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When balance is exposed to perturbations, hand contacts are often used to assist
postural control. We investigated the immediate and the transitionary effects of
supportive hand contacts during continuous anteroposterior perturbations of stance
by automated waist-pulls. Ten young adults were perturbed for 5 min and required
to maintain balance by holding to a stationary, shoulder-high handle and following its
removal. Center of pressure (COP) displacement, hip, knee and ankle angles, leg and
trunk muscle activity and handle contact forces were acquired. The analysis of results
show that COP excursions are significantly smaller when the subjects utilize supportive
hand contact and that the displacement of COP is strongly correlated to the perturbation
force and significantly larger in the anterior than posterior direction. Regression analysis
of hand forces revealed that subjects utilized the hand support significantly more during
the posterior than anterior perturbations. Moreover, kinematical analysis showed that
utilization of supportive hand contacts alter posture of the whole body and that postural
readjustments after the release of the handle, occur at different time scales in the hip,
knee and ankle joints. Overall, our findings show that supportive hand contacts are
efficiently used for balance control during continuous postural perturbations and that
utilization of a handle has significant immediate and transitionary effects on whole body
posture.
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INTRODUCTION

With aging society, falls are becoming an increasingly large problem. A large proportion of falls
occur due to the improper weight shifts (Robinovitch et al., 2013) and impaired postural control is
a landmark of aging (Maki and McIlroy, 2006; Mansfield and Maki, 2009). When postural control
is impaired, handrails, canes and handles are often used to assist maintaining balance by providing
additional supportive contacts with the environment. This indicates that holding onto a physical
aid is beneficial for postural control.
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With respect to the use of hand contacts for postural control,
one of the widely investigated phenomena is ‘‘light touch’’ (Jeka,
1997; Krishnamoorthy et al., 2002). These light, fingertip contacts
with stationary objects can extend the base of support (Bateni
and Maki, 2005) and provide an additional sensory input, which
helps individuals to better position them in space (Jeka, 1997).
Such sensory information improves postural control in quiet
standing by reducing the amplitude of center of pressure (COP)
movement (Jeka, 1997; Johannsen et al., 2007; Kouzaki and
Masani, 2008; Wing et al., 2011).

On the other hand, in case of perturbed balance reaching arm
movements with the aim to grasp for a nearby object is a widely
utilized change-in-support strategy (Maki and McIlroy, 2006).
Such hand contacts provide mechanical support in addition
to the sensory augmentation of the light touch and thus offer
a better stabilizing potential in the presence of perturbations
(Maki and McIlroy, 1997). Specifically, holding onto a handle
increases the base of support of a standing individual and enables
a person to generate necessary hand forces to better counteract
the perturbations (Babǐc et al., 2014; Sarraf et al., 2014). A recent
study by Babǐc et al. (2014) showed that the location of the
supporting hand contact is important to maximize its stabilizing
potential and that the peak forces exerted at the handle during
the support surface perturbations are related to the location of
the handle.

Aforementioned studies were based on the discrete
perturbations of balance which predominantly evoke feedback
postural responses. A major component of such responses
is comprised of motor actions that are related to various
sensorimotor reflexes and to a lesser extent to the feed-forward
components of the postural control (Mergner, 2010). Moreover,
the discrete perturbations evoke reach-to-grasp arm movements
even when the perturbations are so light that they do not
physically disturb postural balance (McIlroy and Maki, 1995;
Corbeil et al., 2013). In contrast to the discrete perturbations
of balance, perturbations that continuously disturb postural
balance evoke both feedback and feed-forward components of
motor action and in this sense offer a complementary insight
into the postural control (Dietz et al., 1993; Schmid et al., 2011).

The remaining question is what is the role of hand contact
during continuous perturbations? Therefore, the aim of this
article is to study situations where balance of an individual
is challenged by continuous postural perturbations and to
investigate the role of supportive hand contact in counteracting
postural perturbations. Specifically, our goal was to investigate
the immediate and the transitionary effects of a supportive hand
contact on postural control of an individual whose balance
is challenged by continuous anteroposterior perturbations of
stance.

