its
distinctive linguistic profile.

The goal of this Perspective article is to suggest new ways of
bridging the gap between genes and schizophrenia. Cognitive
disorders are increasingly being conceived as oscillopathies, or
pathological variations of the normal profile of brain rhythmicity
(Buzsáki and Watson, 2012; Buzsáki et al., 2013). Current
understanding suggests that schizophrenia is characterized
by asynchronous neural oscillations, and particularly, by an
inhibitory interneuron dysfunction (Moran and Hong, 2011;
Pittman-Polletta et al., 2015). Importantly, brain rhythms are
heritable components of brain function (Linkenkaer-Hansen
et al., 2007), also in pathological conditions (see Hall et al.,
2011 for schizophrenia). At the same time, there seems to be a
robust link between language disorders and language evolution:
recently evolved cognitive abilities are preferably disturbed in
disorders because of the reduced resilence of the neural networks
(see Benítez-Burraco, 2016 for discussion). The human pattern
of brain activity can be conceived of as a slight variation of
the patterns observed in other primates (Buzsáki et al., 2013).
Accordingly, our species-specific ability to acquire and use
languages (aka language-readiness) plausibly resulted from the
emergence of a new pattern of cortical inhibition and of long-
distance connections across the brain (see Boeckx and Benítez-
Burraco, 2014a for details), both of which are aspects that are
targeted in schizophrenia (Morice and McNicol, 1985; Horn
et al., 2012; Jiang et al., 2015). If we are on the right track,
we expect that examining language deficits in schizophrenia
from this oscillopathic and evolutionary perspective will help
us understand its distinctive neurocognitive profile, but also its
origins and its prevalence among modern populations.

FROM LANGUAGE DEFICITS TO THE
BRAIN IN SCHIZOPHRENIA

Schizophrenics have been known to have disordered speech
(McKenna and Oh, 2005), but the most severe linguistic changes
occur at the internal, conceptual level, where studies frequently
examine patients who experience thoughts being “inserted” into
them from outside sources or “broadcast” out of their minds
and into other people’s (Crow, 1980; Frith, 1992). Patients also
sometimes hear their thoughts “echoed,” or spoken aloud, and
are also known to experience third-person and second-person
auditory hallucinations, with an external voice either discussing
them or commenting on their actions (Ramsden, 2013, pp.
234–265). Frith and Allen’s (1988) review observed “a failure
to structure discourse at higher levels.” Abnormalities can also
be detected with syntax, however, and this is where we will
focus most of our attention. Schizophrenic patients exhibit fewer
relative clauses (as their discourse difficulties would predict),
shorter utterances, and less clausal embedding (Fraser et al., 1986;

Thomas et al., 1987). Importantly, this relative lack of clausal
embedding implies that patients do not engage in thoughts about
mental states or Theory of Mind (Morice and Ingram, 1982;
Morice and McNicol, 1986).

In contrast to normal left-lateralization of activity in fronto-
temporal regions during language processing, a wide range
of schizophrenic patients exhibit bilateral and right-lateralized
activity (Weiss et al., 2005; Diederen et al., 2010). Angrilli
et al. (2009) have relatedly proposed that, judging by evoked
potentials, certain features of schizophrenia appear to be (partly)
a failure of phonological left hemispheric dominance, since
the above deficit in lateralization is specific to phonological
processing, being absent in semantic and word recognition tasks.

FROM BRAIN RHYTHMICITY TO
LANGUAGE DEFICITS IN SCHIZOPHRENIA

Although schizophrenia was for a time deemed “the graveyard
of neuropathology” (Plum, 1972) due to its unusually subtle
neurophysiological markers, we believe that research in neuronal
dynamics (particularly over the past half-decade) has the
potential to carve a clearer image of the abnormally-developing
brain. Oscillations play a central role in selectively enhancing
neural assembly interconnectivity and information processing
through the provision of spatio-temporal windows of enhanced
or reduced patterns of excitability (Jensen et al., 2014;Weisz et al.,
2014), and are consequently strong candidates for the origin of
certain cognitive faculties.

If the translational approach taken in Murphy (2015a, 2016)
toward the brain dynamics of language is accurate, and if
Hinzen and Rosselló (2015) are correct in claiming that linguistic
disorganization in schizophrenia “plays a more central role in
the pathogenesis of this disease than commonly supposed,” then
it is appropriate to inform our understanding of schizophrenia
by focusing on the central role of brain rhythms in linguistic
computation. If schizophrenia represents a breakdown in normal
linguistic cognition, then we would expect to see disruptions in
the model of brain dynamics of language processing outlined
in Murphy (2015a) when examining the recent, burgeoning
literature concerning the oscillatory profile of schizophrenics.

To briefly summarize previous work, it was claimed in
Murphy (2015a,b) that set-formation amounts to the α rhythm
embedding cross-cortical γ rhythms, with α reflecting long-
range cortical interactions (Nunez et al., 2001) and thalamo-
cortical loop activity (Nunez and Srinivasan, 2006). The syntactic
operation of “Transfer” (which “chunks” constructed objects into
short-termmemory) was claimed to amount to the embedding of
these γ rhythms inside the θ band, generated in the hippocampus.
It was also claimed that labeling (maintaining an item in memory
before coupling it with another, yielding an independent syntactic
identity) amounts to the slowing down of γ to β before β-α
coupling, likely involving a basal ganglia-thalamic-cortical loop.
These suggestions are in line with Mai et al.’s (2016) finding of
γ-related modulations during semantic and syntactic processing
(our claims should also not be conflated with the well-known
phonological oscillatory investigations of Giraud and Poeppel
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(2012). We will adopt these assumptions here when interpreting
the rhythmic literature on schizophrenia.

