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Muscle synergies are hypothesized to reflect modular control of muscle groups via
descending commands sent through multiple neural pathways. Recently, the number
of synergies has been reported as a functionally relevant indicator of motor control
complexity in individuals with neurological movement disorders. Yet the number
of synergies extracted during a given activity, e.g., gait, varies within and across
studies, even for unimpaired individuals. With no standardized methods for precise
determination, this variability remains unexplained making comparisons across studies
and cohorts difficult. Here, we utilize k-means clustering and intra-class and between-
level correlation coefficients to precisely discriminate reliable from unreliable synergies.
Electromyography (EMG) was recorded bilaterally from eight leg muscles during treadmill
walking at self-selected speed. Muscle synergies were extracted from 20 consecutive
gait cycles using non-negative matrix factorization. We demonstrate that the number
of synergies is highly dependent on the threshold when using the variance accounted
for by reconstructed EMG. Beyond use of threshold, our method utilized a quantitative
metric to reliably identify four or five synergies underpinning walking in unimpaired adults
and revealed synergies having poor reproducibility that should not be considered as true
synergies. We show that robust and unreliable synergies emerge similarly, emphasizing
the need for careful analysis in those with pathology.

Keywords: muscle synergy, motor module, walking, motor complexity, coordination

INTRODUCTION

Muscle synergies are purported to represent functional neural commands descending from groups
of motor neurons in the motor cortex and spinal cord (Machado et al., 2015; Overduin et al.,
2015). If this is the case, one would anticipate synergy number and structure to be consistent
for repetitive tasks performed in the same biomechanical context (i.e., consecutive gait cycles) in
healthy adults (Ivanenko et al., 2006; Safavynia and Ting, 2012; Ting et al., 2015). Some degree of
consistency in synergy number has been reported in normal gait despite differences in body weight
support or gait speed within subjects and number of electromyography (EMG) channels between
subjects (Ivanenko et al., 2004). Based on this consistency, common synergy structures between
individuals have been found using clustering analyses (Steele et al., 2015). Precise identification of
synergies is particularly important when analyzing gait pathology. Synergy number is reportedly
reduced by one or more levels in many individuals with brain injury, an observation attributed
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mainly to merging of synergies (Allen et al., 2013). Reduction in
synergy number has also been correlated with clinical measures
indicating diminished function (Bowden et al., 2010). This leads
to the conclusion that the number of muscle synergies and their
structure are meaningful features in clinical populations which
may be indicative of motor control capacity and its reduction in
pathology (Ting et al., 2015).

However, previous studies have shown variability in the
number of synergies extracted during walking in healthy
individuals, ranging from as few as 2 or 3 to as many as 6 (Clark
et al., 2010; Rodriguez et al., 2013). When applying the same
analysis procedure as in healthy individuals, those from clinical
populations have shown a range of 2 to 5 synergies (Clark et al.,
2010; Rodriguez et al., 2013). While lower synergy number has
been related to lower functional assessment scores (Bowden et al.,
2010), this overlap demonstrates the variability of functional
capability at a given level. Thus, accurate selection of synergy
number is critical for studying synergies in the context of clinical
assessment of function.

Currently no standardized criteria or advanced methods
have been established for computing the precise number of
highly reliable synergies from EMG recordings. One of the
most common methods is application of a cut-off threshold
based the variance accounted for (VAF). VAF is computed by
comparing EMG reconstructed from one or more synergies to
the original EMG. The minimal number of synergies, also termed
the minimal level, is selected using a threshold criterion for VAF,
which has ranged from 80 to 95% in previous studies (Dominici
et al., 2011; Gizzi et al., 2011; Rodriguez et al., 2013). Discordance
over the VAF threshold value intensifies the confusion over
which level is correct. Moreover, it has not been justified that
a single cutoff value should be applied across all individuals. In
addition to VAF threshold, other methods have been applied to
determine the minimal synergy level, including likelihood ratio
tests and Bartlett, Akaike, Bayesian, and Laplacian information
criteria, although these measures may overestimate the number
of synergies, especially in the presence of signal noise (Tresch
et al., 2006). Another study identified minimal level by linear
fit of R2 as a function of synergy number (Cheung et al., 2005;
Tresch et al., 2006), yet this method still relies on setting a
threshold for mean squared error between the R2 curve and the
linear fit. Other studies have used bootstrapping techniques to
resample EMG data sets multiple times with replacement and
recalculate VAF (Sawers et al., 2015) or R2 value (Cheung et al.,
2009); the minimum synergy number is identified as the value
at which the 95% confidence interval exceeds 90% VAF or R2.
By incorporating resampling of individual strides, the synergy
number identified by these bootstrapping approaches can control
for stride-to-stride variability in the synergy number whereby
elevated synergy variability would result in decreased VAF (or
R2) values at the 95% confidence bounds, and thus an increased
synergy number. These approaches, however, do not quantify the
stride-to-stride reliability of individual muscle synergies.

