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Attention deficit hyperactivity disorder (ADHD) is a pervasive neuropsychological
disorder that affects both children and adolescents. Child and adolescent ADHD
patients exhibit different behavioral symptoms such as hyperactivity and impulsivity, but
not much connectivity research exists to help explain these differences. We analyzed
openly accessible resting-state functional magnetic resonance imaging (rs-fMRI) data
on 112 patients (28 child ADHD, 28 adolescent ADHD, 28 child normal control (NC),
and 28 adolescent NC). We used group independent component analysis (ICA) and
weighted degree values to identify interaction effects of age (child and adolescent)
and symptom (ADHD and NC) in brain networks. The frontoparietal network showed
significant interaction effects (p = 0.0068). The frontoparietal network is known to be
related to hyperactive and impulsive behaviors. Intelligence quotient (IQ) is an important
factor in ADHD, and we predicted IQ scores using the results of our connectivity
analysis. IQ was predicted using degree centrality values of networks with significant
interaction effects of age and symptom. Actual and predicted IQ scores demonstrated
significant correlation values, with an error of about 10%. Our study might provide
imaging biomarkers for future ADHD and intelligence studies.
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is a common neurobehavioral disorder that
affects both children and adolescents (Schneider et al., 2006; Wolraich et al., 2011; Castellanos
and Proal, 2012). ADHD patients show symptoms of inattention, hyperactivity, and impulsivity
(American Psychiatric Association, 1994; Conners, 1997). ADHD patients can be divided into three
subtypes according to symptoms: inattentive, hyperactive/impulsive, and combined type patients
(American Psychiatric Association, 1994; Conners, 1997). Child and adolescent ADHD patients
show different behavioral symptoms, particularly hyperactivity and impulsivity (Bresnahan and
Barry, 2002; Hurtig et al., 2007; Wehmeier et al., 2010; Wolraich et al., 2011). Adolescent ADHD
patients tend to exhibit less hyperactivity than child ADHD patients (Bresnahan and Barry, 2002;
Hurtig et al., 2007; Wehmeier et al., 2010; Wolraich et al., 2011). Because indiscriminate behavioral
or medication treatments (without considering behavioral differences) might have negative effects
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on ADHD patients, behavioral differences must be considered to
improve ADHD treatments (Barkley et al., 1996; Barnard et al.,
2010; Wehmeier et al., 2010; Wolraich et al., 2011).

Many neuroimaging techniques were adopted to explore
age related ADHD brain alterations (Bresnahan and Barry,
2002; Frodl and Skokauskas, 2012). Bresnahan and Barry
(2002) reported distinct electroencephalogram (EEG) frequency
patterns between child/adolescent with ADHD patients and
normal controls (NC; Bresnahan and Barry, 2002). Frodl
and Skokauskas (2012) reported there were distinct brain
volume reduction patterns between child and adult ADHD
patients (Frodl and Skokauskas, 2012). Many studies focused
on identifying differences between ADHD patients and normal
subject and studies focusing specifically on difference between
child and adolescent ADHD patients were largely lacking. Here,
we focused on identifying group-wise differences between child
and adolescent ADHD patients using neuroimaging.