Since schizophrenia, like other cognitive impairments,
appears not to be the result of a locally delimited neural deficit but
rather emerges from distributed impairments, neural oscillations,
and their role in flexible brain connectivity have recently
become the target of research. Investigating the frequency and
brain location of the neural oscillations involved in lexical
processing in schizophrenia, Xu et al. (2013) conducted an MEG
study in which patients discriminated correct from incorrect
visually presented stimuli. This lexical decision task revealed
that the patients, relative to healthy controls, showed abnormal
oscillatory activity during periods of lexical encoding and post-
encoding, particularly in the occipital and left frontal-temporal
areas (see also Sun et al., 2014). Since a broad range of
rhythms were implicated, we will avoid speculation about the
specific operations impaired and instead suggest that the results
imply familiar problems with semantic memory. However, the
results did reveal reduced temporal lobe α and left frontal
lobe β activity during lexical processing, suggesting difficulties
in assigning lexical classes (labels) to items and successful
categorization (findings corroborating the cartographic profile
presented above, which included reduced activation during
complex sentence processing at left superior frontal cortex).
These results corroborate the more general findings of reduced
α and β in schizophrenia by Moran and Hong (2011) and
Uhlhaas et al. (2008). A level of thalamocortical dysrhythmia
was also detected by Schulman et al.’s (2011). MEG study;
a discovery which bears on the claim that thalamocortical
axons also likely play a role in language externalization (Boeckx
and Benítez-Burraco, 2014b). These suggested problems with
the mechanisms responsible for phrase structure building also
gain support from Ghorashi and Spencer’s (2015) findings that
attentional load increases β phase-locking factor at frontal,
parietal and occipital sites in healthy controls during a visual
oddball task but not in schizophrenic patients (although this
varied across individuals of different abilities), with the latter
group having difficulty attending to and maintaining relevant
objects in memory (perhaps as a result of their semantic memory
deficits). β-generating circuits may well be responsible, then, for
the types of computations attributed to them in Murphy (2015a).

An earlier MEG sentence presentation task by Xu et al.
(2012) also found reduced α and β in left temporal-parietal
sites, along with reduced δ at left parietal-occipital and right
temporal sites, and reduced θ at occipital and right frontal
lobe sites, suggesting problems with phrase structure chunking;
that is, problems with word movement and phrasal embedding,
as attested above (see Ferrarelli et al., 2012). Schizophrenic
patients also displayed reduced δ synchrony at left frontal lobe
sites after sentence presentation, suggesting semantic processing
dysfunctions. These findings are consistent with Hirayasu et al.’s
(1998). MRI study of schizophrenic and bipolar individuals,
which reported relatively reduced gray matter volumes in the
left superior temporal gyrus for schizophrenics. Their results also
give some support to the present hypothesis about chunking
difficulties in schizophrenia, since they also reported reduced
hippocampal volumes. Altogether, these studies are in agreement

the findings of Hoffman et al. (1999), who suggested that
the core schizophrenic deficit is not centered on attentional-
perceptual cognitive processes, but rather verbal working
memory (and, hence, difficulties with syntactic computation,
given the “chunking” nature of linguistic phrase structure
building; see Narita, 2014), mediated by oscillations generated
in the hippocampus and left temporal regions (Murphy, 2015a).
Başar-Eroğlu et al. (2011) also documented reduced anterior α

in response to simple auditory input, suggesting less efficient
processing power.

Power and synchrony reductions in evoked γ have also
been documented in chronic, first-episode and early-onset
schizophrenia (Williams and Boksa, 2010). Given the role of
this band in feature binding and object representation (Uhlhaas
et al., 2008) and its functional significance in the present model
(Murphy, 2015a, 2016), this suggests that schizophrenics have
difficulties generating the correct category of semantic objects to
employ in successful phrase structure building, as the behavioral
results of lexical decision and related tasks appear to verify
(likely explaining the features of delusions and formal thought
disorder reviewed above). More recent studies appear to support
this perspective. The amplitude of EEG γ was measured during
phonological, semantic, and visuo-perceptual tasks by Spironelli
and Angrilli (2015). Schizophrenic patients, relative to normal
controls, exhibited a significantly weaker hemispheric asymmetry
across all tasks and reduced frontal γ. Ferrarelli et al. (2008)
also found a decreased γ response in schizophrenic patients after
TMS stimulation to the frontal cortex, suggesting an impaired
ability to efficiently generate this rhythm. This is of particular
significance given that γ amplitude has been shown to scale
with the number of items held in working memory (Roux et al.,
2012), and the limited phrase structure building and syntactic
embedding capacities of schizophrenic patients would follow
naturally from these results.