The number of synergies can also be influenced by other
steps in EMG collection and data processing such as low-pass
filtering techniques (Hug et al., 2012), the number and choice of
muscles collected (Steele et al., 2013), and even how EMG data

sets are preprocessed before synergy extraction, e.g., averaging
or concatenating (Oliveira et al., 2014). The focus of this study,
however, is on developing criteria that can be applied subsequent
to VAF threshold technique to validate the choice of minimal
synergy level, which is a critical step in studies utilizing muscle
synergy analysis to characterize neural control of a movement.

Here, we introduce a new method to extract synergies during
walking. We hypothesized that fundamental synergies underlying
walking function would have high stride-to-stride reliability
across consecutive gait cycles because essential motor activities
are repeated with low variability in purposeful behaviors (Cullins
et al., 2015). Moreover, by incorporating k-means clustering
with an intra-class correlation analysis, our method provides a
quantitative way to identify reliable synergies beyond the minimal
level required to describe walking, which may have been rejected
as noise in previous studies (Cheung et al., 2005; Chvatal and
Ting, 2012).

MATERIALS AND METHODS

Participants
Nine healthy volunteers (8 right side dominant and
1 ambidextrous; 4 females and 5 males; mean age of
26.1 ± 7.1 years, mean body mass and height of 78.4 ± 12.3 kg
and 173.2± 10.5 cm, respectively) participated in the experiment.
Exclusion criteria included a history of musculoskeletal surgery
within 6 months, unresolved musculoskeletal injury, or neuro-
logical dysfunction. All subjects provided written informed
consent before participation in the Institutional Review Board
approved protocol.

Procedure
Participants were allowed to familiarize themselves to walking on
the treadmill (Bertec TM-06-B, Columbus, OH, USA) by walking
for 2 min at their self-selected comfortable speed while looking
straight ahead. After familiarization with the treadmill and pace,
subjects walked at their preferred speed for 5 min while EMG and
kinematic data were recorded.

Electromyography signals were recorded with surface
electrodes using a wireless EMG system (Trigno Wireless, Delsys,
Boston, MA, USA). Before electrode placement, the skin was
abraded and cleaned with alcohol. The electrodes were attached
by tape and then secured more closely to the skin surface by
non-adhesive wrap (Coflex, Andover Healthcare, Inc., Salisbury,
MA, USA) to reduce motion artifact. EMG signals were sampled
at 1000 Hz from the following muscles on the both legs: tibialis
anterior, medial gastrocnemius, rectus femoris, and medial
hamstrings. Kinematic data were collected using 10 motion
capture cameras and synchronized with EMG data (Vicon,
Lake Forest, CA, USA). Reflective markers were placed on the
skin over specific anatomic locations on the pelvis and lower
extremities to measure angular displacement of hip, knee, and
ankle joints. Motion capture data were processed offline with
Visual 3D software (C-Motion, Germantown, MD, USA) to
identify gait events (heel strike and toe-off). Individual gait cycles
were identified using right heel strike events.
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FIGURE 1 | Twenty sets of electromyography (EMG) matrices
comprising 20 consecutive gait cycles were used for analysis.
Non-negative matrix factorization (NNMF) was used to extract muscle
synergies from levels 1 to 8. Agreement of EMG reconstructed from C and W
matrices and original EMG was calculated using variance accounted for (VAF)
for all muscles (total) and for individual (local) muscles. Within each level,
k-means clustering was used to identify similar synergies across the 20 sets.
Intraclass correlation coefficients of W (ICCw) and C (ICCc) for the 20 sets
was computed to quantify reliability of muscle synergies. For each parameter,
a schematic representing good and poor states of the indices is shown.