Many neuroimaging studies regarding ADHD have adopted
magnetic resonance imaging (MRI) and EEG techniques
(Bresnahan and Barry, 2002; Frodl and Skokauskas, 2012).
MRI is a useful tool for quantifying brain networks of ADHD
patients, as it yields both structural and functional information.
Functional MRI (fMRI) measures local brain activity using blood-
oxygen-level-dependent (BOLD) signals, and many previous
studies adopted fMRI for ADHD research (Booth et al., 2005;
Cortese et al., 2012). Raw MRI data are typically processed
using standardized software packages (Cox, 1996; Fischl, 2012;
Jenkinson et al., 2012). Processed data can be used for
connectivity analysis, which treats the whole brain as a complex,
connected network (Anwander et al., 2007; He et al., 2007;
Bullmore and Sporns, 2009). Connectivity analysis explores how
activity in one brain region correlates with activity in another
region. Connectivity can be measured with a graph structure
using nodes and edges (Bullmore and Sporns, 2009). Nodes are
brain regions pre-defined using atlas or functional spatial maps
extracted from independent component analysis (ICA) (Tzourio-
Mazoyer et al., 2002; Craddock et al., 2012; Smith et al., 2013).
ICA is a data driven approach to specify nodes in connectivity
analysis and has better sensitivity to detect brain network changes
compared to conventional atlas based approaches (Smith et al.,
2009, 2013). Edge values reflect correlation between two nodes
and can be measured with both weighted and un-weighted
approaches (Mumford et al., 2010; Rubinov and Sporns, 2010;
Schwarz and McGonigle, 2011; Thomas et al., 2015). The
weighted approach does not apply an arbitrary threshold to
correlation values and thus considers full range of correlation
values (Mumford et al., 2010; Schwarz and McGonigle, 2011;
Thomas et al., 2015). The weighted approach is more sensitive
than conventional hard threshold approaches (Mumford et al.,
2010; Schwarz and McGonigle, 2011). Here, we adopted ICA and
weighted approaches to quantify connectivity in ADHD patients.

Intelligence quotient (IQ) tests were designed to assess
intelligence, and they are commonly administered using the
Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler,
1999). Full-scale IQ (FSIQ) is considered a general measure of IQ,
and is composed of verbal IQ (VIQ) and performance IQ (PIQ)
(Wechsler, 1999). Child ADHD patients exhibit different patterns

of symptom progression depending on IQ (Cheung et al.,
2015). Child ADHD patients with low IQ typically demonstrate
persistent ADHD symptoms in adolescence (Cheung et al., 2015).
Child ADHD patients with high IQ usually cope better with
their symptoms and are more responsive to treatment, and thus
tend to grow out of their symptoms in adolescence (Cheung
et al., 2015). A previous study reported that childhood IQ
is a significant predictor of ADHD symptoms in adolescent
and early adulthood (Cheung et al., 2015). As IQ is highly
associated with ADHD symptoms, we tried to correlate IQ
with neuroimaging analysis stemming from child and adolescent
ADHD patients.

Child and adolescent ADHD patients exhibit different
behavioral symptoms, particularly hyperactivity and impulsivity
(Bresnahan and Barry, 2002; Hurtig et al., 2007; Wehmeier
et al., 2010; Wolraich et al., 2011). The behavioral differences
are well established but brain network studies to help explain
these differences were largely lacking. Thus, this study aims
to examine the brain network differences between child and
adolescent ADHD patients and investigate whether those
network differences were linked with brain networks of
hyperactivity/impulsivity. The analysis results of brain networks
in ADHD were used to find correlation with IQ, because IQ is a
significant predictor of ADHD symptoms in child and adolescent
ADHD patients (Cheung et al., 2015).

MATERIALS AND METHODS

Subjects and Imaging Data
This study was carried out in accordance with the
recommendations of Institutional Review Board (IRB) of
Sungkyunkwan University with written informed consent
from all subjects. All subjects gave written informed consent
in accordance with the local IRB guidelines. We obtained
T1-weighted structure data and resting-state fMRI (rs-fMRI)
functional data from the New York University Child Study
Center involved in the ADHD-200 database (ADHD-200
Consortium, 2012). The ADHD-200 database is an openly
accessible database to researchers. T1-weighted structure
data were acquired using a Siemens Magnetom Allegra
syngo scanner with the following imaging parameters:
repetition time (TR) = 2,530 ms; echo time (TE) = 3.25 ms;
field of view (FOV) = 256 mm × 256 mm; and voxel
resolution = 1.3 mm × 1.0 mm × 1.3 mm. Rs-fMRI functional
data were acquired using the same scanner with the following
imaging parameters: scan length = 6 minutes; TR = 2,000 ms;
TE = 15 ms; FOV = 240 mm × 240 mm; number of slices = 33;
and voxel resolution = 3.0mm × 3.0 mm × 4.0 mm. Fifty
subjects with mental disease such as depression, anxiety, social
phobia, and dyslexia (except ADHD) were excluded from a
total of 222 subjects. Eleven subjects who did not perform IQ
and ADHD symptom tests were excluded. The remaining 161
subjects were divided into an ADHD patient group (n = 77)
and a NC group (n = 84). Each group was further divided into
child and adolescent groups. Patients under 10 years of age
were considered children, and those between 10 and 19 years
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TABLE 1 | Demographic data of child and adolescent subjects in the
attention deficit hyperactivity disorder (ADHD) and normal control (NC)
groups (means and standard deviations are reported).