Recall also that the model of linguistic computation adopted
here invokes a number of cross-frequency coupling operations. It
is of interest, then, that schizophrenic patients showed higher γ-
α cross-frequency coupling in Popov and Popova’s (2015) study
of general cognitive performance, despite this co-varying with
poorer attention and working memory capacities. The reason for
this may be that the increased phase-amplitude-locking likely
results in smaller “gamma pockets” of working memory items
(as Korotkova et al., 2010 argue on independent grounds) and
hence low total γ power. In this instance, the size and order of
working memory sequences outputted by the conceptual systems
is not optimally compatible with the oscillopathic profile, leading
to greater rhythmic excitability, and yet inhibited linguistic
functionality. Global rhythmicity is consequently disrupted due
to unusually strong fronto-parietal interconnectivity. We believe
that this represents a genuine neural mechanism of an “interface”
between syntactically generated conceptual representations and
external (memory) systems; a highly significant finding if
corroborated by further experimental studies.

Corroborating Angrilli et al.’s (2009) above hypothesis about
schizophrenia being a failure of left-hemispheric phonological
dominance, an MEG study of the oscillatory differences between
bipolar disorder and schizophrenia revealed that schizophrenic
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patients showed delayed phase-locking in response to speech
sounds in the left hemisphere, relative to bipolar individuals
and normal controls (Oribe et al., 2010). This lack of left-
hemispheric dominance may trigger confusion about internal
and external voices and bring about a number of delusions, with
language’s normal computational functioning being derailed.
The left hypofrontality documented by Spironelli et al. (2011),
with schizophrenic patients showing greater δ amplitudes over
language-relevant sites (that is, greater functional inhibition),
similarly point to a general functional deficit at the core memory
sites of linguistic representations. It is also significant that the role
attributed to θ in the present dynomic model gains support from
the finding that this rhythm has greater amplitude in left superior
temporal cortex during auditory hallucinations in schizophrenia
(Ishii et al., 2000), as opposed to steady θ during resting state,
with patients being seemingly incapable of regulating chunking
operations. Given the identification of such dysrhythmias in
schizophrenia, repetitive TMS (rTMS) could be used as a
therapeutic intervention to modulate the oscillations responsible
for the abnormal linguistic profile documented above, as has been
done to improve performance on visual tasks (Farzan et al., 2012;
Barr et al., 2013). The oscillopathic profile constructed here is
presented in Table 1.

SCHIZOPHRENIA-RELATED GENES AND
SOME EVOLUTIONARY CONCERNS

As noted in the introduction, the number of genes related to
schizophrenia has been growing over recent years. Interestingly,
some of them are involved in the maintenance of the adequate
balance between neuronal excitation and inhibition and/or have
been related to language dysfunction. Likewise, as we also noted
above and will discuss in detail below, a robust link exists between
evolution and abnormal development and, in particular, between
language evolution and schizophrenia. In this section we focus
on candidate genes for schizophrenia that are involved in brain
rhythmicity and that have been related to language impairment
or to the dysfunction of basic cognitive abilities involved in
language processing, but also on genes important for language
evolution that play a role in brain rhythmicity and that are
candidates for schizophrenia. The genes we highlight seem to us
robust candidates for language deficits in this condition.

Schizophrenia-Candidates and Brain
Rhythmicity
Among the genes related to schizophrenia that play a role in
brain oscillations and that have been associated to language
dysfunction one finds ZNF804A. This gene encodes a zinc
finger binding protein important for cortical functioning and
neural connectivity, involved in growth cone function and
neurite elongation (Hinna et al., 2015). GWAs analyses have
identified a SNP tagging an intronic region of the gene (Gurung
and Prata, 2015) which have been found to impact on white
matter microstructure (Mallas et al., 2016). Schizophrenia risk
polymorphisms of ZNF804A have been also related to differences
in performance in the domain of phonology, such as in reading

and spelling tasks (Becker et al., 2012), but also in the domain
of semantics, specifically in task evaluating category fluency
(Nicodemus et al., 2014). ZNF804A modulates hippocampal
γ oscillations and, ultimately, the co-ordination of distributed
networks belonging to the hippocampus and the prefrontal
cortex (Cousijn et al., 2015), which are aspects known to be
impaired in schizophrenia, as noted above (Uhlhaas et al., 2008;
Godsil et al., 2013). Likewise, both NRG1 and its receptor
ERBB4, which have been posited as promising candidates for
schizophrenia as resulting from next-generation sequencing
analyses (Agim et al., 2013; Hatzimanolis et al., 2013), enhance
synchronized oscillations of neurons in the prefrontal cortex,
known to be reduced in schizophrenia, via inhibitory synapses
(Fisahn et al., 2009; Hou et al., 2014). Specifically NRG1
increases the synchrony of pyramidal neurons via presynaptic
interneurons and the synchrony between pairs of interneurons
through their mutually-inhibitory synapses (Hou et al., 2014).
Risk polymorphisms of NRG1 are associated with increased
IQs as well as memory and learning performance, along with
language in subjects with bipolar disorder (Rolstad et al., 2015).
Moreover, risk alleles for the gene correlate with reduced left
superior temporal gyrus volumes (a robust imaging finding
in schizophrenia, Tosato et al., 2012), a region related to
language abilities (Aeby et al., 2013). Another gene of interest
is PDGFR, which encodes the β subunit of the platelet-derived
growth factor (PDGF) receptor, known to be involved in the
development of the central nervous system. Pdgfr-β knocked-out
mice show reduced auditory phase-locked γ oscillations, which
correlates with anatomical (e.g., reduced density of GABAergic
neurons in the amygdala, hippocampus, and medial prefrontal
cortex), physiological (alterations of prepulse inhibition) and
behavioral (reduced social behavior, impaired spatial memory
and problems with conditioning) hallmarks of schizophrenia
(Nguyen et al., 2011; Nakamura et al., 2015). Additional evidence
of the involvement of this gene in schizophrenia comes from
risk polymorphisms analyses (Kim et al., 2008). Interestingly,
PDGFRA has been found to act downstream of FOXP2, the
renowned “language gene,” to promote neuronal differentiation
(Chiu et al., 2014, more on FOXP2 below).