Data Analysis
The mean number of strides for the 5 min walking trial across
subjects was 270 ± 7.8. For each participant a block of 20
consecutive gait cycles was selected for analysis starting with the
100th stride. Each surface EMG channel was demeaned, high-
pass filtered (2nd-order, 30 Hz), full-wave rectified, and low-pass
filtered (2nd-order, 5 Hz) to create the linear envelope; the low-
pass cutoff frequency was based on the approximate walking
cadence of 1 Hz, as recommended in Hug (2011). Next, each
EMG envelope was segmented by gait cycle using synchronized
kinematic data. EMG data for each gait cycle were resampled
to 100 points (1−100% from right heel strike to right heel
strike) using cubic spline interpolation. Muscle synergies were
computed using non-negative matrix factorization (NNMF) as
described previously (Lee and Seung, 1999). Prior to NNMF, the
20 sets of EMG matrices were normalized by individual peak
activation, so that all EMG data had amplitude in the range of 0 to
1. After normalization, NNMF was applied 20 times to each of the
20 EMG matrices (once per gait cycle) as shown in Figure 1. We
chose to extract synergies from individual gait cycles because this
process was shown to result in higher reconstruction quality than
muscle synergies from averaged or concatenated EMG (Oliveira
et al., 2014) and variation in muscle activation across gait cycles

could be lost in averaging process (Steele et al., 2015). The 20
sets of muscle synergies were each computed according to the
following formula:

EMG0 =

n∑
i=1

WiCi + e, EMGr =

n∑
i=1

WiCi (1)

where EMGo is the recorded muscle activity (muscle × time),
n is the level (or number) of muscle synergies ranging from 1
to 8, W is the muscle synergy structure matrix (muscle × n)
indicating the weighting vectors of individual muscles for each
muscle synergy, C is the muscle synergy activation matrix
(n × time) indicating time-varying synergy activation profiles,
and e is residual error. EMGr is a reconstructed EMG matrix
(muscle × time) resulting from the multiplication of W and
C. The first step in our process to identify synergies underlying
walking was to reconstruct EMGo using NNMF with a range of 1
to 8 synergy levels (n= 1, n= 2, . . ., n= 8).

At each level, the VAF was computed as follows:

VAF(%) = [1− (EMG0 − EMGr)
2/EMG2

o] × 100 (2)

The VAF cutoff was set at 90% such that the lowest possible
minimal level was the synergy number that accounted for over
90% of total VAF (Dominici et al., 2011). We defined the
insufficient and excessive level as one level lower and higher than
the minimal level, respectively. For example, if the minimal level
was four, the insufficient level was three and the excessive level
was five.

The second step was to match similar synergy structures across
the 20 gait cycles at each synergy level using k-means clustering.
Synergies were clustered using coefficients of the W matrix (i.e.,
an 8-dimensional feature space). In the clustering process, the
value of k was set equal to each synergy level being analyzed.

The third step was to assess the reliability within each cluster
by computing the intra-class correlation coefficient (ICC) of the
synergy structure (ICCw) and activation (ICCc) matrices across
the 20 sets. An inherent risk of the clustering process is the
presence of large numbers of samples near the cluster boundaries,
which can lead to changes in clustered groups if the analysis is run
multiple times. To prevent inaccurate clustering, the combination
of k-means clustering and ICC analysis was repeated 1000 times
and the clustering result with the highest mean ICCw values
across levels was selected.

Next, we combined a correlation analysis with k-means
clustering to identify similar synergies between levels. First,
k-means was used to cluster synergy data at each level from 1
to 8 into clusters in the 8-dimensional feature space as described
above. Because k was set equal to each level, a single new
synergy emerged at each next higher level. Next, similar synergies
across levels were identified based upon proximity of each cluster
centroid in the feature space. For example, to identify a new
muscle synergy at level 5, each of the 20 synergy structure
matrices for level 4 (8 × 4) were paired with its most frequent
closest neighbor in the feature space at level 5. After matching
four synergies between the level 4 and 5, the remaining unpaired
synergy at level 5 was defined as the new synergy.
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We then computed the between-level correlation (BLC)
coefficients of synergy structure (BLCw) and activation (BLCc)
matrices. The BLCw and BLCc values reported here are the
averaged correlation coefficient values across the 20 EMG sets for
each individual. In the case of the new synergy at the higher level,
we computed BLCw and BLCc with all synergies at the lower level
and matched the new synergy to the synergy at the lower level
with the highest mean BLC values. In this way, we described the
pedigree of muscle synergies from level 1 to 8 for each individual
(Figure 2). Finally, we identified the correct synergy number
from the pedigree as the level satisfying 90% VAF criterion and
showing the highest mean ICCc and ICCw values.

Alternatively, we used only total VAF as a comparison measure
for identification of correct synergy number, similar to previous
studies (Clark et al., 2010; Dominici et al., 2011). For local
VAF, the minimum value was selected across the eight muscles
(Chvatal and Ting, 2012). Total VAF threshold was initially set
at 90% as described above. Then, because total VAF threshold
has varied across studies (Dominici et al., 2011; Gizzi et al., 2011;
Rodriguez et al., 2013), we performed an additional analysis with
VAF thresholds of 80, 85 and 95% to evaluate dependence of
minimal level on this criterion. Additionally, we calculated VAF
in two ways to elucidate the effect on synergy number: using
concatenated EMG from the 20 consecutive gait cycles (CON)
and as the average VAF across the 20 individual sets (AVE). We
report the minimum and maximum VAF across the 20 gait cycles
for the AVE method.

