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Idiopathic generalized epilepsy (IGE) patients with generalized tonic-clonic seizures

(GTCS) suffer long-term cognitive impairments, and present a higher incidence of

psychosocial and psychiatric disturbances than healthy people. It is possible that the

cognitive dysfunctions and higher psychopathological risk in IGE-GTCS derive from

disturbed causal relationship among core neurocognitive brain networks. To test this

hypothesis, we examined the effective connectivity across the salience network (SN),

default mode network (DMN), and central executive network (CEN) using resting-state

functional magnetic resonance imaging (fMRI) data collected from 27 IGE-GTCS patients

and 29 healthy controls. In the study, a combination framework of time domain and

frequency domain multivariate Granger causality analysis was firstly proposed, and

proved to be valid and accurate by simulation experiments. Using this method, we

then observed significant differences in the effective connectivity graphs between the

patient and control groups. Specifically, between-group statistical analysis revealed that

relative to the healthy controls, the patients established significantly enhanced Granger

causal influence from the dorsolateral prefrontal cortex to the dorsal anterior cingulate

cortex, which is coherent both in the time and frequency domains analyses. Meanwhile,

time domain analysis also revealed decreased Granger causal influence from the right

fronto-insular cortex to the posterior cingulate cortex in the patients. These findings may

provide new evidence for functional brain organization disruption underlying cognitive

dysfunctions and psychopathological risk in IGE-GTCS.

Keywords: idiopathic generalized epilepsy, resting-state fMRI, effective connectivity, multivariate Granger

causality, core neurocognitive networks

INTRODUCTION

Previous studies have revealed that patients with epilepsy suffer a higher incidence of
psychosocial and psychiatric disturbances than healthy people (Mignone et al., 1970; Baker
et al., 1996; Cutting et al., 2001; Gelisse et al., 2007). Idiopathic generalized epilepsy (IGE)
is the most common type of epilepsy, which can be characterized by electroencephalography
(EEG) recordings with generalized spike-and-waves or polyspike-waves (Engel, 2001; Hamandi
et al., 2006). As one of the IGE subtypes, IGE patients with generalized tonic-clonic seizures
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(IGE-GTCS) suffer various neuropsychological impairments
such as deficits in working memory, sustained attention,
language, as well as executive functions (Hommet et al.,
2006; Chowdhury et al., 2014). Prior studies have suggested
that disruptions to these higher-order control processes may
constitute a key aspect of psychopathology (Sridharan et al.,
2008; Menon and Uddin, 2010). Therefore, distinguishing
dysfunctional brain architecture may provide greater insight into
the psychopathology in IGE-GTCS.

In recent years, identifying disturbed dynamic interactions
of large-scale brain networks associated with cognitive and
affective dysfunctions has shed new lights on the study of
psychopathology. Of the many spatially distinct and functionally
specialized stable brain networks, three have tended to be
particularly crucial for understanding higher-order cognitive
and perceptive processes thus described as core neurocognitive
networks, they are: (1) the salience network (SN), involved
in conflict monitoring, attention, as well as interoceptive and
affective processes; (2) the default mode network (DMN),
related to self-referential and social cognitive processes; and (3)
the central executive network (CEN), associated with working
memory, cognitive control implementation, and decisionmaking
in goal-directed behavior (Menon, 2011). Moreover, each of
the three core neurocognitive networks are anchored in some
key nodes that show strong intrinsic functional coupling as
well as co-activation across different cognitively demanding
tasks (Sridharan et al., 2008; Menon and Uddin, 2010). These
key nodes are: (1) the right fronto-insular cortex (rFIC)
and the dorsal anterior cingulate cortex (dACC) of the SN;
(2) the ventromedial pre-frontal cortex (VMPFC) and the
posterior cingulate cortex (PCC) of the DMN; as well as (3)
the dorsolateral pre-frontal cortex (DLPFC) and the posterior
parietal cortex (PPC) of the CEN. Particularly, the two key
nodes of the SN have been highlighted in numerous researches,
suggesting that the rFIC is crucial for initiating network
switching between the CEN and the DMN (Sridharan et al.,
2008; Menon and Uddin, 2010; Uddin et al., 2011), and the
dACC most closely associated with conflict monitoring to
mediate higher-order cognitive processes (Botvinick et al., 2004;
Menon, 2011). Investigating disruptions to functional dynamics
among these key nodes is beginning to identify an important
aspect of dysfunctions in psychopathology, thus the three core
neurocognitive networks represented by the associated key nodes
have been concluded as a “triple network” model (Menon, 2011).
Aberrant interconnectivity and intrinsic organization of the triple
network is characteristic of various neurological and psychiatric
disorders, such as schizophrenia, depression, anxiety disorders
and autism (Paulus and Stein, 2006; Walter et al., 2009; White
et al., 2010; Uddin et al., 2015), and is likely to provide better
understanding of fundamental brain mechanisms underlying
cognitive dysfunctions and psychopathology in IGE-GTCS.

Measurement of causal influence that a system exerts over
one other is called effective connectivity (Friston et al., 1993).
Applying effective connectivity to brain network analysis can
obtain full understanding of the network interaction structure
including the strength and direction of information flow between
brain regions. Granger causality analysis, as an important

analytical technique of effective connectivity, has been widely
applied in cognitive neuroscience studies since it can measure
directional dependence between time courses without any prior
model specifications. In Granger causality definition, time course
X2 causes time course X1 if combined past value of both X1

and X2 can significantly improve the prediction accuracy of
current value of X1, rather than using the past value of X1

alone (Granger, 1969; Seth, 2010). Granger causality is often
estimated with multivariate autoregressive (MVAR) modeling
of the time courses, and has various time domain as well as
frequency domain formulations, including conditional Granger
causality (Geweke, 1984), partial Granger causality (Guo et al.,
2008), directed transfer function (DTF) (Kaminski et al., 2001),
and partial directed coherence (PDC) (Baccalá and Sameshima,
2001), etc. The mentioned time domain Granger causality
measures are the straightforward generalization of the notion
of Granger causality thus easy to comprehend, the introduced
frequency domain Granger causality measures could describe
the dynamics of causal relationships between time courses by
evaluating Granger causality over different frequency portions
(Sato et al., 2009). Based on these, the combined performance of
Granger causality analysis in two domains is expected to provide
more accurate and informative analysis results.