Other genes of interest encode ion channels. Genome-wide
analyses (GWAs) have identified the schizophrenia risk gene
CACNA1I as one of the genes that may contribute to sleep
spindle deficits (Manoach et al., 2015). Sleep spindles are a type
of brain rhythm that recurs during non-rapid eye movement
sleep and that constrains aspects of the thalamocortical crosstalk,
impacting on sensory transmission, cortical plasticity, memory
consolidation, and learning (Manoach et al., 2015). CACNA1I
encodes a calcium channel and is abundantly expressed in
the spindle generator of the thalamus. Likewise CACNA1C
encodes the alpha 1C (α1C) subunit of the Cav1.2 voltage-
dependent L-type calcium channel, a calcium channel involved
in the generation of β to γ waves during wakefulness and
rapid eye movement (REM) sleep, and ultimately in sleep
modulation; all of which are aspects known to be altered in
schizophrenics (Kumar et al., 2015). Intriguingly, CACNA1C is
related to semantic (but not lexical) verbal fluency in healthy
individuals; conversely, risk alleles of this gene correlate with

Frontiers in Human Neuroscience | www.frontiersin.org 4 August 2016 | Volume 10 | Article 422

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Murphy and Benítez-Burraco Language Deficits in Schizophrenia

TABLE 1 | Summary of the present cognome-dynome model of linguistic computation and the observed differences in schizophrenia, where “cognomen”

refers to the operations available to the human nervous system (Poeppel, 2012) and “dynome” refers to brain dynamics (Kopell et al., 2014); lSTG denotes

left superior temporal gyrus, AVH denotes auditory verbal hallucination.

Frequency band Role in the present model of language computation Observed and predicted differences in schizophrenia

Delta (∼0.5–4Hz) Involved in phrasal processing and possibly labeling. Reduced at left parietal-occipital sites during sentence
processing; predicted to be disrupted in processing phrasal
embedding and relative clauses.

Theta (∼4–10Hz) Hippocampal source; embeds γ to generate cyclic transfer of
syntactic objects; involved more generally in memory retrieval.

Reduced at occipital and frontal lobe sites during sentence
processing; increased at lSTG during AVHs; predicted to be
reduced in deictic and definite NPs.

Alpha (∼8–12Hz) Synchronizes distant cortical regions; embeds γ generated
cross-cortically to yield inter-modular set-formation; involved in
lexical decision making.

Reduced at left temporal lobe during lexical and sentence
processing; predicted to be disrupted during certain
lexicalisations.

Beta (∼10–30Hz) When γ is slowed to β and coupled with α via a basal
ganglia-thalamic-cortical loop, syntactic objects are labeled;
holds objects in memory.

Reduced at left frontal lobe during lexical processing; predicted
to be disrupted in the maintenance of syntactic objects in
embedded clauses.

Gamma (∼30–100Hz) Generates syntactic objects before β holds them in memory;
central role in a number of linguistic operations; involved in
lexical processing.

Reduced at frontal sites during semantic tasks; higher
cross-frequency coupling with occipital α; predicted to be
disrupted in language-related memory tasks.

lower performance scores, and thus with non-fluent verbal
performance of schizophrenics (Krug et al., 2010). Two proteins
associated with ion channels are also worth considering, namely
DPP10 and CNTNAP2. DPP10 is a membrane protein that
binds specific K+ channels and modifies their expression and
biophysical properties (Djurovic et al., 2010). Also CNTNAP2
is associated with K+ voltage-gated channels, particularly, in
the axon initial segment of pyramidal cells in the temporal
cortex, that are mostly innervated by GABAergic interneurons
(Inda et al., 2006). Several studies have correlated CNTNAP2
with schizophrenia, including CNV and SNPs studies (Friedman
et al., 2008; Ji et al., 2013). The gene is also a candidate for
several types of language disorders, including child apraxia of
speech (Worthey et al., 2013), dyslexia (Peter et al., 2011), SLI
(Newbury et al., 2011), language delay, and language impairment
(Petrin et al., 2010; Sehested et al., 2010). CNTNAP2 additionally
affects language development in the normal population (Whalley
et al., 2011; Whitehouse et al., 2011; Kos et al., 2012),
apparently because of its effects on brain connectivity and
cerebral morphology (Scott-Van Zeeland et al., 2010; Tan et al.,
2010; Dennis et al., 2011) and dendritic arborization and spine
development (Anderson et al., 2012). CNTNAP2 is also a target
of FOXP2 (Vernes et al., 2008).