Statistical Analysis
To evaluate the implicit assumption that gait cycles in each
subject were repetitive and consistent, ICC of EMG0 and
kinematic variables (sagittal plane hip, knee, and ankle joint
excursions) was computed across the 20 gait cycles. Significance
level was set at p< 0.05, and values are presented with means and
standard deviations.

The muscle synergies within each level were ranked in
ascending order based on BLCw values according to the
hypothesis that noise at the excessive level (i.e., the level beyond
the minimal level) would show low correlation with the reliable
synergies (Figure 2). Thus, a synergy showing the lowest BLCw
value was always assigned to the first synergy (S1). One-way
repeated measures analysis of variance (ANOVA) was conducted
to identify significant differences between the four indices
(ICCw, ICCc, BLCw, BLCc) within the minimal, insufficient, and
excessive synergy levels, respectively. One-way repeated measures
ANOVA was also used to identify the differences in S1 between
levels. Post-hoc analysis was performed by Duncan’s new multiple
range test.

RESULTS

Similarity of EMG and Kinematic
Variables
The reliability of EMG recorded across the 20 examined strides,
as measured by the ICC of EMGo, was high in most subjects
(ICC= 0.86–0.95), with the exception of subject 9. The left rectus

femoris of subject 9 showed low reliability (ICC = 0.39) during
walking. Mean ICC values of other muscles in this subject were
0.81± 0.03. Reliability of the kinematic variables was of a similar
range as the muscle data (0.92 ± 0.02). The reliability values for
the hip, knee, and ankle joint kinematics across both legs were
0.96± 0.01, 0.93± 0.02, 0.87± 0.03, respectively.

Synergy Number Based on VAF
Threshold Criteria
When using the average 90% VAF cutoff criterion, four muscle
synergies were required to account for bilateral muscular
activations during walking for all participants except subject 5.
At this threshold, minimal synergy level did not differ when
extracted from 20 concatenated individual gait cycles or from an
average of the 20 individual cycles (Table 1). The averaged total
VAF values were higher (92% ± 1) than the cutoff value (90%)
at level 4 in 8/9 subjects although 6/9 subjects showed that the
minimal level was 3 or 5 in some cases among the 20 cycles.
Since the minimal level was 4 in eight subjects, level 3 and 5 of
these subjects were defined as the insufficient and excessive levels,
respectively. Subject 5 required five muscle synergies (minimal
level = 5) based on the VAF threshold of 90%, so level 4 and
6 were defined as the insufficient and excessive levels in this
case.

The minimal synergy level was strongly affected by the value
of the VAF cutoff threshold (Figure 3). At VAF threshold of 80%,
the minimal level was 2 or 3 for all 9 subjects for both the average
and consecutive methods, while a threshold of 95% resulted in
minimal level of 5 or 6 synergies.

Identification of Reliable Synergies
Muscle synergies across the 20 sets were clustered at each level
and the reliability within the cluster was computed using ICC.
Then, muscle synergies at each level were ranked based on
BLCw values. The peak mean ICC value indicated that synergy
level 4 contained all reliable synergies in 7/9 individuals, with
the exception of subjects 5 and 6. At the minimal level as
determined by VAF threshold of 90%, mean ICC values across
the synergies were higher than at both insufficient and excessive
levels (Figure 4). ICC values of synergy activation showed similar
results with those of the structure.

The ICC values assigned to S1, the synergy with the lowest
correlation to the previous level, showed the lowest reliability
within each level in both structure and activation (Figure 4A).
Within each level, the ICC values of S1 were significantly
lower than those of other synergies in the insufficient (ICCw:
F = 23.659, p = 0.001; ICCc: F = 12.164, p = 0.008) and
excessive levels (ICCw: F = 13.108, p = 0.014; ICCc: F = 34.634,
p = 0.002). In between-level comparisons, the ICC values of
S1 at the minimal level were significantly greater than those of
other levels (ICCw: F = 5.977, p = 0.013; ICCc: F = 6.475,
p = 0.010). Importantly, at the minimal level, no significant
differences in ICCw and ICCc were observed between S1−S4
(p > 0.05), suggesting that there were no unreliable components.