Little is known about the alteration of effective connectivity
among core neurocognitive networks underlying cognitive
impairments and psychopathology in IGE-GTCS. Additionally,
to our knowledge, no IGE study has conducted multivariate
Granger causality analysis in both time and frequency domains
and presented the combined analysis results. In the current study,
we examined IGE-related changes in effective connectivity across
core neurocognitive brain networks using resting-state functional
magnetic resonance imaging (fMRI), combining time domain
and frequency domain multivariate Granger causality analysis.
We hypothesized that the altered causal interactions likely occur
among the key nodes of the SN, DMN, and CEN in IGE-
GTCS, which may underline cognitive dysfunctions, improving
our understanding of the psychopathological mechanism of IGE-
GTCS.

MATERIALS AND METHODS

Subjects
Twenty-seven right-handed IGE-GTCS patients (age
24.93 ± 5.95 years; education 10.59 ± 2.58 years; eight female;
epilepsy duration 7.76 ± 5.62 years; age of onset 17.13 ± 6.11
years) were recruited in the study. The diagnosis was determined
by a comprehensive evaluation including detailed history,
video-EEG telemetry, and neuroimaging. All patients had
IGE with GTCS only according to the International League
against Epilepsy (ILAE) classification, and met the following
inclusion criteria: (i) presence of typical clinical symptoms of
GTCS, including myoclonus, loss of consciousness, and no
partial seizures; (ii) presence of generalized spike-and-wave
or polyspike-wave discharges in their scalp EEG; (iii) no focal
abnormality in routine structural MRI examinations; and (iv)
no obvious history of etiology. All patients were treated with
antiepileptic drugs (AEDs), but received no medication for
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at least 48 h prior to the MRI scanning. All patients had been
seizure-free for at least 1 month prior to the MRI scanning.

Twenty-nine right-handed healthy subjects (age 26.93 ±
7.54 years; education 11.45 ± 2.40 years; 12 female) were
recruited, with gender, age, and education level demographically
matched. All participants had no mass lesion (including
tumor, vascular malformation or malformations of cortical
development), traumatic brain injury or history of neurological
or psychiatric disorder. This study was approved by the Ethics
Committee of Guangdong 999 Brain hospital, and all participants
provided written informed consent.

MRI Data Acquisition and Pre-processing
For the resting-state fMRI scan acquired at a 1.5-T Philips
Intera MR scanner, all subjects were instructed to stay awake,
keep their eyes open, and minimize head movement; no
other task instruction was provided. For the patients, scans
were conducted during interictal without combined EEG
confirmation. All fMRI images were collected using a gradient-
echo echo-planar pulse sequence sensitive to blood-oxygenation-
level-dependent (BOLD) contrast with the following parameters:
TR/TE = 3000/30ms, thickness/gap = 4.5/0mm, field of view
(FOV) = 230 × 230mm, flip angle (FA) = 90◦, matrix =
128 × 128, and slices = 31. Each resting-state fMRI run lasted
8min, obtaining 160 volumes.

For each subject, the first five volumes of the scanned data
were discarded to allow for T1-equilibration effects, and then
the fMRI data were pre-processed with SPM8 package (Welcome
Department of Cognitive Neurology, Institute of Neurology,
London, UK, http://www.fil.ion.ucl.ac.uk/spm), included the
following steps (Zeng et al., 2012): (1) slice timing correction; (2)
rigid body correction for head motion; (3) atlas registration with
an EPI template in the Montreal Neurological Institute (MNI)
atlas space, resampling to 3-mm isotropic voxels; (4) spatially
smoothing using an 8-mm full-width half-maximum (FWHM)
Gaussian kernel; and (5) regressing out nine nuisance signals
including signals averaged fromwhite matter, cerebrospinal fluid,
and the whole brain, and six parameters obtained by head
motion correction. Temporal filtering was not conducted as with
some prior studies (Hamandi et al., 2006; Wu et al., 2013),
so that the whole effective frequency band of the fMRI data
could be included in the frequency domain Granger causality
analysis (see Section Effective connectivity: time and frequency
domains multivariate Granger causality measures below). After
calculation, no subjects were removed due to excessive motion
(translation > 2mm and rotation >2◦); there was no significant
difference in mean motion between the two groups (p = 0.32,
two-tailed two-sample t-test; Zeng et al., 2014), thus the effective
connectivity would be less probably affected by the head motion
(Van Dijk et al., 2012).

Region of Interest Definition and Time
Course Extraction
Six functional regions of interest (ROIs) were selected, including
the rFIC and the dACC of the SN, the VMPFC and the PCC
of the DMN, as well as the rDLPFC and the rPPC of the CEN.
The coordinates of the ROIs (Table 1) were set according to

TABLE 1 | Coordinates of ROIs.