ADHD group Child (n = 28) Adolescent (n = 28) p-value

Gender (male : female) 22:6 22:6 ∗1

Age (years) 8.59 (0.76) 12.31 (1.80) <0.001

IA score 71.82 (8.74) 72.07 (9.60) 0.9192

HI score 68.21 (11.89) 71.75 (11.97) 0.2725

C score 72.14 (8.10) 74.39 (10.06) 0.3607

Subtype (IA : HI : C) 7:0:21 7:1:20 ∗0.9372

FSIQ 110.11 (13.70) 105.32 (14.35) 0.2073

VIQ 110.79 (12.70) 106.29 (14.15) 0.2158

PIQ 106.54 (14.99) 102.89 (14.51) 0.3596

NC group Child (n = 28) Adolescent (n = 28) p-value

Gender (male : female) 14:14 14:14 ∗1

Age (years) 8.50 (0.78) 13.68 (2.31) <0.001

FSIQ 109.04 (12.67) 111.75 (13.52) 0.4417

VIQ 111.46 (14.74) 111.96 (13.44) 0.8950

PIQ 104.61 (12.58) 109.00 (13.00) 0.2042

∗Chi-squared test.
IA, inattentive; HI, hyperactive/impulsive; C, combined; FSIQ, full scale intelligence
quotient; VIQ, verbal intelligence quotient; PIQ, performance intelligence quotient.

of age were considered adolescents (Findley, 2003). The ADHD
patient group consisted of 32 children and 45 adolescents. The
NC group consisted of 28 children and 56 adolescents. We
randomly removed a few patients in order to have matched
number of subjects (n = 28) in each group. We assigned the
same number of samples in each group to reduce bias. Finally,
28 child ADHD, adolescent ADHD, child NC, and adolescent
NC subjects were considered for the study. We repeated the
random removal process three more times and obtained three
additional sets of four comparison groups. All four sets of
data were analyzed to check the reproducibility of this study.
Results of one representative set were reported in the main
text and those of the remaining three sets were reported in the
Supplementary Material. Our main objective of the study is to
identify group differences between child and adolescent ADHD
patients. Age matched NC group was necessary so that we could
remove effects of the normal aging. If age related difference
existed in both NC and ADHD groups, we would not treat
it as relevant to aging in ADHD. We considered age related
difference relevant only if it existed in ADHD group and not in
NC group. Comparison of sex ratio, ADHD scores, and ADHD
subtype ratio did not yield significant differences (p > 0.05)
between the child and adolescent ADHD groups (Table 1). There
were more boys than girls in ADHD group and it is a natural
condition as boys make up larger portion of ADHD patients
than girls (Lorberboym et al., 2004; Blum and Chen, 2008;
Leirbakk, 2015). Comparison of sex ratio did not yield significant
differences (p > 0.05) between the child and adolescent NC
groups (Table 1). Detailed participant information is given in
Table 1. IQ was measured using the WASI (Wechsler, 1999), and
scores related to ADHD symptom were measured using Conner’s
Parent Rating Scale Revised, Long Version (CPRS-LV) (Conners,
1997).