The minimal level according to VAF threshold of 90% for
subject 5 was five. Similar to level 4 for the other subjects this
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FIGURE 2 | A sample pedigree for individual muscle synergies from level 3 to 5, determined using iterative k-means clustering and correlation
analysis. Level 4 (bold) is the minimal level based on VAF 90% threshold. Note that this pedigree presents synergy activations (upper line graph) and synergy
structures (lower bar graph) in eight muscles (1: left tibialis anterior, 2: left gastrocnemius, 3: left rectus femoris, 4: left hamstring, 5: right tibialis anterior, 6: right
gastrocnemius, 7: right rectus femoris, and 8: right hamstring). Lines and bars are matched by shade, with 20 different shades representing each of 20 gait cycles.
Solid lines between levels indicate similar muscle synergies between adjacent levels while dotted lines indicate a new muscle synergy as compared to lower level.
Values above and beneath these lines are between level correlation (BLC) coefficients for related synergy activations (C) and structures (W), respectively. Here,
synergies were assigned labels of S1−S4 or S5 based on ascending order of the correlation coefficients. The values of intra-class correlation (ICC) are shown for
each synergy. The unreliable synergy determined to be noise is shown with gray background.
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TABLE 1 | Total and local variance accounted for (VAF) across 20 sets at levels 3−5.

Subject 1
(%)

Subject 2
(%)

Subject 3
(%)

Subject 4
(%)

Subject 5
(%)

Subject 6
(%)

Subject 7
(%)

Subject 8
(%)

Subject 9
(%)

Level 3

Total VAF

CON 85.0 85.9 83.3 86.1 83.9 86.3 88.4 87.9 89.3

AVE 86.2 84.9 82.1 84.2 83.0 85.3 87.5 84.7 89.8

Min. 82.0 81.7 77.2 80.6 79.1 82.0 83.3 81.1 86.2

Max. 88.9 88.1 85.7 87.8 85.4 87.2 89.4 88.8 93.8∗

Local VAF

CON 65.4 69.7 47.7 49.3 68.5 66.3 61.8 63.7 82.4

AVE 63.1 62.8 48.1 49.8 62.0 63.7 63.9 65.0 74.5

Min. 39.5 30.3 34.9 31.9 45.7 42.1 42.2 53.1 55.7

Max. 72.6 78.2 64.4 69.1 73.4 77.6 77.2 76.9 83.1

Level 4

Total VAF

CON 92.1 92.7 90.5 93.3 89.4 90.1 90.9 91.7 92.8

AVE 92.9 92.0 90.4 93.3 89.7 91.3 92.3 91.2 94.2

Min. 90.3 89.2† 87.3† 90.5 86.9 88.5† 88.1† 88.2† 92.5

Max. 94.7 94.0 92.1 95.0 92.1∗ 93.6 94.1 93.8 96.7

Local VAF

CON 76.1 79.9 75.8 82.5 81.4 82.4 82.7 77.7 85.0

AVE 70.9 79.1 75.4 82.7 75.6 77.8 82.3 78.8 84.7

Min. 58.5 66.0 62.9 69.6 63.4 64.1 69.8 65.2 75.9

Max. 85.0 89.0 83.8 88.1 85.1 85.2 88.9 87.5 93.4

Level 5

Total VAF

CON 94.6 96.0 94.1 95.7 95.3 95.1 94.5 96.0 95.9

AVE 95.6 95.6 94.6 96.5 94.9 95.8 95.2 96.0 97.3

Min. 93.4 94.3 92.7 94.8 93.4 93.8 92.4 94.5 95.9

Max. 96.7 97.1 96.1 98.2 96.7 97.0 96.5 97.8 98.5

Local VAF

CON 74.2 81.0 78.2 92.4 87.5 86.6 88.8 81.6 92.2

AVE 80.9 87.1 81.5 91.6 85.9 83.7 86.9 86.9 91.5

Min. 70.0 76.9 74.5 86.2 79.1 79.3 80.0 80.2 85.8

Max. 90.5 94.2 89.1 96.0 93.7 92.6 91.6 91.4 97.3

The minimal level of individual subjects is presented with bold (cutoff: total VAF > 90%). The VAF values were determined using both consecutive (CON) and averaged
(AVE) VAF. In the AVE method, minimum (Min.) and maximum (Max.) VAF values across the 20 gait cycles were also presented. Instances in which the minimal synergy
level from an individual gait cycle was lower (∗) or higher (†) than the AVE and CON methods are indicated.