Several genes encoding neurotransmitter receptors have been
also related to both abnormal brain oscillation patterns and
language deficits in schizophrenia. HTR1A encodes the receptor
1A of serotonin and modulates hippocampal γ oscillations,
seemingly impacting on behavioral and cognitive functions,
such as learning and memory linked to serotonin function
(Johnston et al., 2014). Several studies involving common
polymorphisms of this gene highlight HTR1A as a promising
candidate for schizophrenia risk, treatment response to the
disease, and cognitive dysfunction in this condition (Gu et al.,
2013; Lin et al., 2015; Takekita et al., 2015). Similarly, receptors
of NMDA, particularly those containing the subunit NR2A,
encoded by GRIN2A, are known to be reduced in fast-firing

interneurons in schizophrenics, which plays a critical role in γ

oscillation formation; a blockade of NR2A-containing receptors
gives rise to strong increases in γ power and a reduction in
low-frequency γ modulation (Kocsis, 2012). More generally,
functional (GT)n polymorphisms in the promoter of the gene
have been associated with the disease (Iwayama-Shigeno et al.,
2005; Tang et al., 2006; Liu et al., 2015), and genome-wide
association analyses has identified GRIN2A as a risk factor
for schizophrenia (Lencz and Malhotra, 2015), emerging as
a promising candidate because of its expression in the adult
neocortex (Ohi et al., 2016). Additionally, mutations in GRIN2A
cause epilepsy-aphasia spectrum disorders, including Landau-
Kleffner syndrome and continuous spike and waves during slow-
wave sleep syndrome (CSWSS), in which speech impairment
and language regression are prominent symptoms (Carvill et al.,
2013; Lesca et al., 2013). The gene has been related as well to
rolandic epilepsies, the most frequent epilepsies in childhood,
in which cognitive, speech, language, and reading problems are
commonly observed (Dimassi et al., 2014). Speech problems
linked to GRIN2A mutations include imprecise articulation,
impaired pitch and prosody, and hypernasality, as well as poor
performance on maximum vowel duration and repetition of
monosyllables and trisyllables, resulting in lifelong dysarthria and
dyspraxia (Turner et al., 2015). Finally, cannabinoid-1receptor,
encoded by CNR1, modulates θ and γ oscillations in several
areas of the brain, including the hippocampus, impacting on
sensory gating function in the limbic circuitry (Hajós et al.,
2008). CNR1-positive GABA-ergic interneurons have been also
involved in several aspects of behavior, including response to
auditory cues (Brown et al., 2014). Translational convergent
functional genomics studies have highlighted CNR1 as an
important gene for schizophrenia onset (Ayalew et al., 2012).
Several risk polymorphisms of the gene have been related to
the disease, and specifically, to brain changes and metabolic
disturbances in schizophrenics (Yu et al., 2013; Suárez-Pinilla
et al., 2015). Interestingly, CNR1 has also been linked to cases
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of complete absence of expressive speech (Poot et al., 2009).
CNR1 is functionally linked to the last gene we wish to highlight,
namely, DISC1 (Xie et al., 2015). DISC1 encodes a protein
involved in neurite outgrowth, cortical development and callosal
formation (Brandon and Sawa, 2011; Osbun et al., 2011). DISC1
is a historical candidate for schizophrenia (but also to other
cognitive disorders like ASD), although its status as a candidate
is controversial, provided that most GWAs and CNV analyses
have been unable to independently implicate it in the disease
(see Farrell et al., 2015 for discussion; see Ayalew et al., 2012 for
a promising result). Nonetheless, in hippocampal area CA1 of
a transgenic mouse that expresses a truncated version of Disc1
mimicking the schizophrenic genotype, θ burst-induced long-
term potentiation (and ultimately, long-term synaptic plasticity)
has been found altered (Booth et al., 2014). The ability of DISC1
to regulate excitatory-inhibitory synapse formation by cortical
interneurons depends on its inhibitory effect on NRG1-induced
ERBB4 activation and signaling, ultimately effecting the spiking
interneuron-pyramidal neuron circuit (Seshadri et al., 2015).
DISC1 is also a target of FOXP2 (Walker et al., 2012).

Schizophrenia-Candidates and Language
Evolution
As pointed out above, there exists a robust link between
evolution and abnormal development. Because, as noted in
the introduction, brain rhythms are heritable components of
brain function, and because patterns of brain rhythmicity are
species-specific and disorder-specific, we hypothesized that new
candidates for language dysfunction in schizophrenia under
our oscillopathic view may emerge from the examination of
candidate genes for the evolution of language-readiness in
our species. As we also pointed out in the introduction, our
distinctive ability for acquiring and using language has been
hypothesized to have resulted from the emergence of new
patterns of cortical rhythmic coupling that habilitated the
neuronal workspace needed for transcending the boundaries of
core knowledge systems and being able to form cross-modular
concepts (known to be affected in schizophrenia); in turn, these
changes may have resulted from the brain changes linked to the
globularization of the anatomically-modern human (AMH) skull
(see Boeckx and Benítez-Burraco, 2014a for details). In a series
of related papers, we have put forth a list of tentative candidates
for globularization and language-readiness (Boeckx and Benítez-
Burraco, 2014a,b; Benítez-Burraco and Boeckx, 2015; see
Table 2). As discussed there, core candidates for globularization
and language readiness fulfill the following criteria: they show (or
are functionally related to genes showing) differences with extinct
hominin species, particularly, with Neanderthals/Denisovans,
which affect their regulatory regions, their coding regions,
and/or their methylation patterns; they play some role in
brain growth, regionalization, and/or neural interconnection;
they have been associated (or are functionally related to genes
associated) to conditions in which language, or cognitive abilities
important for language, are impaired; and they are candidates
(or are functionally related to candidates) for craniosynostosis
or some other conditions affecting skull development. Our list