Image Preprocessing
T1-weighted structure data were preprocessed using the AFNI
software (Cox, 1996), and skull tissue was removed using
3dSkullStrip. Magnetic field bias was corrected using 3dUnifize.
All rs-fMRI data were further processed using the FSL software
(Jenkinson et al., 2012). The first six MRI volumes were
removed to adjust for hemodynamic response. Head motion
was corrected using MCFLIRT, and slice timing correction was
performed using SLICETIMER. Spatial smoothing with a full
width at half maximum (FWHM) of 6 mm was applied. Intensity
normalization with a value of 10,000 was applied to the entirety
of the time series data. A high-pass filter with a cutoff of
100 s was applied. Functional images were registered onto the
preprocessed T1-weighted structure images and subsequently
registered to the Montreal Neurological Institute (MNI) standard
space.

Group ICA
All subjects’ preprocessed functional data were temporally
concatenated and fed into the FSL MELODIC software
(Beckmann et al., 2005). The group ICA approach automatically
generated spatially independent maps, termed independent
components (ICs) (Smith et al., 2014). The generated ICs
were compared with known resting state networks (RSNs) for
standardized interpretation (Smith et al., 2009). Cross correlation
between ICs and RSNs was calculated with a threshold of 0.45,
and only functionally interpretable ICs were kept for further
analysis. Functionally interpretable ICs were used as regressors
to estimate participant-specific time series (Filippini et al., 2009).

Network Construction
Connectivity information was assessed with a graph structure
using nodes and edges (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010). We adopted a weighted and undirectional
network model. Functionally interpretable ICs were represented
as nodes. Correlation values of the time series between two
different nodes were represented as edges. Edge values were
entered into the matrix as elements, and the matrix is referred
to as the correlation matrix. The conventional hard thresholding
approach aggressively removes the edge weights. We applied
soft thresholding to avoid binarizing the correlation matrix

using the following formula: wij =
(
rij+1

2

)β
, where rij represents

the edge value between the nodes i and j (Mumford et al.,
2010; Schwarz and McGonigle, 2011). The β value was set
to 12 in order to conform to the signed network model
(Mumford et al., 2010). The correlation matrix was then
z-transformed using Fisher’s r-to-z transformation. Network
construction was performed using MATLAB (Mathworks Inc.,
USA).

Connectivity Analysis
We adopted degree centrality that is a simple and sensitive local
connectivity measure (Rubinov and Sporns, 2010). It is defined as
the sum of all edge weights connected to a given node (Rubinov
and Sporns, 2010). It is one of the most fundamental network
measures. Degree centrality could be used to compute clustering
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FIGURE 1 | The 33 automatically generated ICs by group ICA. All ICs
were threshold at z-statistic images with p > 0.5. The indices of eleven
functionally interpretable ICs were reported in blue. P, posterior; A, anterior; R,
right; L, left

coefficient, which is a network related property (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). A node with high
degree centrality could be considered as a hub node which plays
an important role in the overall brain network (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). We adopted two-
way analysis of variance (ANOVA) approach to identify brain
networks that show significant interaction effects of age (child
and adolescent) and symptom (ADHD and NC) (Fujikoshi,
1993). Degree centrality values of each brain network were
the dependent variable and age, symptom, and the interaction
terms were the independent variables. Age was categorical
(i.e., child or adolescent) and symptom was also categorical
(i.e., ADHD or NC). We considered the brain networks with
significant interaction effects as those affected by both age and
symptom. Connectivity analysis was performed using MATLAB
(Mathworks Inc., USA).

Correlation with IQ
Connectivity findings were further analyzed with IQ. Correlation
analysis between degree centrality values of identified brain
networks and FSIQ, VIQ, and PIQ was performed. Each
identified brain network and IQ scores were correlated using a
general linear model, IQ = α + β ∗ degree centrality, where α
is a constant and β is the estimated coefficient. The significance
of the correlation was quantified with r- and p-value statistics.
P-values were corrected using the Holm-Bonferroni method
(Holm, 1979). The correlation procedures were performed using
MATLAB (Mathworks Inc., USA).