Region BA Peak MNI

coordinates (mm)

SALIENCE NETWORK (SN)

Right fronto-insular cortex (rFIC) 47 39, 23, −4

Dorsal anterior cingulate cortex (dACC) 24 6, 24, 32

DEFAULT MODE NETWORK (DMN)

Ventromedial pre-frontal cortex (VMPFC) 11 −2, 38, −12

Posterior cingulate cortex (PCC) 23/30 −6, −44, 34

CENTRAL EXECUTIVE NETWORK (CEN)

Right dorsolateral pre-frontal cortex (rDLPFC) 9 46, 20, 44

Right posterior parietal cortex (rPPC) 40 52, −52, 50

a published study delimiting these regions in an independent
dataset (Uddin et al., 2011). In that study, MNI coordinates of
peak voxels (voxels with the highest z-scores) of the six regions
chosen from ICA maps were defined as the centers of the ROIs.
In our study, the final ROIs were defined as 8mm radius spheres
centered on the coordinates, and the mean time course in each
ROI was extracted by averaging the time courses of all voxels
within the ROI. At last, each mean time course of the ROIs
was detrended and its temporal mean was removed for further
analysis. All the time courses were covariance stationarity (i.e.,
unchangingmean and variance) after time course pre-processing.

Effective Connectivity: Time and
Frequency Domains Multivariate Granger
Causality Measures
On the basis of MVAR modeling, we intended to calculate
the effective connectivity strength in both time and frequency
domains, thus the well-chosen Granger causality measures in two
domains were introduced in the current study, they are: partial
Granger causality (Guo et al., 2008) in time domain analysis,
and PDC (Baccalá and Sameshima, 2001) in frequency domain
analysis. The formalism for these Granger causality measures is
given in Appendix.

To obtain the time domain and frequency domain Granger
causality measures between each pair of the six ROIs for each
subject, the following steps were conducted: (1) MVAR model
estimation: six time courses were fit to obtain the unrestricted
autoregressive model (see Appendix for details), the model order
was set to 1 determined by Bayesian information criterion (BIC),
and the regression coefficients were estimated using standard
least squares optimization. (2) Calculation of time domain
Granger causality measures: for each pair of the six time courses
in both directions, the partial Granger causality and the DOIwere
calculated (see Equations A11 and A12 in Appendix); thus, 30
(6×5) individual partial Granger causality values of time domain
Granger causal links and 30 DOI terms of time domain Granger
causal links were obtained for each subject. (3) Calculation of
frequency domain Granger causality measure: for each pair of
the six time courses in both directions, the PDC was calculated
(see Equation A13 in Appendix) every 0.001Hz of the interesting
frequency range [0, Fs/2], where Fs is the sampling rate of the
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fMRI data (i.e., 1/TR); thus 30 × 168 individual PDC values of
frequency domain Granger causal links were obtained for each
subject.

Constructing Within-Group Effective
Connectivity Graph
Having computed the Granger causality measures in both time
and frequency domains, we proceeded to construct effective
connectivity graph for each group, respectively. Since all the
Granger causality measures used in the study lack known
statistical distributions (Seth, 2010), the creation of empirical
null distributions that hypothesize no causality between ROIs
is of great importance. Meanwhile, we hypothesized that the
combined performance of time domain and frequency domain
analysis of multivariate Granger causality would present more
accurate and informative analysis results. Therefore, based on
the procedure conducted in Sato et al. (2009) and Havlicek et al.
(2010), we proposed a combination framework of time domain
and frequency domain multivariate Granger causality analysis to
evaluate the direct causal interactions between time courses. An
overview of this method (see Figure 1) is given below, and each
step is described in detail as follows:

Step 1 Fit MVAR model for the time courses of each subject
separately to obtain the model coefficients (including
regression coefficients and residuals, see Appendix
for details), then calculate the time and frequency
domains Granger causality measures for each subject (see
Equations A11–A13 in Appendix). Record the median
values of each Granger causality measure across subjects.

Step 2 For each subject, resample the residuals (bootstrap
resampling for N repetitions) and set the regression
coefficients Aij(l), l = 1, . . . , p to zero (see Appendix for
details) when assessing the Granger causality from time
courses j to i, the other coefficients remain as originally
estimated in step 1. Then simulate a multivariate time
courses based on the modified MVAR model coefficients
to generate time courses under the null hypothesis of “no
Granger causality” from time courses j to i. After that,
calculate the Granger causality measures of the simulated
time courses (see Equations A11–A13 in Appendix),
then record the median values of the Granger causality
measures across the simulated samples. Repeat this step
until the desired number of repetition (N times) is
achieved. When finished, the null distributions of the
median Granger causality measures are obtained. Note,
in general, the value of N = 200–5000 is sufficient (in the
current study, we set N = 1000) (Efron and Tibshirani,
1994).

Step 3 Estimate the critical value (defined as the (1 − α)
quantile, α = 0.05, FDR corrected; Seth, 2010) of
each null distribution, and take the critical value as
significance threshold. For time domain analysis, a
per-interaction significance threshold is obtained above
which the median values of the Granger causality
measures recorded in step 1 are assumed to be significant.

For frequency domain analysis, we get a per-interaction-
per-frequency significance threshold; the significant
effective connectivity is thus defined as the connection
which has non-null significant frequency interval. Finally,
the consistent results of time domain and frequency
domain analysis are determined as significant effective
connectivity given by the proposed method.

The validity and improvement in resulting accuracy of the
proposedmethod is proved by several toymodels in the following
subsection (see Section Simulations). For the IGE study, we
used the median partial Granger causality and median PDC
to determine the significant connectivity in time domain and
frequency domain analysis, respectively. Finally, the significant
effective connectivity was defined as the connection that was
significant in both time domain and frequency domain analysis,
and the within-group effective connectivity graph was thus
composed of the significant effective connections of each group.
In addition, the significant connections identified by DOI terms
in time domain analysis were also recorded as a subset of the final
results.