Our hypothesis is that a supportive hand contact has a
significant influence on postural balance by reducing the COP
excursion during the perturbation and that the utilization of
the hand contact is more prominent for postural perturbations
in the backward direction which are more threatening than
the perturbations in the forward direction. Moreover, we
hypothesize that utilization of the additional hand support not
only alters posture of the human body while the hand is in

contact with the environment but also after the release of the
handle. To effectively address these hypotheses, we developed
an experimental framework where we continuously perturbed
postural balance and investigated the relationships between
the perturbation force and the COP displacement, kinematical
parameters of the human body, and the forces exerted by the
supportive hand.

MATERIALS AND METHODS

Participants
Thirteen healthy right-handed young adults participated in this
study after giving their written consent. Data of three subjects
were excluded from the analyses due to technical problems
during acquisition, therefore we used the data of ten subjects
(average age = 22.3 years, SD = 2.2 years, average height
179.2 cm, SD = 5.9 cm and average weight = 76.9 kg,
SD = 8.2 kg). The experimental procedures conformed to the
latest revision of the Declaration of Helsinki and were approved
by the Slovenian National Medical Ethics Committee (No.
112/06/13).

Measurement Protocol
Subjects were asked to step on a force plate, stand straight
with the feet placed at hip width and look straight ahead. They
were required to keep upright posture and maintain balance
without making any unnecessary corrective steps while their
balance was continuously perturbed in anteroposterior direction
by a motorized waist-pull system (Peternel and Babǐc, 2013) as
depicted in Figure 1. During the experiment, the subjects were
not allowed to change their base of support. We marked their
individual standing position on the force plate prior to the start
of the experiment which was used as a reference for foot position
during the experiment. This ensured that the different stance
width would not affect subjects’ balance since it has been shown
by Bingham and Ting (2013) that active torque at ankle and
hip joints scale with stance width. To emulate mild, daily life
perturbations such as those during riding on buses, subways and
trains (Graaf and van Weperen, 1997) the motorized waist-pull
system perturbed the subjects using a band-pass filtered white
noise signal (0.25–1.00 Hz) with the maximal perturbation force
of 11% of the subjects’ body weight (Figure 2).

The experiment consisted of two consecutive 5 min trials
of different standing conditions: balancing while holding to a
handle [with-handle (WH)] and without holding to a handle
[no-handle (NH)]. First, the subjects were exposed to 5 min of
perturbations in the WH trial. In the WH trial, subjects held
onto a stationary handle (diameter = 3.2 cm, length = 12 cm)
positioned at shoulder height with their right hand. After 5 min
the perturbation stopped, subjects released the handle and folded
their arms across their chest. Then, on average less than 60 s
later, the second trial of 5 min of perturbation started (NH trial).
In the NH trial, subjects were standing with their arms folded
across their chest. In both trials, subjects were instructed to look
straight ahead at all times at a fixed point positioned at the
subject’s eyelevel and 3 m in front of the experimental setup.
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FIGURE 1 | Experimental setup. The subject is standing on a force plate,
wearing a waist belt connected to the motorized waist-pull system which
generated translational force perturbations in the anterior-posterior direction
using a band-filtered white noise signal constructed to emulate mild, daily life
perturbations.

FIGURE 2 | Perturbation signal sample. Solid black curve represents first
60 s of mean perturbation signal from all 10 subjects with ±1 standard error of
the mean (gray shade around the curve). In the first 10 s of each trial the
perturbation value was at 0 N—quiet phase. After 10 s (perturbation onset),
the perturbation gradually increased with alternated direction and
amplitude—perturbation phase. Positive values of mean perturbation force
represent forces in anterior direction and negative values represent forces in
posterior direction. The perturbation signal was identical in both trials.

To induce response adaptations (Van Ooteghem et al., 2008;
Schmid et al., 2011), the subjects were allowed to familiarize
with the experimental procedures prior to the main experimental
trials.