IQ Prediction
A simple linear model used in the correlation analysis was used
to predict IQ scores using each brain network. The prediction
procedure was performed with a leave-one-out cross validation
approach. One subject was used as the test set, and the remaining
55 subjects were used as the training set. A linear equation was
generated from the training set and was applied to predict the
IQ scores of the test set. The linear model was built from 55
subjects and the model was applied to predict the IQ score of
the remaining test case. The remaining test case already has IQ
scores available and thus we could compare predicted IQ and
actual IQ. The process was repeated 56 times each time choosing
a different test case. We computed 56 predicted IQ scores and
they were compared with actual IQ scores. The percent error
was calculated by dividing the absolute error between actual and
predicted IQ scores by actual IQ scores. The mean percent error
was reported. The significance of prediction was quantified with
r- and p-value statistics, root mean squared (RMS) values and
percent-error. The prediction procedures were performed using
MATLAB (Mathworks Inc., USA).

Statistical Analysis
Interaction effects of age and symptom were assessed using
two-way ANOVA approach (Fujikoshi, 1993). Brain networks
with significant (p < 0.05) interaction effects were regarded
as significant networks affected by both age and symptom.
The quality of correlation between degree centrality values of
each brain network and IQ scores was quantified using r- and
p-value statistics. We applied the Holm-Bonferroni method to
obtain corrected p-values (Holm, 1979). The quality of the IQ
prediction was quantified using r- and p-value statistics, RMS
values and percent-error. All statistical analyses were performed
using MATLAB (Mathworks Inc., USA).

RESULTS

Spatial Maps from Group ICA
The group ICA approach automatically generated 33 ICs
(Figure 1). Generated ICs were compared with known RSNs,
and 11 functionally interpretable ICs remained (Table 2) (Smith
et al., 2009). RSNs 1, 2, and 3 (ICs 3, 29, and 12, respectively)
correspond to a visual network consisting of bilateral calcarine,
cuneus, lingual gyrus, and superior, middle and inferior occipital
gyri. RSN 4 (ICs 4 and 6) corresponds to a default mode network
consisting of bilateral medial orbitofrontal gyrus, posterior
cingulate cortex and cuneus. RSN 5 corresponds to a cerebellum
network. None of the ICs showed significant correlation with
RSN 5. RSN 6 (ICs 14) corresponds to a sensorimotor network
of bilateral paracentral lobule. RSN 7 (IC 8) corresponds to
an auditory network of bilateral Rolandic operculum, insula,
putamen, pallidum, and Heschl’s gyrus. RSN 8 (IC 9) corresponds
to an executive control network of bilateral superior medial
frontal gyrus and anterior cingulate cortex. RSNs 9 and 10 (ICs
5, 13, and 19) correspond to a frontoparieteal network of bilateral
superior, middle, and inferior frontal gyri, inferior parietal gyrus,
and angular gyrus.
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TABLE 2 | Functionally interpretable independent components (ICs) and resting state networks (RSNs).

RSNs ICs r-value Network Region

1 3 0.82 Visual Calcarine, Cuneus, Lingual gyrus, Superior occipital gyrus

2 29 0.82 Visual Inferior occipital gyrus

3 12 0.69 Visual Superior, middle, and inferior occipital gyri

4 4, 6 0.47, 0.65 Default mode Medial orbitofrontal gyrus, Posterior cingulate cortex, Cuneus

5 − − Cerebellum −

6 14 0.46 Sensorimotor Paracentral lobule

7 8 0.65 Auditory Rolandic operculum, Insula, Putamen, Pallidum, Heschl’s gyrus

8 9 0.66 Executive control Superior medial frontal gyrus, Anterior cingulate cortex

9 5 0.63 Frontoparietal Superior, middle, and inferior frontal gyri, Inferior parietal gyrus, Angular gyrus

10 13, 19 0.52, 0.46 Frontoparietal Inferior frontal gyrus, Angular gyrus

Cross correlation values and corresponding brain regions of ICs are reported.

Connectivity Differences
We adopted two-way ANOVA approach to identify brain
networks that show significant interaction effects of age and
symptom. One IC involved in the frontoparietal network (IC
5 and RSN 9) demonstrated significant [F(1,108) = 7.6047,
p = 0.0068] interaction effects (Table 3). The identified IC
covered bilateral superior, middle, and inferior frontal gyri,
inferior parietal gyrus, and angular gyrus.