Evaluating between-Group Effective
Connectivity Difference
Among the connections that exhibited significant Granger
causality in at least one group (obtained in Section Constructing
within-group effective connectivity graph), we further assessed
the presence of significant group differences in both time domain
and frequency domain Granger causality definition. In time
domain analysis, Mann-Whitney U-tests (p < 0.05, FDR
corrected) were applied across the 30 time domain Granger
causal links to assess the presence of significant group differences
(Sridharan et al., 2008). In frequency domain analysis, for each
link, Mann-Whitney U-tests (p < 0.05, FDR corrected) were
applied across the 168 frequency slices to determine the group-
level significant frequency interval of that link. And finally the
links with non-null significant frequency intervals were taken as
the interesting results in frequency domain analysis.

RESULTS

Simulations
Two typical and widely used toymodels (Baccalá and Sameshima,
2001; Seth, 2010) were presented here to demonstrate the
validity and improvement in resulting accuracy of the proposed
combination framework described in Section Constructing
within-group effective connectivity graph. In the simulation
experiments, the same methods of time course pre-processing
(including detrend and removal of temporal mean), MVAR
model estimation (using standard least squares optimization to
calculate the regression coefficients and residuals, and setting
the model order as the real model order of each toy model),
time and frequency domains Granger causality calculation, and
significance testing (1000 times repetition to get the significance
thresholds) that described in Section Effective connectivity: time
and frequency domains multivariate Granger causality measures
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FIGURE 1 | Diagram representing the main steps of combination method of time and frequency domains multivariate Granger causality analyses.

MVAR, multivariate regressive; PGC, partial Granger causality; DOI, difference of influence; PDC, partial directed coherence.

and Constructing within-group effective connectivity graph were
conducted to the toy models.

Model 1. Suppose that four simultaneously observed time
courses were generated by the equations:

x1(n) = 0.95
√
2x1(n− 1)− 0.9025x1(n− 2)+ ω1(n)

x2(n) = 0.5x1(n− 2)+ ω2(n)
x3(n) = −0.4x4(n− 3)+ ω3(n)
x4(n) = 0.35x4(n− 2)+ ω4(n)

(1)

The model contains two direct Granger causal influences, i.e.,
connections from x1 to x2, and from x4 to x3. The model
order is three, ω1 ∼ ω4 are zero-mean uncorrelated white
processes with identical variances. The signal to noise ratio
(SNR) of the generated time courses is 0.01. Figure 2 illustrates
the simulation results. The Granger causal structure and the
raw time courses of each variable are shown in Figures 2A,B.
The time domain Granger causality analysis result is expressed
as a colormap in Figure 2C. As expected, the partial Granger
causality values of the connections from x1 to x2, and from x4
to x3 were significantly larger and exceeded the corresponding

thresholds. Figure 2D shows the PDC values (black solid
line) and significance thresholds (black dotted line) of each
connection. The significant frequency intervals were highlighted
in red. Using the PDC representation we could observe the
dynamics of causal relationships between time courses. It can be
seen that, except for two correct causal influences, the connection
from x1 to x3 was misjudged in frequency domain analysis.
Obviously, when we conducted the proposed combination
method, only the corrected causal interactions would be
identified.

Model 2. A more complicated system that contains indirect
causal influence was generated by the equations:

x1(n) = 0.95
√
2x1(n− 1)− 0.9025x1(n− 2)+ ω1(n) (2)

x2(n) = 0.5x1(n− 2)+ ω2(n)

x3(n) = −0.4x1(n− 3)+ ω3(n)

x4(n) = −0.5x1(n− 2)+ 0.25
√
2x4(n− 1)

+ 0.25
√
2x5(n− 1)+ ω4(n)

x5(n) = −0.25
√
2x4(n− 1)+ 0.25

√
2x5(n− 1)+ ω5(n)
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FIGURE 2 | Simulation results of toy model 1. (A) Granger causal structure of the variables. (B) Raw time courses of the variables. (C) The colormap of partial

Granger causality values in time domain analysis. (D) The spectrum of significance thresholds (black dotted line) and partial directed coherence (PDC) values (black

solid line, values greater than the thresholds are highlighted in red) in frequency domain analysis. Note: in (C,D) the direction of causality is from column to row.

In this three order system, x1 is a direct source to x2, x3, and x4,
bidirectional connectivity exists between x4 and x5. There is no
direct coupling from x1 to x5. The SNR of the generated time
courses is 0.01. The simulation results are shown in Figure 3.
Figures 3C,D illustrate the time domain and frequency domain
analysis results, respectively. In addition, the results given byDTF
(Kaminski et al., 2001) are presented in Figure 3B as a reference
(see Equation A14 in Appendix). It is obvious that both the time
domain partial Granger causality and frequency domain PDC
could correctly detect all the direct causal influences, while the
DTF mistakenly identified the indirect causal influence from x1
to x5. These results indicate that the Granger causality measures
we used in the study could avoid the influence of indirect causal
relationship.

Based on the above analysis, we can conclude that the
analytical methods and Granger causality measures adopted in
the study can efficiently detect the direct causal relationships
between time courses, and the combined approach takes the
consistent results of the two domains’ analyses, which can be

seen as a double verification process to present more accurate
and confident results. The simulation results were stable under
different noise condition. Therefore, using the proposed method
in Section Constructing within-group effective connectivity
graph is considered to present a convincing result for fMRI data
analysis.