Kinetic data were collected using a force plate (9281CA,
Kistler Instrumente AG, Winterthur, Switzerland) under the
subjects’ feet and a 3-axis force sensor (45E15A, JR3, Woodland,
CA, USA) on the handle, both at 1000 samples/s.

Kinematic data were collected at a sampling rate of 100
samples/s using a contactless motion capture system (3D
Investigator, Northern Digital Inc., Waterloo, ON, Canada)
consisting of a 3 × 3 camera array. Nine active markers

were placed at the apparent axis of rotation of the fifth
metatarsophalangeal, ankle, knee, hip, shoulder, elbow and wrist
joints on the subject’s right side as well as at the base of the
platform and the handle.

Anteroposterior displacement of the subject’s COP was
derived from the force plate data. In the first 10 s of each trial,
the subjects stood quietly (holding a handle with right hand in
the first trial, or both arms folded across their chest in the second
trial) and no perturbation was applied at the waist (see Figure 2
for reference regarding perturbation signal). The mean COP
position from this time period (we refer to this as quiet phase)
served as a baseline for calculation of COP excursions in the
anterior and posterior direction in the following perturbations
(perturbation phase).

Handle forces were calculated by considering the torques of
the lever (distance from force sensor to the middle of the subject’s
hand on the handle). Kinematic data were low pass filtered
(zero lag, 2nd order Butterworth filter with a cut-off frequency
20 Hz). Ankle angle was calculated as the angle between the
foot (line connecting the fifth metatarsal and ankle) and the
shank (line connecting the ankle and the knee), knee angle as
the angle between the shank and thigh (line connecting the
knee and the hip), and hip as the angle between the thigh and
torso (line connecting the hip and the shoulder). To evaluate
the adaptation effects of releasing the handle in the NH trial,
an exponential fit of group average joint angles was calculated
(Franklin et al., 2003). Adaptation was considered as final once
the given joint angle reached the plateau defined by three
time constants of the fitted exponential decay function, i.e.,
once the fitted exponential decay function fell to 5% of its
starting value (Honeine et al., 2015; Assländer and Peterka,
2016).

Electromyographical (EMG) electrodes were placed on the
right leg (TA, Tibialis Anterior; GA, Gastrocnemius Lateralis;
and trunk (MF, Multifidus; OE, Obliques Externus) muscles
and their activity was measured using Biometrics DataLOG
MW8X at a sampling rate of 1000 samples/s. Preparation
of the skin and positioning of the electrodes was performed
according to the SENIAM protocol (Hermens et al., 2000).
Before the start of the experiment, subjects performed three
maximal voluntary contractions (MVC) against resistance of
each of the measured muscles. MVC’s were used in EMG
post-processing for normalization, to establish a common
ground when comparing data between subjects. All EMG
signals were band-pass filtered (zero lag, 2nd order Butterworth
filter with cut-off frequencies of 20 and 450 Hz), full-wave
rectified and low pass filtered (zero lag, 2nd order Butterworth
algorithm, 10 Hz cut-off frequency). Finally, EMG signals
were normalized with respect to the MVCs and integrated
over time (iEMG) to express the magnitude of muscle
activity.

We divided COP excursions and contact forces exerted on the
handle in two data sets based on their direction—anterior and
posterior. For each data set, average values from all 10 subjects
were calculated and used in the statistical analysis.

Average hip, knee and ankle angles over the 5 min for each
subject were calculated and used for statistical analysis.
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Differences between COP displacement in the anterior and
posterior directions and subject average joint angles were
analyzed using paired samples t-tests. Differences between the
WH and NH trials in subject average COP displacements were
analyzed for the anterior and posterior directions separately,
using a paired samples t-test. The relationship between group
average COP excursion and the magnitude of the perturbation
and between group average perturbation magnitude and the
exerted handle contact force was analyzed using separate linear
correlations for anterior and posterior directions. All statistical
analyses were performed using SPSS 21 Inc., Chicago, IL, USA at
α = 0.05. Effect size (d) was calculated using standard Cohen’s
equation (Cohen, 1988).