of candidates encompasses genes involved in bone development,
brain development (specifically of GABAergic neurons), and
more generally, brain-skull cross-talk, like RUNX2, some DLX
genes (includingDLX1,DLX2,DLX5, andDLX6), and some BMP
genes (like BMP2 and BMP7). It also includes genes that regulate
subcortical-cortical axon pathfinding and that are involved in
the externalization of language (such as FOXP2, ROBO1, and the
genes encoding the SLITs factors). Finally, it also comprises genes
connecting the former two interactomes, including AUTS2 and
some of its partners. We have found ample evidence, in silico and
in the available literature, supporting the biological reliability of
these interactomes. Moreover, we have collected some empirical
evidence suggesting that many of the genes we regard important
for language evolution are dysregulated in clinical conditions
involving skull, brain, and cognitive anomalies. Accordingly,
differential expression of several of our candidates (DLX5,
ROBO1, SLIT2, NCAM1, TGFB2, DCN, RUNX2, and SFRP2)
was found in vivo in the sutures of people with non-syndromic
craniosynostosis, which are prematurely ossified, and also in vitro
in cells induced toward osteogenic differentiation (Lattanzi et al.,
2016).

Interestingly, we have found that candidates for schizophrenia
are overrepresented among the genes highlighted by Benítez-
Burraco and Boeckx (Table 2). Accordingly, nearly 5% of
the human genes are expected to be related to the disease
[assuming that the human genome contains about 20,000
protein-coding genes and that about 1000 of them have been
associated to schizophrenia, according to the Schizophrenia
Gene repository (http://www.szgene.org/)], In turn, around
30% of candidates for language readiness are also candidates
for schizophrenia (42 out of 153 in Table 2). Because the
involvement of these genes in language development and
evolution, this overlapping may account for the observed deficits
in schizophrenia regarding language abilities. These genes are
discussed in detail in the Supplementary Materials to this paper.
Moreover, several of these common candidates for language-
readiness and schizophrenia also play a role in brain rhythmicity,
including AKT1, APOE, DLX5, DLX6, EGR1, FMR1, GAD1,
MAPK14, MECP2, and SIRT1 (Table 2). These genes attracted
our attention as promising new candidates for the oscillopathic
nature of language deficits in schizophrenia. Finally, some of
the candidates for the schizophrenia dynome interact with
some of the genes encompassing these interactomes important
for our language-readiness (Figure S2). In our opinion, all
these findings reinforce the view that language impairment in
schizophrenia results from (and can be confidently construed
in terms of) abnormal patterns of brain connectivity and
dynamics.

This overrepresentation of candidates for schizophrenia
among the genes involved in language evolution is an intriguing
finding. It has been hypothesized that schizophrenia candidate
genes were involved in the evolution of the human brain and
that the processes they contributed to improving are identical
to those impaired in schizophrenics. For example, the human
prefrontal cortex, which is responsible for many human-specific
cognitive abilities, is differently organized in humans compared
to great apes as a result of a recent reorganization of the frontal
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TABLE 2 | Genes discussed in Section Schizophrenia-related genes and some evolutionary concerns.

Gene LR BR SZ Selected references Gene LR BR SZ Selected references

ABL1 + KDM5B +

AKT1 + + ++ Emamian et al., 2004; Wockner
et al., 2014

LHX2 +

ANAPC10 + MAPK1 + +

APOE + + + Verbrugghe et al., 2012 MAPK14 + + ++ Onwuameze et al., 2013; Chang
et al., 2015

ARHGAP32 + MECP2 + + ++ Cohen et al., 2002; McCarthy et al.,
2014

ARHGEF6 + MEF2A + ++ Thygesen et al., 2015

ARX + + MET + ++ Burdick et al., 2010

ASCL1 + NCAM1 + ++ Vawter et al., 2001; Atz et al., 2007;
Ayalew et al., 2012

ASPM + NCOA6 +

AUTS2 + + Zhang et al., 2014 NFASC +

BAZ2A + NKX2-1 +

BGLAP + NODAL +

BMP2 + NOTCH1 +

BMP7 + NOVA1 +

CACNA1C + ++ Krug et al., 2010 NR1H2 +

CACNA1I + ++ Manoach et al., 2015 NRG1 + + ++ Ayalew et al., 2012; Agim et al.,
2013; Hatzimanolis et al., 2013

CBL + + NRG3 + + Kao et al., 2010; Hatzimanolis et al.,
2013; Zeledón et al., 2015

CDC42 + ++ Gilks et al., 2012; Datta et al., 2015 NTN1 +

CDC42BPB + + Narayan et al., 2008 OTX2 +

CDC42EP4 + + Datta et al., 2015 PAK5 +

CDH1 + PAK6 +

CDKN1A + PARP1 +

CEBPB + PAX3 +

CEP192 + PAX6 +

CITED2 + PCDH11 +

CKAP5 + PCM1 + + Kamiya et al., 2008

CLOCK + + Zhang et al., 2011; Jung et al., 2014 PCNT +

CMIP + PDGFR + ++ Kim et al., 2008

CNR1 + ++ Ayalew et al., 2012; Onwuameze
et al., 2013

PDX1 +

CNTNAP2 + + ++ Friedman et al., 2008; Ji et al., 2013 PIN1 +

CREBBP + PITPNA +

CTIP2 + PLAUR + +

CTNNB1 + + Levchenko et al., 2015 POU3F2 + ++ Huang et al., 2005; Potkin et al.,
2009