Within-Group Effective Connectivity Graph
The causal connectivity graphs of healthy controls and IGE-
GTCS patients are presented in Figures 4A,B. The connecting
arrows are weighted according to the strengths of the time
domain causal influences (partial Granger causality values
normalized by the maximum partial Granger causality value).
Meanwhile, each significant connection is respectively marked
with the frequency interval where the PDC values are higher
than the significance thresholds. And finally a subset of the
significant connections that showed a dominant direction of
influence (significant DOI term) are highlighted in red in the
same figure. It was observed that comparing to the healthy
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FIGURE 3 | Simulation results of toy model 2. (A) Granger causal structure of the variables. (B) The spectrum of significance thresholds (black dotted line) and

directed transfer function (DTF) values (black solid line, values greater than the thresholds are highlighted in red). (C) The colormap of partial Granger causality values

in time domain analysis. (D) The spectrum of significance thresholds (black dotted line) and partial directed coherence (PDC) values (black solid line, values greater

than the thresholds are highlighted in red) in frequency domain analysis. Note: in (B–D) the direction of causality is from column to row.

controls (21 influences), the IGE-GTCS patients (16 influences)
established less causal connections among the six ROIs.

Between-Group Effective Connectivity
Differences
The group differences of effective connectivity are illustrated in
Figure 5. In time domain analysis, two connections exhibited
significance, i.e., the increased causal influence from the rDLPFC
to the dACC (p < 0.05, FDR corrected), and the decreased causal
influence from the rFIC to the PCC (p< 0.05, uncorrected) in the
IGE-GTCS patients relative to healthy controls. The connections’
means and standard errors of partial Granger causality values
across subjects within each group were illustrated in the blue box
in Figure 5. Meanwhile, frequency domain analysis also found
the enhanced causal influence from the rDLPFC to the dACC

(p < 0.05, FDR corrected) in patients than healthy controls. The
mean PDC values across subjects within each group, as well as the
p-value spectrum of this significant connection were shown in the
pink box. It can be seen that the group difference of this causal
influence was significant in a band of frequencies, [0 0.167]Hz,
and the minimum p-value (p = 0.028) was obtained at 0.034Hz.

DISCUSSION

Human high-level attention and cognitive control processes
rely on the well-balanced dynamic interactions between large-
scale brain networks, and three core neurocognitive networks
including the SN, DMN, and CEN have been highlighted in
the study of psychopathology. Our prior work used static as
well as dynamic measures of functional connectivity, however,
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FIGURE 4 | Within-group effective connectivity graphs. (A,B) Effective connectivity graphs of the healthy controls and IGE-GTCS patients, respectively. The

connecting lines are weighted according to the normalized partial Granger causality values. The numbers next to the arrowheads indicate the significant frequency

intervals of the corresponding connections. The significant connections showing a dominant direction of influence (significant DOI term) are highlighted in red.

did not evaluate effective connectivity among brain networks
for cognitive dysfunctions and psychopathological risk in IGE-
GTCS (Wei et al., 2015). In this study, we have proposed a
combination framework of time domain and frequency domain
multivariate Granger causality analysis, to reveal alterations in
direct causal relationship across key nodes of the SN, DMN, and
CEN in the IGE-GTCS patients relative to the healthy controls.
The key findings of the study include: (1) the establishment of less

causal interactions among the key nodes in the patients compared
with healthy controls; (2) two SN-involved effective connectivity
that exhibited significant group difference, they are: enhanced
causal influence from the rDLPFC to the dACC (p < 0.05, FDR
corrected) throughout the whole evaluated frequency range ([0
0.167]Hz) in patients than healthy controls revealed by both
the time and frequency domains analyses, and decreased causal
influence from the rFIC to the PCC (p < 0.05, uncorrected) in
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FIGURE 5 | Between-group effective connectivity differences. Two connections exhibit significant between-group difference revealed by Mann-Whitney U-tests

in time domain analysis, including the increased connection from the rDLPFC to the dACC (*p < 0.05, FDR corrected), and the decreased connection from the rFIC to

the PCC (p < 0.05, uncorrected) in patients than healthy controls. The connections’ means and standard errors of partial Granger causality values across subjects

within each group are illustrated in the blue box. Frequency domain analysis also reveals the enhanced connection from the rDLPFC to the dACC (p < 0.05, FDR

corrected) in patients. The mean partial directed coherence (PDC) values across subjects within each group, and the p-value spectrum are shown in the pink box.

patients than healthy controls given by the time domain analysis.
These findings provide new insights into the brain functional
architecture of IGE-GTCS.

Methodological Considerations
Several methodological considerations in the present study need
to be addressed aforehand. First, the basis of multivariate
Granger causality and well-chosen time and frequency domains
Granger causality measures ensure the indirect causality between
ROIs to be eliminated, and this could be certified by the
simulation results of the toy model 2 in Section Simulations.
Second, the MVAR model order was set to 1 for all subjects
according to the BIC criterion, thus we evaluated the Granger
causal relationship between ROIs with a maximum time delay
of 3 s (since TR is 3 s). The low model order is common
and recommended in several Granger causality studies using
resting-state fMRI data considering the low time resolution
of fMRI data itself (Sato et al., 2010; Hamilton et al., 2011).

Third, to our knowledge, no previous study has evaluated the
Granger causal connectivity in IGE-GTCS combined the time
domain and frequency domain analysis. In the current study,
we have revealed aberrant causal interactions among the core
neurocognitive networks in IGE-GTCS confirmed by analyses in
two domains. Besides, a combination framework of time domain
and frequency domain multivariate Granger causality analysis
was proposed, and the improvement of accuracy using this
method was verified by the simulation experiments. This general
combination framework can also be used in other multisubject
studies when effective connectivity measured by multivariate
Granger causality is needed.