RESULTS

Supportive Hand Contact has Significant
Influence on Postural Balance by Reducing
COP Excursion during Perturbation
The diagram in Figure 3 shows the comparison of mean
COP excursion between the conditions when the subjects
counteracted postural perturbations without using the additional
hand contact (NH) and when they did use the handle (WH).
Paired samples t-test showed significant effect in reducing the
mean COP excursion when the subjects were holding to the
handle compared to when they did not hold to the handle. The
differences of COP excursion were significantly larger both in the
anterior direction (difference of 20.3 mm, t(9) = 7.78, p = 0.001,
d = −4.15) and posterior direction (difference of 23.9 mm,
t(9) =−11.09, p= 0.001, d =−3.8).

FIGURE 3 | Comparison of center of pressure (COP) excursion
between trials when subjects either used additional hand contact or
not. Bars represent mean COP excursion during no-handle (NH) and
with-handle (WH) trials for the anterior (positive) and posterior (negative)
directions. Error bars indicate ±1 standard error of the mean. Statistically
significant differences are indicated (∗p ≤ 0.02).

Utilization of Hand Contact is more
Prominent for Postural Perturbations in
Backward Direction than for Perturbations
in Forward Direction
In both, NH and WH trials, the COP excursion was larger in
the anterior direction (mean ± SE: NH 38.5 ± 1.6 mm, WH
18.2 ± 1.2 mm) compared to the posterior (mean ± SE: NH
−34.9 ± 2 mm, WH −11.0 ± 1.5 mm), but this difference
was significant only for the WH trial (t(9) = 2.81, p = 0.02,
d = 1.52).

We further assessed the effects of utilizing the additional
hand contact, and the direction and intensity of perturbation
on the maximal COP displacement. The diagrams in Figure 4
show correlations between the perturbation force and the
group average COP excursion during NH and WH trials.
Additionally, the correlation between the perturbation force
and the handle force is shown for the WH trials. The group
average COP excursion was strongly correlated with perturbation
force in both posterior (rp = 0.77 and rp = 0.67) and anterior
(ra = 0.82 and ra = 0.89) directions in the NH and WH
trials, respectively (all p < 0.001). Similarly, the forces that

FIGURE 4 | Correlations between perturbation force and (A) COP
excursion in NH trial, (B) COP excursion in WH trial and (C) handle
force in the WH trial. Correlations were calculated separately for the anterior
(positive) and posterior (negative) direction.
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subjects applied on the handle was also strongly correlated
with the perturbation force (Figure 4C) in both anterior
(rp = 0.85, p < 0.001) and posterior directions (ra = 0.81,
p < 0.001). Moreover, the slope of the regression line is
significantly larger for perturbations in the posterior direction
(kp = 1.3), compared to the perturbations in the anterior
direction (ka = 0.86).

Supportive Hand Contact Affects Whole
Body Posture
To investigate how the additional hand contact affects the body
posture during the perturbations, we compared the mean values
of ankle, knee and hip joint angles between the conditions when
the subjects counteracted perturbations without the additional
hand contact (NH) and when they did use the handle (WH). The
comparison is shown in the diagram in Figure 5.

Multiple paired samples t-tests showed significant effect of
the hand contact on all three observed joint angles. Specifically,
mean joint angles were significantly lower during the NH trials
compared to the WH trials. Differences were the largest in the
knee (mean ± SE: 165.1 ± 1.9◦ for NH, 173.2 ± 1.5◦ for WH,
t(9) =−6.70, p< 0.001, d= 1.4), followed by the hip (mean± SE:
171.4 ± 2.8◦ for NH, 181.5 ± 1.6◦ WH, t(9) = −6.68, p < 0.001,
d = 1.1) and the ankle (mean± SE: 108± 1.2◦ for NH, 112± 1.1◦

WH, t(9) =−5.67, p < 0.001, d = 1.1).