Correlation with IQ
Degree values of the identified IC were correlated with IQ
scores and reported in Table 4. IC 5 (RSN 9) demonstrated
significant correlation with FSIQ, VIQ and PIQ (r = −0.3287
and p = 0.0012; r = −0.3046 and p = 0.0022; r = −0.2843 and
p = 0.0024, respectively) (Table 4; Figures 2A–C). Correlation
between degree values of identified ICs and IQ scores of three
additional analysis sets were reported in Supplementary Table S4
and Supplementary Figure S1.

IQ Prediction
Degree values of the identified IC were used to predict IQ
scores in a leave-one-subject-out fashion. Degree values of the

TABLE 3 | Two-way ANOVA results of all ICs.

ICs RSNs Network DOF F-value p-value

3 1 Visual 1 2.0622 0.1539

29 2 Visual 1 2.5908 0.1104

12 3 Visual 1 1.0103 0.3171

4 4 Default mode 1 0.0381 0.8457

6 4 Default mode 1 1.3595 0.2462

14 6 Sensorimotor 1 0.1797 0.6725

8 7 Auditory 1 0.2283 0.6338

9 8 Executive control 1 1.2503 0.2660

5 9 Frontoparietal 1 7.6047 0.0068

13 10 Frontoparietal 1 0.0115 0.9149

19 10 Frontoparietal 1 1.0749 0.3022

DOF, degree of freedom.
Independent components with significant interaction effects are bolded and
italicized.

identified IC were used as regressors in a regression framework.
Quality of prediction was assessed with r- and p-values, and
RMS and percent-error between actual and predicted IQ scores
were computed (Table 5). The actual and predicted FSIQ using
degree values of IC 5 yielded significant results (r = 0.2857 and
p = 0.0023) with an RMS error of 12.99 and a percent error of
9.81% (Table 5; Figure 3A). The actual and predicted VIQ using
degree values of IC 5 yielded significant results (r = 0.2495 and
p = 0.0080) with an RMS error of 13.30 and a percent error
of 9.52% (Table 5; Figure 3B). The actual and predicted PIQ
using degree values of IC 5 yielded significant results (r = 0.2357;
p = 0.0124) with an RMS error of 13.38 and a percent error
of 10.59% (Table 5; Figure 3C). IQ prediction results of three
additional analysis sets were reported in Supplementary Table S5
and Figure S2.

DISCUSSION

The cingulo-fronto-parietal (CFP) network is highly related to
ADHD symptoms, as it regulates attention, working memory,
executive control, and response inhibitory control (Bush et al.,
2005; Schneider et al., 2006; Bush, 2010; Hoekzema et al., 2014).
Many ADHD studies have discovered abnormal function in the
CFP network (Bush et al., 2005; Schneider et al., 2006; Bush, 2010;
Oldehinkel et al., 2013; Hoekzema et al., 2014). The cingulum
portion of the CFP network covers the anterior cingulate gyrus,
and it is involved in IC 9 (RSN 8), the executive control
network. The IC 9 (RSN 8) did not show significant interaction
effects of age and symptom in our results. Only IC 5 (RSN
9), the frontoparietal network, showed significant interaction
effects. The main objective of this study was to find brain
network differences of ADHD patients between age groups. Our
results indicated that connectivity in the frontoparietal network,
not in the anterior cingulate gyrus, could explain differences
between child and adolescent ADHD patients. The frontoparietal
network is highly related to hyperactivity and impulsivity
(Schneider et al., 2006; Bush, 2010; Oldehinkel et al., 2013) and
thus altered connectivity in the frontoparietal network could
explain behavioral differences in child and adolescent ADHD
patients. Hence, our results corroborate those of existing studies
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TABLE 4 | Correlation between degree values of the identified IC and IQ scores.