DCC + + Grant et al., 2007, 2012 PQBP1 +

DIP2A + PTEN + +

DISC1 + + ++ Johnstone et al., 2011; Ayalew
et al., 2012

PTPRB +

DISP1 + PVALB +

DLL1 + RELN + ++ Shifman et al., 2008; Ayalew et al.,
2012; Li et al., 2015

DLX1 + + Kromkamp et al., 2003 ROBO1 + ++ Potkin et al., 2009, 2010

DLX2 + ROBO2 + ++ Potkin et al., 2009, 2010

DLX5 + + + Cho et al., 2015 RUNX1 +

DLX6 + + + Cho et al., 2015 RUNX2 + + Benes et al., 2007

(Continued)
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TABLE 2 | Continued

Gene LR BR SZ Selected references Gene LR BR SZ Selected references

DPP10 + RUNX3 +

DUSP1 + SATB2 +

DYRK1A + + SFRP2 +

DYX1C1 + SHH + + Boyd et al., 2015

EGFR + + Benzel et al., 2007 SIRT1 + + ++ Kishi et al., 2011; Wang et al., 2015

EGR1 + + + Pérez-Santiago et al., 2012 SIX3 +

ELAVL2 + ++ Yamada et al., 2011 SLIT1 +

ELP4 + + SLIT2 +

EMX2 + SLITRK3 + +

EP300 + SMAD9 +

ERBB4 + + ++ Agim et al., 2013; Hatzimanolis
et al., 2013

SMURF1 +

ETV4 + SOLH +

EXOC6B + SOX10 + ++ Iwamoto et al., 2005; Drerup et al.,
2009; Yuan et al., 2013; Wockner
et al., 2014

FEZF2 + SOX2 +

FGF7 + SOX3 +

FGF8 + SOX9B +

FGFR1 + + Mor et al., 2013 SPAG5 +

FLNA + + SPC7 +

FMR1 + + + Kovács et al., 2013; Folsom et al.,
2015

SPP1 +

FOXA1 + SRGAP2 + +

FOXA2 + SRGAP3 + + Wilson et al., 2011; Waltereit et al.,
2012

FOXG1 + + SRPX2 + +

FOXO1 + TBR1 +

FOXP1 + ++ Ingason et al., 2015 TGFB + + Frydecka et al., 2015,

FOXP2 + + Španiel et al., 2011; Li et al., 2013 TLE2 +

FRP + TLE3 +

GAD1 + + ++ Ayalew et al., 2012; Mitchell et al.,
2015; Lett et al., 2016

TP53 + + Ni et al., 2005; Molina et al., 2011

GADD45G + TSC1 + +

GBX2 + USF1 +

GLI3 + USH2A +

GRIN2A + ++ Lencz and Malhotra, 2015; Ohi
et al., 2016

VCAM1 +

GTF2I + VCAN +

GTF3C3 + VDR +

HES1 + WNT5A +

HOXA2 + YAP1 +

HRAS + + ZBTB20 +

HTR1A + + Gu et al., 2013; Lin et al., 2015;
Takekita et al., 2015

ZFHX1B +

ITGB4 + ZNF804A + ++ Becker et al., 2012; Nicodemus
et al., 2014

KATNA1 +

The first column contains the official name of the genes according to the Hugo Gene Nomenclature Committee (http://www.genenames.org/). The three remaining columns show

whether the genes are candidates for language readiness according to Boeckx and Benítez-Burraco (2014a,b) and Benítez-Burraco and Boeckx (2015) (column 2: LR), are involved in

brain rhythmicity according to the available literature, consulted via PubMed (http://www.ncbi.nlm.nih.gov/pubmed)(column 3: BR), or are candidates for schizophrenia (idem.) (column

4: SZ). The last column contains the most relevant papers that are indicative of an association between the gene and the disease. Candidate genes for schizophrenia resulting from

GWA and CNV/exome sequencing studies are marked with ++ and should be regarded as more robust candidates than those resulting from candidate gene studies (marked with +)

(for further details, see the Supplementary Files).
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cortical circuitry; at the same time, these circuits are impaired in
schizophrenia and other psychiatric and neurological conditions
(Teffer and Semendeferi, 2012). Nonetheless, when it comes to
testing this hypothesis, contradictory results have been obtained.
Concerning the protein-coding regions of genes associated to
psychiatric disorders Ogawa and Vallender (2014) did not find
evidence of differential selection in humans compared to non-
human primates, although elevated dN/dS was observed in
primates and other large-brained taxa like cetaceans (dN/dS is
the average number of nucleotide differences between sequences
per non-synonymous site referred to the average number of
nucleotide differences between sequences per synonymous site;
dN/dS values that are significantly higher than 1 are indicative
of positive selection). However, recent analyses based on large
GWAs of schizophrenia and data of selective sweeps in the
human genome compared to Neanderthals suggest that brain-
related genes showing signals of recent positive selection in
AMHs are also significantly associated with schizophrenia
(Srinivasan et al., 2016), supporting the view that schizophrenia
may be a by-product of the changes in the human brain that led
to modern cognition. Interestingly, among the loci highlighted
by Srinivasan et al. (2016), we have found several genes related
to language development, language impairment, and language
evolution, which strike us as new promising candidates for
language dysfunction in schizophrenia. Among them, we wish
highlight: FOXP1, GATAD2B, MEF2C, NRG3, NRXN1, and
ZNF804A (see SupplementaryMaterials for details).Wewish also
highlight that some of the genes involved in brain rhythmicity
(reviewed above) also show differences in the human lineage.
DPP10 shows signals of differential expression in the human
brain compared to primates and sequences at DPP10 show
regulatory motifs absent in archaic hominins and signals of
strong selection in modern human populations (Shulha et al.,
2012). Likewise, DISC1 interacts with PCNT, mentioned by
Green et al. (2010) as being amongst the proteins that show non-
synonymous and non-fixed changes compared to Neanderthals,
and a candidate for dyslexia (Poelmans et al., 2011). Finally,
the human CNTNAP2 protein bears a fixed change (I345V)
compared to the Denisovan variant (Meyer et al., 2012) and it is
related in addition to NFASC, a protein involved in postsynaptic
development and neurite outgrowth (Kriebel et al., 2012) which
also shows a fixed change (T987A) in AMHs compared to
Neanderthals/Denisovans (Pääbo, 2014, Table S1).