level had the highest ICC in synergy structure and activation
(Figure 5). For subject 6, although the minimal level identified
by 90% VAF threshold was 4, ICC values for synergy structure
and activation were higher at level 5 as compared to levels 4
and 6 (Figure 6), indicating that level 5 is the correct minimal
level and contains the most reliable muscle synergies for subject
6 although this was not the minimal level based on 90% VAF
threshold. As a result of increasing one level in subject 6, total
VAF increased by 5 and 4.5% for CON and AVE, respectively
(Table 1). Subject 9 showed relatively low ICCs in both synergy
structure (mean: 0.69, S1: 0.56) and activation (mean: 0.68, S1:
0.46) at the minimal level 4; however, these ICC values were
higher than those at the insufficient (mean: 0.64 and 0.62, S1:
0.43 and 0.25) and the excessive (mean: 0.68 and 0.67, S1:
0.33 and 0.29) levels, so level 4 was considered correct for this
individual.

The between level correlations of S1 were similar for synergy
structure and activation (Figure 4B). Within each level, both
BLCw (insufficient level: F = 429.314, p < 0.001; minimal level:
F = 70.549, p < 0.001; excessive level: F = 269.148, p < 0.001)
and BLCc (insufficient level: F = 595.246, p < 0.001; minimal
level: F = 1069.360, p < 0.001; excessive level: F = 61.184,
p = 0.001) were significantly less than the other synergies. In
contrast, neither BLCw (p > 0.05) nor BLCc (p > 0.05) of
S1 were significantly different between levels. By describing the
pedigree for each level (Figure 2), our data driven, k-means
clustering and subsequent correlation analysis consistently found
a pattern whereby when progressing to a higher level, two
synergies would bifurcate from one synergy at the lower level
while the other synergies were preserved with high between-
level correlation. This pattern was identified while progressing
between all levels.
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FIGURE 3 | Minimal level varied according to different cutoff values that ranged from 80 to 95%, when an absolute threshold of variance accounted
for (VAF) was used to determine the number of synergies. Among the four thresholds, 90% VAF threshold shows the most consistent minimal level between
subjects in both averaged and consecutive type.

DISCUSSION

In this work, we present iterative k-means clustering with ICC
and BLC as a quantitative method for more precise identification
of synergy number during walking. The level containing reliable
synergies was identified from the peak ICC values as a function
of increasing synergy number. In all cases, one synergy in the
excessive level showed poor stride-to-stride reliability (low ICC);
thus an unreliable synergy that was rarely recreated across gait
cycles was present when synergy number was overestimated. This
unreliable synergy also showed the lowest BLC indicating low
correlation with all reliable synergies. We consider this synergy
to be a noise element conceptualized in previous studies (Cheung
et al., 2005; Chvatal and Ting, 2012).

Our analysis confirmed that synergy number is highly
dependent upon the selected VAF threshold (Figure 3). Our
results show that a more nuanced approach than application of
a constant VAF cutoff threshold across a group of subjects is
required to precisely extract synergies underpinning walking, and
we propose ICC and BLC as more accurate discriminators of
reliable and unreliable synergies. For example, subject 6 showed
that ICC values peaked at level 5 and were reduced at level 6.
We conclude that this subject has five synergies despite level 4
satisfying the 90% VAF criterion. We note that for most subjects,
ICC values were highest at the minimal level determined by 90%
VAF threshold, but this would not have been the case if the a VAF
threshold of 80 or 95% was selected. To our knowledge, there is
no evidence why the same VAF criterion should be applied for all
individuals.

Other studies have utilized muscle synergy analysis without
applying a criterion to determine synergy number required to
describe a movement. For example, Steele et al. developed the
dynamic motor control index during walking (walk-DMC) that
quantifies the unexplained variance beyond the first synergy level
(Steele et al., 2015). While this index has been shown to correlate

with gross measures of function and may therefore be useful as
a clinical measure, it does not capture the full motor control
strategy utilized during walking. Similarly, Clark et al. (2010)
examined motor complexity in individuals who had strokes by
extracting synergies at level 4 regardless of VAF. Their analysis
revealed that activation timing between modules overlapped at
this level in those post-stroke, indicating a reduced level of
complexity. Similar to the walk-DMC, such an approach could
be useful clinically to quantify locomotor complexity, but it does
not enable examination of individual motor control strategies for
walking with the same resolution as approaches which identify all
reliable motor modules.