ICs (RSNs) FSIQ VIQ PIQ

r-value p-value, corrected r-value p-value, corrected r-value p-value, corrected

5 (9) −0.3287 0.0012 −0.3046 0.0022 −0.2843 0.0024

ICs, independent components; RSNs, resting state networks; IQ, intelligence quotient; FSIQ, full scale intelligence quotient; VIQ, verbal intelligence quotient; PIQ,
performance intelligence quotient.
Significant results (p < 0.05, corrected) are bolded and italicized.

FIGURE 2 | (A) Correlation between degree centrality values of IC 5 and FSIQ, (B) correlation between degree centrality values of IC 5 and VIQ, (C) correlation
between degree centrality values of IC 5 and PIQ.

(Schneider et al., 2006; Oldehinkel et al., 2013). IQ is known to
be a significant predictor of ADHD symptoms in adolescence
and early adulthood (Cheung et al., 2015). ADHD symptoms
showed differential improvements in adolescents according to
IQ scores in childhood (Cheung et al., 2015). The frontoparietal
network plays an important role in ADHD age-related studies,
as demonstrated by a previous study and our results (Li et al.,
2014). We demonstrated that all IQ (FSIQ, VIQ, and PIQ) scores
are highly correlated with the frontoparietal network measures,
as indicated by correlation and prediction analysis. Correlation
between degree centrality values of the frontoparietal network
and IQ scores showed negative relationships. Degree centrality
of a region measures local brain network property and thus
degree centrality does not necessarily have to be correlated with
clinical score such as IQ. A region with high degree centrality
could be considered as an important hub node, but it does
not imply positive correlation between centrality values and
IQ scores. Thus, negative correlation between degree centrality
of the frontoparietal network and IQ is feasible. Our results
were consistent with those of a previous study (Kebir et al.,
2009). IQ scores are highly associated with executive functions
including attentional and inhibitory control related to ADHD
symptoms (Rommelse et al., 2008; Brown et al., 2009; Kebir et al.,
2009). This could explain the high degree of correlation between
degree centrality values and IQ scores of ADHD patients. Our
results can therefore be considered reinforcing, as neuroimaging
analyses were closely linked with IQ, a known predictor of ADHD
symptoms.

We randomly removed a few patients to have matched
number of subjects in four comparison groups. We repeated
the random removal process three more times and obtained
three additional sets of four comparison groups. All four sets of
data were analyzed to check the reproducibility of our findings.
Demographic data were similar between the main data set and

TABLE 5 | Prediction of IQ scores using degree values of the identified IC.

IQ Information IC 5 (RSN 9)

FSIQ r-value 0.2857

p-value 0.0023

RMS error 12.99

Percent error [%] 9.81

VIQ r-value 0.2495

p-value 0.0080

RMS error 13.30

Percent error [%] 9.52

PIQ r-value 0.2357

p-value 0.0124

RMS error 13.38

Percent error [%] 10.59

IC, independent component; RSN, resting state network; IQ, intelligence quotient;
FSIQ, full scale intelligence quotient; VIQ, verbal intelligence quotient; PIQ,
performance intelligence quotient; RMS, root mean squared.
Significant results (r > 0 and p < 0.05) are bolded and italicized.

the additional data sets (Table 1; Supplementary Table S1).
Group-ICA was performed on all four data sets and functionally
interpretable ICs were reported in Supplementary Table S2. All
four analyses showed significant (p < 0.05) interaction effects of
age and symptom in the frontoparietal network and the visual
network showed significant interaction effects only in the third
additional set (Supplementary Table S3). Visual cortex plays an
important role in child and adolescent ADHD patients (Mazaheri
et al., 2010; Kroger et al., 2014). Previous studies reported
altered activation in occipital regions (Kroger et al., 2014) and
disconnection between frontal and occipital cortex (Mazaheri
et al., 2010) in child and adolescent ADHD patients. The
correlation between degree centrality values of the frontoparietal
network and IQ scores were reported in Supplementary Table
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FIGURE 3 | Actual and predicted (A) FSIQ using IC 5, (B) VIQ using IC 5, and (C) PIQ using IC 5.