Utilization of Hand Contact has
Non-Uniform Transitionary Effect on Whole
Body Posture after Release of Handle
To investigate the effect of supportive hand contact on the body
posture, an exponential curve was fitted to the group average
ankle, knee and hip joint angles calculated during the NH trial
that immediately followed the WH trial (Figure 6).

Exponential fits revealed that postural readjustments after the
release of the handle did not occur simultaneously throughout
the body. Instead, the readjustments occurred at different time
scales in the hip, knee and ankle joints. Specifically, joint angles
stabilized first in the ankle (mean ± SE: 133 ± 103.5 s after

FIGURE 5 | Comparison of body posture between trials when subjects
either used additional hand contact or not. Bars represent mean ankle,
knee and hip joint angles during NH and WH trials. Error bars indicate ±1
standard error of the mean. Statistically significant differences are indicated
(∗p ≤ 0.02).

FIGURE 6 | Ankle (A) knee (B) and hip (C) angles over the time course
of the perturbation. Thin solid lines represent mean joint angles from all 10
subjects during NH and WH trials. Thick solid lines represent exponential
curve fit denoting adaptation of joint angles in the NH (red color) and WH trials
(gray color), while shaded areas represent ±1 standard error of the mean of
the exponential decay curve. Mean R2 value for the exponential decay curves
for ankle joint in the NH trial was mean ± SE: 0.27 ± 0.06, for the knee joint
mean ± SE: 0.31 ± 0.08 and for the hip joint mean ± SE: 0.61 ± 0.08. The
dotted vertical lines represent perturbation onset while the dashed vertical
lines indicate the mean time of stabilized changes in the joint angles after
perturbation onset.

perturbation onset), followed by the hip (mean± SE: 188± 90.8 s
after the perturbation onset) and finally in the knee (mean± SE:
195 ± 92.5 s after the perturbation onset). However, a paired-
samples t-test did not show statistically significant difference
between any of the compared pairs due to the high variability of
data.

Analysis of Muscle Activity
Muscle activity was significantly lower during the WH trial
than during the NH condition both for the leg muscles (GA
t(9) = 3.57, p = 0.04, d = −0.89; TA t(9) = 6.41, p = 0.002,
d = −23 1.85) and one of the trunk muscles (MF t(9) = 6.5,
p = 0.001, d = −1.01), as can be seen in Figure 7. Leg
muscle activity was 18.4 ± 4.9% lower in the GA (mean ± SE:
NH: 28.9 ± 6.5% MVC, WH: 10.6 ± 2.3% MVC) and for
23.7 ± 3.5% in the TA (mean ± SE: NH: 27.2 ± 4% MVC,
WH: 3.47 ± 1.88% MVC), while the trunk muscle activity was
14.3 ± 2.1% lower in the MF (mean ± SE: NH: 36.2 ± 4.5%
MVC, WH: 21.8 ± 3.7% MVC), but no significant change was
observed in the OE (mean ± SE: NH: 10.4 ± 7.4% MVC, WH:
8.97± 4.63% MVC).
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FIGURE 7 | Comparison of integrated Electromyographical (EMG)
between trials when subjects either used additional hand contact or
not. Bars represent iEMG of four muscles (GA, Gastrocnemius Lateralis;
TA, Tibialis Anterior; OE, Obliques Externus; MF, Multifidus) during NH and WH
trials. Error bars indicate ±1 standard error of the mean. Statistically significant
differences are indicated (∗p ≤ 0.02).