Incorporation of clustering and ICC using single stride
analysis enables exploration of trial-to-trial variability of
synergies. For example, subject 9 presented lower ICC than other
subjects, indicating higher variability in the extracted muscle
synergies. Closer examination attributed the low ICC to poor
repeatability of left rectus femoris activations, a result that was
not due to measurement noise but instead reflected stride-to-
stride variability in muscle activation. Although unique in our
study cohort, previous reports have described high stride-to-
stride variability of rectus femoris in normal walking (Winter
and Yack, 1987; Annaswamy et al., 1999). Either way, high
variability of muscle synergies warrants further exploration,
especially when applying synergy analyses to individuals with
brain injury, because such variability across repetitions of the
same movement could be interpreted as a challenge to the
synergy hypothesis which postulates that synergies represent a
fixed modular pattern of motor activities in purposeful behavior
(Ivanenko et al., 2006; Bizzi and Cheung, 2013). Increased motor
variability across trials is often observed in patients with brain
injuries (Kim et al., 2016) or older adults (Lovden et al., 2007).
Moreover, muscle activity patterns can vary owing to changes
in sensory input and subcortical reflexes (Sinkjaer et al., 2000;
Kim et al., 2013). The method introduced here does not place
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FIGURE 4 | Indices for identifying noise elements: intra-class
correlation coefficient (ICC) of muscle synergies for 20 gait cycles
(A) and between-level correlation (BLC) with lower level (B). Muscle
synergies (S) at each insufficient, minimal, and excessive level were arranged
by ascending order of BLC value for W. Thus, a synergy showing the lowest
correlation with the lower level was assigned to S1 and a synergy showing the
highest correlation was assigned to the S3, S4, and S5 at the insufficient,
minimal, and excessive levels, respectively. Data presented here are the grand
average across 20 gait cycles and eight subjects whose minimal level was 4.
One subject (minimal level = 5) was excluded. W: muscle synergy structure
matrix; C: muscle synergy activation matrix. ∗Significantly different from other
synergies within the same level (P < 0.05). †Significantly different from S1 at
other levels (P < 0.05). Data are presented with mean and standard error
values.

a threshold on synergy consistency (ICC) but instead utilized a
local peak in ICC in combination with a VAF threshold to identify
the most reliable minimal level. While we see no reason why
this method would not be similarly effective regardless of the
population, further studies are necessary to validate this approach
in clinical populations, such as those with stroke or cerebral palsy,
different age groups, or healthy individuals performing novel
tasks that may show more variability than the cohort in this
study.

Our method was designed as a tool to enhance precision
when extracting the fundamental synergies that describe muscle
activity during walking. Bootstrapping methods which randomly
sample individual strides may account for variability when
determining synergy number or minimal level (Cheung et al.,
2009; Sawers et al., 2015), yet the cause of this variability may

not be clear. The ICC value introduced quantifies consistency
of individual muscle synergies independent of the VAF value
or bootstrapping confidence interval. In this way, our approach
can aid in determining whether an elevated minimal level is
due to reduced consistency of a subset of deployed synergies
or to a more complex motor control strategy. Given that the
number of extracted synergies required to describe walking has
been correlated clinically with functional capability (Bowden
et al., 2010), precision is paramount and our method would be
beneficial for such analyses.

However, our method may not identify all possible synergies
which could be deployed during walking. For example, synergies
that arise from or are distorted by a reflexive response or those
which only contribute occasionally to the movement may not
be identified due to high stride-to-stride variability. Similarly,
inconsistent synergies that arise during development or early
learning of a skill, or that result from neurological impairments
may result in reduced ICC values. However, as discussed above,
in our approach there is no set threshold on ICC required to
define the minimal synergy level. We also note that our k-means
clustering and correlation analysis does not, a priori, assume the
existence of synergies. Indeed, it is possible that poor reliability
(low ICC/BLC) would be present at all levels, in which case the
minimal level would be equal to the number of muscles which
would suggest that either there were no reliable synergies or
that task performance across repetitions (e.g. strides) was not
consistent.

In our sample of healthy adults, muscle activity during
walking was accounted for with four or five synergies in
agreement with previous studies of bilateral muscle activity
(Dominici et al., 2011; Maclellan et al., 2014). The number
of synergies may reflect the size of one’s motor repertoire
or motor complexity (Ting et al., 2015) so variation across
individuals is not surprising. Even in an everyday task such
as walking, there may be differences in performance levels
across individuals. Evidence that expert training such as ballet
increases the number of muscle synergies shared across different
walking tasks (Sawers et al., 2015) further supports this
interpretation.

The muscle synergies in this study were extracted from
EMG recorded bilaterally during walking. Although extraction
of synergies from unilateral EMG during walking is common,
our results align with previous studies that have extracted
bilateral muscle patterns in children and adults (Dominici et al.,
2011). It has been shown that bilateral synergies reveal more
consistent synergies between strides as compared to unilateral
sets (Maclellan et al., 2014). While these studies, as well as
computational models of central pattern generators in animals
(Sherwood et al., 2011), support the role of bilateral coordination
during walking, future studies will also examine the performance
of our synergy extraction techniques in larger muscle sets and
will compare its performance in unilateral versus bilateral EMG
datasets.