The Causal Relationship between the rFIC
and the PCC
In the current study, the controls group established bidirectional
effective connectivity between the rFIC and the PCC (the
influence from the rFIC to the PCC also exhibited significant
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DOI value), while none of these two connections was significant
in the patients group (see Figure 4). Further, the between-
group analysis based on time domain partial Granger causality
revealed that the effective connectivity from the rFIC to the
PCC exhibited significance (p < 0.05, uncorrected, Mann-
Whitney U-test), with decreased connectivity strength in the
patients relative to the healthy controls (see Figure 5). It is well
known that the function of the SN is to identify internal and
extra-personal stimuli to guide flexible behavior (Corbetta and
Shulman, 2002; Seeley et al., 2007), and the DMN is associated
with spontaneous activities and internally oriented cognition
(Raichle et al., 2001). Previous task-based as well as resting-state
fMRI studies using Granger causality analysis have confirmed
that there exists effective connectivity between the SN and the
DMN (Sridharan et al., 2008; Uddin et al., 2011). Among these
researches, one commonly approved conclusion is that the rFIC
acts as a critical causal outflow hub in initiating control signals
to activate the CEN and deactivate the DMN, thus provides an
interpretation of the directionality of signaling from the rFIC
to the PCC. Moreover, a relevant neurodevelopmental study
reported that the Granger causal influence from the rFIC to
the PCC was significant in the adults group while vanished in
the children, suggesting the maturation of rFIC-related causal
connectivity is crucial for the sophisticated cognitive abilities
(Uddin et al., 2011). For the causal influence from the PCC to
the rFIC, Uddin et al. (2009) using Granger causality analysis
provided evidence that the PCC may negatively regulate activity
in the SN. Such an information inflow may be interpreted as
a feedback circuit establishment that suppresses the activity of
the DMN in a primed state to make better preparation for the
rFIC to release cognitive control processes when salient stimuli
occur.

For the frequency-domain interpretation of the causal
interactions between the rFIC and the PCC, the significant
frequency intervals of the two connections in the control group
showed that the PCC conducted causal influence on the rFIC
for the lower frequencies ([0 0.085]Hz). This is reasonable given
the fact that the PCC as a key node of the DMN, is responsible
for information integration in the spontaneous low-frequency
range (Leech and Sharp, 2014). Meanwhile, the drive from
the rFIC to the PCC was significant throughout the evaluated
frequency interval, [0 0.167]Hz, probably indicating that the
brain responses for cognitive control processes in switching
between exogenous and endogenous stimuli are needed for the
whole spectrum of signal changing frequencies (see Figure 4A).

Based on the above, we inferred that the bidirectional effective
connectivity between the rFIC and the PCC may be associated
with well-balanced performance in cognitive flexibility, with
which one can flexibly switch between mental processes to
appropriately react to salient events in the environment (Scott,
1962). Additionally, prior study has suggested that the active
dynamic interactions among brain networks are indispensable
for adaptive and flexible cognition and behavior (Cole et al.,
2013), while the IGE-GTCS patients (16 influences) established
less causal connections among the SN, DMN, and CEN relative
to the healthy controls (21 influences, see Figure 4). For all the
aforementioned proofs, we inferred that the hypoconnectivity of

the patients group, especially the decreased causal influence from
the rFIC to the PCC, may be associated with impaired cognitive
abilities as well as mental inflexibility in IGE-GTCS (Hommet
et al., 2006; Chowdhury et al., 2014).

The Causal Relationship between the
dACC and the rDLPFC
Both the time domain and frequency domain analysis in our
study consistently revealed the significantly enhanced effective
connectivity (p < 0.05, FDR corrected, Mann-Whitney U-test)
from the rDLPFC to the dACC in the patients relative to
the healthy controls (see Figure 5). Interestingly, the within-
group connectivity graphs indicated that the direction of the
Granger causality between the rDLPFC and the dACC is
opposite in the two groups, i.e., the dACC drives the rDLPFC
(also with significant DOI value) in the controls while the
rDLPFC drives the dACC (also with significant DOI value)
in the IGE patients (see Figure 4). Since both the ACC and
the DLPFC are co-activated in cognitive control processing
and tests of sustained attention (Adler et al., 2001; Miller
and Cohen, 2001), the dissociation and functional interactions
of the two areas have arouse the interests of the researchers
(Kondo et al., 2004; Dosenbach et al., 2007; Seeley et al.,
2007). In an event-related fMRI study, Macdonald et al. (2000)
conducted a task-switching vision of the Stroop task and
suggested that the DLPFC (Brodmann’s area (BA) 9) supports
implementation of control, while the ACC (BA 24 and BA 32)
is responsible for performance monitoring. Furthermore, based
on the conflict hypothesis of the ACC, Kerns et al. (2004)
explored whether ACC activity associated with conflict and error
trial predicted pre-frontal cortex activity under Stroop task, and
concluded that once the ACC detects conflicts, it modulates
the strength of the rDLPFC (BA 9 and BA 8) representations,
which then executes appropriate cognitive control and products
corresponding behavioral adjustments. Our study revealed the
effective connectivity from the dACC (BA 24) to the rDLPFC
(BA 9) in the healthy controls, which may underline the existence
of neural circuitry in terms of resting-state Granger causality
supporting the above cognitive control processes. By contrast,
the establishment of the significantly enhanced causal influence
from rDLPFC to dACC in the patients may thus indicate a
disruption to the well-organized cognitive control processes,
and probably associated with cognitive dysfunctions in IGE-
GTCS, such as deficits in working memory, sustained attention,
as well as executive dysfunction (Mirsky et al., 2002). This
altered causal influence as well as the aberrant connection
from the rFIC to the PCC demonstrate that the IGE-GTCS
patients exhibit inappropriate mapping with the SN. The findings
together with various prior studies highlight the critical role of
SN in connecting with DMN and CEN (Sridharan et al., 2008;
Menon, 2011; Uddin et al., 2011), which provide informative
evidence for the understanding of the cognitive dysfunctions and
psychopathological mechanism of IGE-GTCS.