DISCUSSION

We investigated how subjects used an additional hand support
(handle) to maintain upright posture when exposed to
mild and continuous perturbations elicited by waist-pull
apparatus in the anteroposterior directions. The use of handle
reduced the destabilizing effect of the applied perturbation
by reducing the excursions of COP. These results are in line
with previous studies that investigated light-touch contacts.
Those studies found a reduction of COP excursions during
bipedal stance with (Johannsen et al., 2007; Hausbeck et al.,
2009) and without externally applied perturbations (Jeka,
1997; Krishnamoorthy et al., 2002; Kouzaki and Masani,
2008). However, in our case the handle compensated for
a significant load and served more than just a light-touch
contact. The mean force in the handle was over 24 N
(mean ± SE: 24.5 ± 7.9 N) where in other light-touch studies,
contact forces usually did not exceed 3 N (Krishnamoorthy
et al., 2002; Johannsen et al., 2007; Kouzaki and Masani,
2008). Comparison between measured mean handle force and
mean perturbation force, which was ∼20 N (mean ± SE:
19.5 ± 1.7 N), indicates that a significant portion of
perturbation on postural stability was counterbalanced by the
hand.

COP excursions were strongly correlated with the
perturbation force in both directions, indicating the
perturbations were effective, albeit mild. When holding a handle,
the excursions of the COP were larger in the anterior than in
posterior direction and less correlated with the perturbation
force. Due to the specifics of our design, i.e., the use of a
continuous perturbation, it was impossible to investigate pure
feedback postural responses to the specific direction of the
perturbation. However, asymmetry in COP excursion might to
be due to a differential use of the handle, indicated by a steeper
slope of the regression line between the perturbation force and
the forces exerted on the handle for the posterior direction.

This indicates that subjects have utilized the handle more when
they counteracted the posterior COP excursions. This may be
related to a more threatening situation due to the inability of
the subjects to see (look) behind them, as the directions to
the subjects were to look straight ahead at all times, and due
to smaller stability margin in the posterior direction (Pai and
Patton, 1997; Hof et al., 2005). This finding is in line with our
previous study using a similar handle location and discrete
perturbations caused by support platform translations, in which
COP excursions were larger in the anterior direction (Babǐc
et al., 2014).

Using a handle for balance support was beneficial, since it
resulted in less displacement of COP and a smaller deviation
from the neutral posture, as evident by the average joint
angles. Measured joint angles in WH condition stayed closer
to the neutral anatomic position than joint angles in the
NH condition. Additionally, leg and trunk muscle activity
was also significantly lower during the WH trial compared
to the NH trial. This is consistent with the decreased leg
muscle activity reported previously, when subjects had to hold
(Cordo and Nashner, 1982) or touch (Sozzi et al., 2012)
a surrounding object. Unlike other muscles, we found no
decrease of muscle activity in the OE, which controls the
rotation of the torso (Ng et al., 2001). The unilateral hand
support might have caused a rotation of the trunk, which
the subjects had to counteract by the OE activity. Prior
to experiments we instructed subjects to use the handle in
any way they prefer. Overall reduced muscle activity in legs
and trunk and increased activity in arm muscles in case of
using handle indicate that a portion of significant perturbation
load was shifted from legs/trunk to arms. The same can be
confirmed by high measured handle forces and lesser COP
excursions in case of WH trial. The use of hand contact
to compensate a significant portion of perturbation, even
though it could be counteracted solely by legs/trunk, might be
preferred since legs in a stance already have to compensate
the load of the body mass (Bateni and Maki, 2005; Mergner,
2010).

Finally, when subjects had to release the handle for balance
control they prepared for the more difficult NH condition even
before the perturbation onset, as evident from differences in
the starting joint angles. When the perturbation began this
preparation was even more pronounced and joint angles changed
further. These postural readjustments appear to occur at different
time scales in the hip, knee and ankle joints, however that was
not statistically confirmed. The subjects bended their ankle, knee
and hip joints which resulted in a more flexed leg and lower
hip position. Hip position can serve as an indication of the
COM position and lowering of the COM could facilitate balance
control (Rosker et al., 2011). Hence, these changes indicate feed-
forward preparation to ease control of balance when expecting
more challenging conditions, i.e., in the absence of handle. Along
the same line, anticipation of the upcoming perturbations was
also reported to cause changes in kinematics during quiet stance
(Santos et al., 2010), walking (Pijnappels et al., 2001), recovery
stepping (Pater et al., 2015) and tripping (Potocanac et al.,
2014).
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