Our data driven approach consistently found that unreliable
synergies had weak correlations with the synergies of the lower
level. That is, an unreliable synergy, denoted as S1 in this paper,
always shows the lowest BLC value. Thus, the BLC is a useful
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FIGURE 5 | Pedigree of subject 5. This subject showed that level 5 (bold) was the minimal level based on VAF 90% threshold. Mean ICC values for W and C were
also the highest at level 5. Unreliable element is shown at level 6 with gray background. Abbreviations and muscle numbers are the same as in Figure 2.

metric for identifying an unreliable synergy at the excessive level.
The synergy pedigree identified using clustering and between-
level correlation analysis presents a bifurcation pattern observed
in all subjects whereby one synergy at the lower level splits into
two synergies at the next level. Although further studies with
additional muscles are necessary to confirm this pattern, the
same phenomenon has been identified in previous studies in
animals and humans (D’Avella et al., 2003; Danner et al., 2015).
This pattern supports the concept of synergy merging when
moving from a higher to lower level. Yet, because the emergent
synergy (S1) constituted an unreliable (or noise) element at the

excessive level (Figure 2), functional interpretations of merging
or splitting of synergies should be carefully examined. It has been
postulated that the reduced synergy number in individuals with
brain injury arises from merging of several synergies, a result that
may indicate reduced complexity of neural control signals (Clark
et al., 2010; Allen et al., 2013; Rodriguez et al., 2013). While this
may indeed be the case, our results demonstrate the possibility
that merging is also caused by inaccurate or underestimation
of the minimal level. In all subjects here, one synergy at the
insufficient level was always formed from merging of two at the
minimal level, suggesting examination of synergies beyond VAF
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FIGURE 6 | Pedigree of subject 6, which shows a case when muscle synergies determined based on VAF threshold are not robust. Minimal level based
on VAF 90% threshold was 4 (bold level). However, one muscle synergy presented with gray background at level 4 inconsistently emerged across 20 gait cycles as
shown by ICC. Muscle synergies were more reliable at level 5 with the highest ICC values compared to other levels. Abbreviations and muscle numbers are the same
as in Figure 2.

threshold is necessary to confirm the reduction from unimpaired
individuals.

An increase in synergy number and refinement of their
structure during infant motor development has been
hypothesized by comparing neonatal and adult groups (Dominici
et al., 2011). Neonates demonstrated two muscle synergies while
adults showed four, leading to the theory that the number of
muscle synergies are related to maturity of the central nervous
system. The presence of fewer synergies in those with motor
disabilities is also not surprising (Clark et al., 2010) because they
have diminished coordination compared to non-injured adults.

However, neonates and those with movement disorders are likely
to have characteristics that affect VAF, such as increased motor
variability, muscle weakness, and reduced modulation of muscle
activity. Our proposed methods for identifying reliable synergies
may provide a useful tool for enhancing precision of synergy
analysis in these populations.

One potential limitation of this study is the use of eight
bilateral EMG channels; however, a previous study indicated
that the weight (W) and activation (C) matrices of synergies
derived from factorization algorithms are highly similar when
using a range of 6 to 192 EMG channels (Muceli et al., 2014),
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suggesting that the current setup is useful for demonstration of
our algorithm. Experiments are planned in the future to confirm
its use with a larger muscle set.

In summary, the central nervous system may modularly
recruit groups of muscles via a single command, termed a
muscle synergy, to execute coordinated movements. Recent
evidence suggests individuals with neurological deficits may
possess fewer synergies, indicating reduced motor complexity.
Yet, many studies rely on a basic metric, percentage of VAF
by the extracted synergies, to quantify the number involved in
a motor task. We confirmed that a single threshold applied
across individuals can lead to spurious results. In addition to the
VAF threshold criteria, we introduce novel measures to enhance
precision when distinguishing reliable synergies from unreliable
elements during walking. When applying the 90% VAF criterion,
we found peak ICC values at level four or five, depending on the
individual. Within each individual, the next synergy level beyond
the one with peak ICC (i.e., the excessive level) retained high VAF
values, yet unreliable (noise) synergies emerged as indicated by
reduced ICC values compared to the minimal level. Our analysis
demonstrates that reliable and unreliable synergies emerge in

the same way, and thus careful analysis is required to examine
motor control complexity especially in the population having
high motor variability.
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