In addition, prior study using Granger causality analysis on
EEG/fMRI data of IGE patients found the frontal lobe had
the maximum net causal strength, suggesting that frontal and
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parietal areas were the initiation of absence seizures (Szaflarski
et al., 2010). Similarly, our study using both time domain and
frequency domain multivariate Granger causal analysis revealed
the significantly enhanced causal influence directed from the
rDLPFC to the dACC throughout the whole evaluated frequency
range ([0 0.167]Hz) in the IGE-GTCS patients, whichmay as well
indicate that the pre-frontal cortex is probably the initiation of
GTCS.

Evaluating hemodynamic response function (HRF) effects
in the Granger causality analysis of BOLD-fMRI data is a
controversial topic (Barnett and Seth, 2014). Noticing that
BOLD-fMRI is an indirect transformation of underlying neural
activity and Granger causality is a purely data-driven method
without biological modeling, in the current study, we have
carefully considered the effects of HRF on Granger causality
analysis on BOLD-fMRI data. The use of DOI terms in the
within-group effective connectivity analysis, the main concern
of identifying different effective connectivity patterns between
the patients and controls rather than revealing canonical causal
structure, as well as the group-level strategy for multisubject
Granger causality analysis in the current study, have been
suggested by recent analyses that are theoretically useful to
relieve the HRF effects (Schippers et al., 2011; Barnett and
Seth, 2014). Furthermore, considering that the HRF has been
reported to be different in epilepsy subjects (David et al., 2008),
we adopted the blind-deconvolution technique proposed by Wu
et al. (2013) to deconvolve the mean time courses of the six
ROIs (obtained in Section Region of interest definition and time
course extraction) for each subject separately, and on the basis
of the deconvolved BOLD time courses, we repeated the Granger
causality analysis described in Section Evaluating between-group
effective connectivity difference. In this case, both the time
domain partial Granger causality and the frequency domain
PDC have revealed only one effective connectivity that showed
significant group difference (Mann-Whitney U-tests, p < 0.05,
FDR corrected), i.e., the increased causal influence from the
rDLPFC to the dACC in the IGE-GTCS patients than controls,
which is consistent with our prior result based on the BOLD time
courses without deconvolution. We thus infer that, the altered
effective connectivity from the rDLPFC to the dACC, which is
consistently revealed by the two domains’ multivariate Granger
causality analyses on both the BOLD and deconvolved BOLD
time courses, is probably a key factor associated with cognitive
dysfunctions in IGE-GTCS.

Limitations and Future Directions
Several limitations in this study should be mentioned. First,
due to the absence of neuropsychological tests for both
the patients and the controls, we cannot precisely relate
the significant Granger causal connectivity to the specific
cognitive functions and neuropsychological parameters, the
interpretations of the results are simply inferences derived from
earlier researches. Second, it is reported that AED toxicity is
related to psychopathology and abnormal neuronal function in
epilepsy (Schmitz, 1999). In the current study, all patients were
treated with AEDs, including 24 patients with monotherapy and

3 patients with polytherapy; the AEDs included sodium valproate
(VBA), phenytoin (PHT), carbamazepine (CBZ), lamotrigine
(LTG), phenobarbital (PB), and topiramate (TPM). However,
we have carefully considered the potential confounding effects
of AEDs on ICNs in the study. We ensured that all patients
received nomedication for at least 48 h prior to theMRI scanning
to avoid direct effects of AEDs on the effective connectivity
analysis. Nonetheless, the long-term effects of AEDs could not
be excluded. Third, a relatively small number of ROIs were
used in the current study to investigate the interconnectivity
between networks. An extension to a larger set of nodes across
different brain networks would be considered in the future. In
addition to the above mentioned aspects, future works could also
focus on EEG-fMRI multimodal integration for resting-state as
well as task-based time-frequency multivariate Granger causality
analysis, and evaluate causal relationship between ROIs using
dynamic causal modeling (Friston et al., 2003).

CONCLUSIONS

In this study, we conducted combined time and frequency
domains multivariate Granger causality analyses to investigate
effective connectivity among the key nodes of the three core
neurocognitive networks in IGE-GTCS patients and matched
healthy controls. The results revealed two SN-involved effective
connectivity that exhibited significant group difference. One is
the decreased Granger causal influence from the rFIC to the
PCC in the patients relative to the healthy controls given by
time domain analysis, which may underline impaired cognitive
abilities as well as mental inflexibility in IGE-GTCS. Another
is the significantly increased Granger causal influence from the
rDLPFC to the dACC in patients than controls revealed by
both the time and frequency domains analyses. This altered
effective connectivity may indicate a disruption to the well-
organized cognitive control processes thus probably leading
to disorders in working memory, sustained attention, as well
as executive dysfunction in IGE-GTCS. The current work
proposes a combination framework of time and frequency
domains multivariate Granger causality analyses that is suitable
for multisubject studies, and demonstrates for the first time
that patients with IGE-GTCS exhibited altered Granger causal
interactions across the SN, DMN, and CEN, shedding new lights
on the psychopathological mechanism of IGE-GTCS.
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APPENDIX

COMPUTATION OF GRANGER CAUSALITY
MEASURES

For better understanding of the calculation process and the
definition of each Granger causality measures, we took a general
system of N (N ≥ 3) variables Xi(t), i = 1, 2, . . .N as an
example. The unrestricted MVAR model of the system can be
written as:











X1(t)
X2(t)
...