S4. All IQ scores were significantly (p < 0.05) correlated with
degree values of the frontoparietal network in the first additional
set. Only PIQ showed significant (p < 0.05) correlation in the
second additional set, and VIQ and PIQ showed significant
(p < 0.05) correlation in the third additional set. FSIQ and VIQ
in the second additional set and FSIQ in the third additional
set did not show significant (p > 0.05) correlation but the
p-values were close to 0.05 (p = 0.0691; p = 0.0585; p = 0.0559,
respectively). These results imply that those IQ scores were
not significantly correlated at 0.05 level but still moderately
correlated (e.g., p-value between 0.5 and 0.6) to degree values
of the frontoparietal network. The IQ prediction results were
reported in Supplementary Table S5. The percent error values
were approximately 10% for all additional data sets. In sum, we
confirmed that our results stayed consistent even if we removed
different set of random subjects.

Child and adolescent ADHD patients are known to show
different behavior symptoms, particularly hyperactivity and
impulsivity (Wehmeier et al., 2010; Wolraich et al., 2011).
Adolescent ADHD patients rarely exhibit hyperactive and
impulsive behaviors compared to child ADHD patients (Hurtig
et al., 2007; Wehmeier et al., 2010; Wolraich et al., 2011).
A previous study reported that ADHD combined type patients
were the most common in childhood (43%), while ADHD
inattentive type patients were the most common in adolescence
(64%) (Hurtig et al., 2007). Changes in environmental situations
such as maturation, desire to be independent from parents, and
spending more time away from home might be explanations
for behavioral differences between child and adolescent
ADHD patients (Wehmeier et al., 2010). Treatment options
should consider these behavioral differences, as indiscriminate
treatments might negatively affect ADHD patients resulting in
poor academic performance and high risk of substance abuse
(Barkley et al., 1996; Barnard et al., 2010; Wehmeier et al.,
2010; Wolraich et al., 2011). Adolescent ADHD patients not
treated in childhood are more likely to be suspended from
school, be socially excluded, get in car accidents, and have
comorbid disorders such as substance abuse, dependence, and
mood disorders than those who receive treatment in childhood
(Barkley et al., 1996). In sum, comprehensive understanding of
ADHD might require understanding of age-related behavioral
differences. Our study provides insight to behavioral differences

between child and adolescent ADHD patients via state of the art
connectivity analysis.

Our study has some limitations. First, there were no significant
differences in ADHD hyperactive/impulsive scores between
child and adolescent ADHD patients although the behavioral
differences of hyperactivity and impulsivity between child and
adolescent ADHD patients are well established. We were limited
by the available neuroimaging data of ADHD-200 database
and future studies with more samples could solve this issue.
Also, our result showed that there are significant relationships
between degree centrality values of the frontoparietal network
and IQ scores and further studies with more samples are needed
to fully interpret correlation between IQ scores and centrality
values. Second, we only used degree centrality as a connectivity
measure. There are several other measures such as betweenness,
eigenvector, and closeness centrality (Rubinov and Sporns, 2010).
All centrality measures quantify the importance of a given node,
but there is no single ideal measure for a plethora of research
questions (Rubinov and Sporns, 2010; Zuo et al., 2012; dos
santos Siqueira et al., 2014). Other centrality measures might have
improved sensitivity for assessing ADHD related brain networks.
Finally, we only used rs-fMRI data. A multi-modality study
incorporating many neuroimaging modalities might provide
complementary information to better assess ADHD brains.

We identified brain networks that showed significant
interaction effects of age (child and adolescent) and symptom
(ADHD and NC) using group ICA and weighted degree values.
The frontoparietal network showed significant interaction effects
(p = 0.0068) and the degree values of the frontoparietal network
demonstrated high correlation with IQ scores (average r = 0.31).
Furthermore, actual and predicted IQ scores yielded significant
results, with an approximate error of 10%. Our study suggests
a possible statistical link among behavioral symptom differences
(i.e., hyperactivity and impulsivity) between child and adolescent
ADHD patients and brain networks, and our study might provide
potential imaging biomarkers for future ADHD and intelligence
studies.
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