Some authors have explicitly linked the aetiopathology of
schizophrenia and the evolution of language. According to Arbib
and Mundhenk (2005) the primate mirror neurons, which fire
both when the animal manipulates an object and when it sees
another conspecific manipulating it, provided the scaffolding for
imitation abilities involved in language acquisition. At the same
time, schizophrenics show a spared ability to generate actions,
whether manual or verbal, but they lack the ability to attribute
the generation of that action to themselves. More drastically,
Crow (1997) suggested that schizophrenia is the “price we paid
for language.” According to him, schizophrenia represents an
extreme of variation of hemispheric specialization and a single
genetic mechanism (involving both the X and Y chromosomes)
that was modified during recent human history can account for

this variation, because it generates epigenetic diversity related to
both the species capacity for language and the predisposition to
psychosis (Crow, 2008).

Our findings provide a different causative explanation
to the origins and prevalence of schizophrenia, while still
supporting the view that the etiopathology of this condition
is heavily rooted in the evolution of human cognition. The
genes discussed here map onto specific neuronal types (mostly,
GABAergic), particular brain areas (several cortical layers,
thalamic nuclei), particular physiological processes (the balance
between inhibition and excitation), specific developmental
processes (inter and interhemispheric axon pathfinding), and
particular cognitive abilities (formal thought), all of which are
aspects known to be impaired in schizophrenia. At the same time,
all of them are involved in language development and processing
and many of them have been modified during our recent
evolutionary history. Interestingly, schizophrenia associations
have been recently proved to be strongly enriched at enhancers
that are active in tissues with important immune functions,
giving support to the view that immune dysregulation plays
a role in schizophrenia (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014). Likewise, changes in
the brain/immune system crosstalk have been hypothesized to
have contributed to the changes in brain connectivity that
prompted the emergence of our language-readiness (Benítez-
Burraco and Uriagereka, 2015).

Accordingly, instead of thinking of schizophrenia as the “price
we paid for language,” we believe a more accurate claim is
that schizophrenia is the price we paid for a globular braincase
housing more efficient and widespread recursive oscillatory
embeddings. Because the more novel a neural network is in
evolutionary terms, the less resilient it is (due to its lack of robust
compensatory mechanisms, Toro et al., 2010), schizophrenia is
found as a high prevalent condition among modern populations.
This view is in line with current approaches to the etiology of
complex diseases in humans, according to which high prevalent
conditions of a multifactorial nature resulted from the de-
canalization of the robust primate condition as a consequence
of our evolutionary history (involving demographic bottlenecks,
specific mutations, and cultural changes that uncovered cryptic
variation, see Gibson, 2009 for details).

CONCLUSIONS

The considerations we have made here may provide a suitable
response to Dehaene et al.’s (2015, p. 2) observation that linguistic
computation requires “a specific recursive neural code, as yet
unidentified by electrophysiology, possibly unique to humans,
and which may explain the singularity of human language
and cognition.” Hierarchical rhythmic coupling operations of
the kind proposed in Murphy (2015a, 2016) and discussed
here may also provide ways of integrating different forms
of hierarchical representations, such as phonological, semantic
and syntactic information (see Ding et al., 2016). Disruptions
to the present dynomic model of linguistic computation may
represent a comprehensive, unifying account of language-related
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neurocognitive disorders As we have argued, schizophrenia is
of particular interest because it represents a mode of cognition
and externalization of thought distinct from, but plainly related
to, normally functioning linguistic cognition. Importantly, this
deviance seems construable in terms of an alteration of
the cognome-dynome cross-talk. A dynomic perspective cuts
across the traditional positive-negative symptom division, being
implicated both in abnormal active processes and in the absence
of normal functions. This view is in line with more general,
recent moves in neuroscience to view psychiatric illnesses as
oscillatory connectomopathies (Cao et al., 2016; Vinogradov
and Herman, 2016). At the same time, the considerations we
have presented also reinforce the view that the survey of the
evolutionary itinerary followed by our faculty of language should
help unravel abnormal cognitive/linguistic development in our
species (and vice versa). The high number of candidates for
schizophrenia selected in our species ostensibly proves this. We
further expect that the present proposal has the potential to
provide robust endophenotypes of schizophrenia (in the form
of specific brain oscillation patterns and novel gene candidates)
and contribute to an improved diagnosis and treatment of the
disorder.
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