XN(t)











=
p

∑

j=1











A11(j) A12(j) ... A1N(j)
A21(j) A22(j) ... A2N(j)

...
...

. . .
...

AN1(j) AN2(j) . . . ANN(j)











·











X1(t − j)
X2(t − j)

...
XN(t − j)











+











E1(t)
E2(t)
...

EN(t)











(A3)

where p is the model order, Ei, i = 1, 2, . . .N are the
model residuals (prediction errors), the elements of A(j) are
called regression coefficients. The noise covariance matrix of the
unrestricted model can be represented as:

6 =











var(E1) cov(E1,E2) · · · cov(E1,EN)
cov(E2,E1) var(E2) · · · cov(E2,EN)

...
...

. . .
...

cov(EN,E1) cov(EN,E2) · · · var(EN)











(A4)

To measure the Granger causality from X2(t) to X1(t), we delete
the row 2 and column 2 of the noise covariance matrix of the
unrestricted model, then partition the matrix into blocks:

6 =















var(E1) cov(E1,E3) · · · cov(E1,EN)
-------------- -----------------------------------------
cov(E3,E1) var(E3) · · · cov(E3,EN)

...
...

. . .
...

cov(EN,E1) cov(EN,E3) · · · var(EN)















=





∑

11

∑

12
-----------------
∑

21

∑

22



 (A5)

and omit the time course X2(t) to obtain a restricted MVAR
model as:











X1(t)
X3(t)
...

XN(t)











=
p

∑

j=1













A
′
11(j) A

′
13(j) ... A

′
1N(j)

A
′
31(j) A

′
33(j) ... A

′
3N(j)

...
...

. . .
...

A
′
N1(j) A

′
N3(j) . . . A

′
NN(j)













·











X1(t − j)
X3(t − j)

...
XN(t − j)











+













E
′
1(t)

E
′
3(t)
...

E
′
N(t)













(A6)

and the noise covariance matrix of the restricted model is:

ρ=

















var(E
′
1) cov(E

′
1,E

′
3) · · · cov(E

′
1,E

′
N)

--------------- -------------------------------------

cov(E
′
3,E

′
1) var(E

′
3) · · · cov(E

′
3,E

′
N)

...
...

. . .
...

cov(E
′
N,E

′
1) cov(E

′
N,E

′
3) · · · var(E

′
N)

















=





ρ11 ρ12
------ ------
ρ21 ρ22





(A7)

Next, we explore the frequency domain representation of MVAR
model. The Fourier transform of (A3) gives:











A11(f ) A12(f ) ... A1N(f )
A21(f ) A22(f ) ... A2N(f )

...
...

. . .
...

AN1(f ) AN2(f ) . . . ANN(f )





















X1(f )
X2(f )
...

XN(f )











=











E1(f )
E2(f )
...

EN(f )











(A8)

where the components of the A(f)matrix are:

Alm(f ) = δlm −
p

∑

j=1

Alm(j)e
−i2π fj (A9)

δlm =
{

1, l = m
0, l 6= m

and we rewrite the A(f ) to the following form:

A(f ) =











A11(f ) A12(f ) ... A1N(f )
A21(f ) A22(f ) ... A2N(f )

...
...

. . .
...

AN1(f ) AN2(f ) . . . ANN(f )











=
[

a1(f ) a2(f ) ... aN(f )
]

(A10)

then the Granger causality measures in two domains can be
formalized as follows:

TIME DOMAIN PARTIAL GRANGER
CAUSALITY

Referring to (A5) and (A7), the partial Granger causality from
X2(t) to X1(t), conditioned on all the remaining variables besides
X1(t) and X2(t), is given by:

FP2→1|others = ln

∣

∣ρ11 − ρ12ρ
−1
22 ρ21

∣

∣

∣

∣

∣

∑

11−
∑

12

∑−1
22

∑

21

∣

∣

∣

(A11)

which can avoid influence of exogenous inputs and latent
variables, and describe the direct causal relationships between
time courses (Guo et al., 2008). When there is no direct influence
from X2(t) to X1(t), the A12(j), j = 1 . . . p in (A3) are uniformly
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equal to zero, leading to FP2→1|others = 0. On the contrary,

when a direct influence from X2(t) to X1(t) exists, we will get
FP2→1|others > 0.

In addition, a difference of influence (DOI) term
is introduced to describe the dominant direction
of causal influence that measured as the difference
(Roebroeck et al., 2005):

DP
2→1|others = FP2→1|others − FP1→2|others (A12)

which can further limits potentially spurious links caused by
hemodynamic blurring (Seth, 2010).

FREQUENCY DOMAIN PARTIAL
DIRECTED COHERENCE

To measure the Granger causality from X2(t) to X1(t) in
frequency domain, the PDC is defined as (Baccalá and
Sameshima, 2001):

π12(f ) =
A12(f )

√

aH2 (f )a2(f )
(A13)

It can be seen that the evaluation of Granger causality from X2(t)
to X1(t) is discretized into a set of frequency slices. Therefore,
by selecting the interested frequency range, we can use PDC to
evaluate direct Granger causality between time courses at each
discrete frequency.

Additionally, the non-normalized DTF from X2(t) to X1(t) is
given by Kaminski et al. (2001):

θ212(f ) =
|M21|2
∣

∣A(f)
∣

∣

2
(A14)

where |M21| is a minor ofA(f)with row 2 and column 1 removed.
The DTF in the multivariate condition could not avoid the
detection of indirect causal relationship between time courses
(Kaminski et al., 2001).
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